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ABSTRACT 

The stability of slopes is a major concern in the field of geotechnical 

engineering. Two-dimensional (2D) limit equilibrium methods are usually 

implemented in this field due to their simplicity.  However, these methods ignore the 

features of the third dimension of slopes.  Although three-dimensional (3D) methods 

tried to remove the previous limitation, most of them assumed the direction of 

sliding, simplified or ignored the intercolumn forces, and avoided to search for 

location and shape of three-dimensional critical slip surface.  This study was 

performed to overcome the mentioned limitations.  In the present study, a new slope 

stability method was established based on the force and moment equilibrium in two 

vertical directions that was able to find the unique direction of sliding.  Moreover, a 

modified Particle Swarm Optimization was developed by replacing the worst particle 

of each swarm with the previous global best particle and using a dynamic inertia 

weight to determine the 3D critical slip surface.  Then, a computer program was 

established to model 3D slopes and perform the required calculations.  Several 

benchmark problems were re-analyzed to verify the results of the study and good 

agreements were achieved with the results of previous studies when different failure 

mechanisms as ellipsoid, cylindrical, and composite slip surfaces were successfully 

applied in the analysis.  The results indicated that the 3D factor of safety of a slope is 

always greater than its corresponding 2D factor. Moreover, the end effect in 3D 

analysis was found to be more significance in the problems with lower ratio of length 

to the width of the sliding mass.  It was also found that the presence of water and 

weak layer enlarged this effect.  Through the verification study, it was observed that 

different sliding directions produce different factors of safety, while the lowest value 

of factor of safety and 3D critical slip surface is only reachable through the real 

direction of sliding.  Finally, case studies of actual stability problems were analyzed 

to find their critical slip surfaces.  Achieving the minimum factor of safety of 0.977 

for the critical slip surface of a failed slope demonstrated the validity of performance 

of presented computer code.  Based on the obtained results, this study successfully 

overcame the mentioned limitations of the previous methods. The results of this 

study provided a better understanding of the actual failure mechanism and helped to 

enhance the safety and reduced the economic and health costs due to slope failure by 

a more detailed analysis than before. 
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ABSTRAK 

Kestabilan cerun kini menjadi kebimbangan utama dalam bidang 

kejuruteraan geoteknik. Penggunaan had dua dimensi (2D) yang merupakan kaedah 

keseimbangan biasanya dijalankan kerana penyerderhanaan pengaplikasian. Walau 

bagaimanapun, kaedah ini mengabaikan dimensi ciri ketiga cerun. Kaedah tiga 

dimensi (3D) dihasilkan bagi menghapuskan keterbatasan sistem aplikasi 

sebelumnya. Kebanyakan pengkaji menganggap arah gelongsor, dipermudah atau 

diabaikan daya intercolumn, menghalang untuk mencari lokasi dan bentuk tiga 

dimensi permukaan slip critical. Kajian ini telah dijalankan untuk mengatasi 

keterbatasan tersebut. Dalam kajian ini, satu kaedah baru telah diperolehi 

berdasarkan kestabilan cerun dalam mengimbangi tenaga dua arah menegak dapat 

mencari hala tuju unik gelongsor. Pengubahan zarah sekumpulan pengoptimuman 

dibangunkan bagi menggantikan kekurangan kumpulan zarah terdahulu, dengan 

penggunaan berat inersia dinamik untuk menentukan permukaan slip critical 3D. 

Program komputer telah diperolehi  untuk model cerun 3D dalam melaksanakan 

pengiraan yang tepat. Beberapa masalah penanda aras dianalisis untuk mengesahkan 

keputusan kajian dan satu kesepakatan telah dipersetujui berkaitan dengan penemuan 

kajian terdahulu, akibat  terdapat kegagalan mekanisma yang berbeza di permukaan 

slip ellips, silinder, dan kegagalan permukaan komposit telah berjaya digunakan 

dalam analisis kajian. Keputusan menunjukkan bahawa faktor keselamatan cerun 3D 

adalah sentiasa lebih besar berbanding faktor 2D. Hasil akhir dalam analisis kajian 

3D didapati lebih penting dalam penyataan masalah dengan nisbah yang lebih rendah 

jisim panjang gelongsor. Kajian juga mendapati bahawa kehadiran air yang 

diperbesarkan akibat dari kesan lapisan yang lemah. Melalui kajian pengesahan, 

Dapat diperhatikan bahawa gelongsor arahan berbeza menghasilkan keselamatan 

faktor yang berbeza, manakala faktor keselamatan yang lebih rendah dan 3D 

kegagalan permukaan kritikal hanya dapat dicapai melalui gelongsor arah sebenar. 

Kajian kes masalah kestabilan sebenar telah dianalisis bagi mencari kegagalan 

permukaan kritikal. Faktor minimum keselamatan 0.977 di kegagalan permukaan 

kritikal kegagalan cerun menunjukkan kesahihan prestasi kod komputer dipaparkan. 

Berdasarkan keputusan yang diperolehi, kajian ini telah berjaya mengatasi 

keterbatasan aplikasi yang terdahulu. Hasil keputusan kajian memberikan 

pemahaman yang lebih baik terhadap mekanisme kegagalan sebenar dan dapat 

membantu untuk meningkatkan keselamatan bagi mengurangkan kos ekonomi dan 

kesihatan akibat kegagalan analisis cerun secara lebih terperinci berbanding 

sebelumnya.   
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CHAPTER 1 

INTRODUCTION 

1.1  Background of the Study 

The stability of slopes is always an important concern in geotechnical 

engineering.  Limit equilibrium method is commonly used in slope stability analysis 

(Morgenstern and Price, 1965; Fredlund and Krahn, 1977; Baker, 1980; Chen and 

Chameau, 1982; Fredlund, 1984; Ugai, 1995; Yu et al., 1998; Kim et al., 2002; 

Krahn, 2003; Cheng et al., 2008; Askari and Farzaneh, 2008; Sun et al., 2012; and 

Hongjun and Longtan, 2011).  This method is established based on the principles of 

kinematics that does not consider displacement within the soil mass.  Consequently, 

a kinematically admissible sliding surface is assumed for the failure.  The soil mass 

above the sliding surface is considered a free body.  Then disturbing and resisting 

forces along the sliding surface are estimated by using static equilibriums of force, 

moment, or both within the failure mass.  It is assumed that the free body of the soil 

approaches the failure condition by reducing strength with a factor that is called the 

factor of safety (FOS).  Although this solution provides quantitative information 

regarding the stability of slope as FOS, it is based on an assumed failure mass.  

Therefore, it has to be repeated for a number of probable slip surfaces to find the 

minimum FOS that is related to the critical slip surface.  This surface is theoretically 

the critical slip surface, but the real failure surface may differ if the sliding occurs.  

This difference depends on how precisely the real slope idealized and what 

assumptions were used in the analysis.   
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The major classifications of slope stability analysis are 2D and 3D methods. 

In order to analyze the stability of a slope, 2D methods use its critical 2D section as a 

plain-strain problem, while 3D methods utilize its 3D model by using an appropriate 

mesh. These methods have similarities and differences in their basic theories and 

assumptions regarding the shape of the slip surface and dealing with the internal 

forces.  The method of slices as a limit equilibrium method is commonly used to 

analyze complicated condition of 2D slopes.  The equivalent of these methods in 3D 

analyses is called the method of columns.  Since the internal forces of the failure 

mass are mainly unknown in this method, usually the problem becomes statically 

indeterminate.  In this situation, the number of available equations to solve the 

problem is less than the number of unknowns.  In order to overcome the mentioned 

indeterminacy, several assumptions and principles are applied in formulation of the 

limit equilibrium analysis.  These assumptions are mainly related to determination of 

the shape and position of the sliding surface, and the magnitude, direction, and action 

point of the forces inside the sliding mass.  The difference in theory behind the slope 

stability methods along with the applied assumption makes different processes to 

analyze the stability of slopes.     

A number of 3D methods have established to consider the third dimension of 

slopes after the method of Anagnosti was proposed in 1969.  However, the majority 

of them are limited in practice because of assumptions and limitations.  A major 

assumption that is commonly made in 3D slope stability analyses is assuming a plane 

of symmetry for the sliding mass (Hovland, 1977; Chen and Chameau, 1983; 

Dennhardt and Forster, 1985; Leshchinsky et al., 1985; Ugai, 1985; Leshchinsky and 

Baker, 1986; Baker and Leshchinsky, 1987; Hungr, 1987; Leshchinsky and Mullet, 

1988; Ugai, 1988; Xing, 1988; Hungr et al., 1989; Leshchinsky and Huang, 1992; 

Cavounidis and Kalogeropoulos, 1992; Lam and Fredlund, 1993; and Jiang and 

Yamagami, 2004).  Those methods that use the plane of symmetry assume the 

direction of sliding and consider only half of the sliding mass.   

It is expected that the sliding mass move in a cross-sectional direction in 

symmetric slopes, but there is no guarantee to find the direction of sliding in 

asymmetric slopes without precise calculation.  Consequently, the application of a 
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large number of 3D methods is limited to symmetric problems.  In order to 

generalize the application of 3D methods some researchers have tried to find the real 

sliding direction in asymmetric problems (Yamagami and Jiang, 1996 and 1997; 

Huang and Tsai, 2000; Huang et al., 2002; and Cheng and Yip, 2007).  However, 

these methods still have limitations in basic theories and practice.  

Accordingly, the slope stability analysis within the framework of limit 

equilibrium needs to determine the critical slip surface.  Although many 2D studies 

were involved with the 2D critical slip surface, only a few well-known studies tried 

to find the 3D critical slip surface (e.g. Yamagami and Jiang; 1997; Jiang, 

Yamagami, and Baker, 2003; Mowen, 2004; and Mowen et al., 2011).  All these 

studies still have limitations and assumptions in their objective functions and/or in 

the applied searching techniques that are discussed further.  Consequently, an 

effective method is required to be able to find the 3D critical slip surface. 

1.2  Statement of the Problems 

The slope stability is applied in 2D and 3D analyses; both of which have 

shortcoming in modelling the real slope and sliding procedure.  Two-dimensional 

analyses mainly simplify the real condition of the slope.  As a mutual assumption, all 

2D methods consider infinite width for the slope.  The significance of this 

assumption is to reduce the unknowns related to the third dimension of the slope and 

simplify the calculations.   

In reality, natural slopes are generally limited in the third dimension and 

performing a 3D analysis best presents the longitudinal changes of the slip surface, 

especially when the geometry of the failure mass is complex.  Consequently, the 

results of 2D methods may largely differ from the real condition.  Overestimated and 

underestimated results as the probable outcomes of using inappropriate method may 

cause economic and safety issues.  These issues are more significant when 

asymmetric slopes with complex geometries or failure mechanisms are considered by 

2D methods.  Moreover, the real direction and shape of sliding is not determinable in 
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2D analysis.  Although, some quasi-3D approximately evaluates the 3D FOS based 

on 2D factors, the accuracy of these methods is not guaranteed (Chen et al., 2006).  

Therefore, performing 3D analysis provides closer results to the actual condition than 

2D approaches.   

The mentioned inadequacies of 2D analysis were partially solved by some 

existing 3D slope stability analyses.  However, many of the available methods cannot 

provide an appropriate 3D model in asymmetric slopes, due to their assumptions and 

simplifications.  In addition, the existing 3D methods did not offer a well-defined 

process to find the direction of sliding.  Moreover, an effective search strategy is still 

required to determine the 3D critical slip surface. 

Researchers avoid using 3D analysis because it is difficult to consider 

complex analytic equations, determine the static condition of the problem, and find 

the 3D critical slip surface.  In order to overcome the mentioned problems, the 

limitations of the existing methods have to be removed to make 3D analysis feasible 

for slopes stability analysis.  The main constraints of existing limit equilibrium 

methods in analyzing the 3D slopes are maintaining the required accuracy in 

calculation, calculating the direction of sliding, making an appropriate model of the 

real slope, and applying an effective search technique to find the 3D critical slip 

surface.  Limit equilibrium method contributes to the establishment of a stability 

analysis technique.  An optimization process can help to determine the position of 

3D critical slip surface.  This research attempted to eliminate the mentioned 

limitations by developing a 3D limit equilibrium method, a PSO technique, and a 

computer code.  The proposed 3D method calculated the 3D FOS and direction of 

sliding.  The developed PSO technique determined the 3D critical slip surface.  

Lastly, the developed computer code modeled the 3D slope and performed the 

calculations. 
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1.3  Objectives of the Study 

The present study was aimed at performing 3D slope stability analysis based 

on limit equilibrium method by using PSO.  In line with the main goals of the 

research, the following are the objectives of the study: 

i. To determine the limitations of the existing three-dimensional slope 

stability analyses based on limit equilibrium methods 

ii. To develop the equation of three-dimensional factor of safety based on 

limit equilibrium method 

iii. To develop a particle swarm optimization to determine the three-

dimensional critical slip surface 

iv. To establish a computer code to model three-dimensional slopes and 

perform the calculations of the slope stability analysis 

v. To verify and validate the performance of the present study  

1.4  Research Questions 

In order to reach the objectives of the present research, the research questions 

of the study were defined as following: 

i. What are the limitations of existing three-dimensional slope stability 

analyses based on limit equilibrium method?  

ii. How to develop the equation of three-dimensional factor of safety based 

on limit equilibrium method?  

iii. How to develop a particle swarm optimization to find the three-

dimensional critical slip surface? 

iv. How to establish a computer code to model three-dimensional slopes and 

perform the calculations of the slope stability analysis? 

v. How to verify and validate the performance of the present study? 
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1.5  Significance of the Study 

In many cases of construction in urban areas or on industrial fields, the whole 

project or a part of it has to be established on top of slope, on slope, or at the toe of 

the slope.  Consequently, the construction, design, remediation, and maintenance of 

slopes have always been important to geotechnical engineers.  On the other hand, the 

importance of study on the stability of slopes is engaged with the safety and 

economic aspects of human life.  Over the past decades, the frequency and 

consequences of landslides has increased significantly and this trend continues 

(Petely et al., 2005; Petely, 2012).  In addition to enormous economic losses 

resulting from slope failures and landslides, considerable loss of human life and 

injury also occur as a result of this events.  Landslides were reported responsible for 

more than 100,000 deaths for the period of 1980 to 2000 for the main continencial 

area (Petely et al., 2005).  Moreover, based on the recent published information more 

than 32,000 people lost their lives around the world only in the period of 2004 to 

2010 as the direct act of landslides (Petley, 2012).  With increasing frequency and 

adverse impact of slope failures, the increasing requirement of better understanding 

of hilly urban areas and constructions related to slopes is revealed.  

Since the shape of slopes are naturally asymmetric, 2D analyses have to 

simplify the real condition.  This simplification is not satisfactory in many cases, 

especially when a slope with structural asymmetry is considered.  In order to perform 

realistic analysis of these cases, three-dimensional slope stability studies are needed.  

Furthermore, finding the critical slip surface is an important task in a 3D analysis, 

because it defines the location and shape of the probable failure mass.  Defining this 

surface can lead to estimate of the most hazardous area of the slope.  Another 

important issue in stability analysis of the slope that is confined to 3D analyses is the 

calculation of direction of sliding that determines the direction of probable failure.  

The present research sets its goals to prepare a realistic model of 3D slopes, find the 

direction of sliding together with the corresponding 3D FOS, and determine the 3D 

critical slip surface of the slopes. 
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The outcomes of the present study help to better understanding the behavior 

of soil slopes.  This is also possible to find the probable instability of a 3D slope.  

These significances can avoid the consequences of overestimated and underestimated 

results in geotechnical designing or assessing of a slope that are the main causes of 

economic lost and safety issues.  Therefore, two direct benefits that can be achieved 

from the results of this research are preventing the unnecessary stabilization costs 

and enhancing the safety related to the slope environment. 

1.6  Scope of the Study 

In order to improve the 3D equation of FOS, this study choses limit 

equilibrium method as the most common method among all soil slope stability 

methods to focus on.  Some of the reasons of this selection are as follows: 

i. Limit equilibrium method is able to consider almost all of the engaged 

conditions in a slope stability problem such as external and internal forces 

of the soil mass, pore water pressure, and multi layered slopes 

(Morgenstern and Price, 1965). 

ii. Limit equilibrium method has a simple theoretical approach that considers 

the major effective factors on the shearing resistance and is reliable in 

modelling the practical cases (Fredlund and Krahn, 1977; Chen and 

Chameau, 1982; and Askari and Farzaneh, 2008). 

iii. The results of limit equilibrium method are similar to the results of more 

rigorous methods, while the required input parameters are reduced and 

achieved much easier than the mentioned methods (Spencer, 1967; 

Wright, Kulhawy, and Duncan, 1973; Spencer, 1973; Yu et al., 1998; 

Duncan, 1996; Hongjun and Longtan, 2011). 

  The scope of this research is limited to the soil slopes with both 

homogeneous and layered material; however, the present method may be useful in 

analyzing other soil-alike materials.  The linear Mohr-Coulomb failure criteria was 

adopted to model the behavior of material at the verge of failure. Moreover, the 
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linear relation of Terzaghi (1936) was adopted to determine effective stresses on the 

sliding surface. Consequently, unsaturated soils and nonlinear relationships of 

effective stresses was excluded from the scope of this research. The main failure 

mechanism of the present study is rotational.  A 3D ellipsoid slip surface was 

adopted that includes the spherical shape as a specific condition.  However, a 

cylindrical slip surface also employed as a part of this study.  The procedure of 

finding the critical slip surface was established based on advance searching 

optimization techniques.  A particle swarm optimization was developed and 

employed as a global search technique to find the critical slip surface.  Finally, 

Matlab coding language was used in this research due to its capabilities as: 

i. Using matrix based calculation that saves the calculation time 

ii. Providing great graphical tools to better understanding the results 

iii. Providing powerful graphic user interface (GUI) to input data 

iv. Providing advanced geometrical and mathematical functions  

v. Co working with other databases such as Microsoft Excel to manage data 

1.7  Expected Outcomes 

The main outcomes of the present study are expected as following: 

i. An equation of factor of safety based on limit equilibrium method that is 

able to calculate the unique direction of sliding and factor of safety of 3D 

slopes. 

ii. A searching process based on particle swarm optimization that is able to 

find the critical slip surface of 3D slopes. 

iii. A computer program that is able to model 3D slopes and perform the 

calculations of factor of safety and critical slip surface. 
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1.8  Limitations of the Study 

There were some unavoidable limitations to carry out the present research.  

Firstly, an elastic perfectly plastic behavior was adopted for the soil materials so the 

linear Mohr-Coulomb failure criteria were used to determine the shear strength on 

the slip surface.  Secondly, the framework of limit equilibrium method was applied 

in the analysis, thus the failure mass was considered as a rigid body and the static 

equilibriums were used to establish the 3D equation of factor of safety.  The third 

limitation was related to the modelling of the slope.  The method of columns with a 

square grid was employed in the present study to discretize the sliding mass.  

Therefore, the 3D failure mass was simulated by vertical columns.  

As the next limitation, soil materials were assumed saturated by Terzaghi’s 

(1936) linear equation of effective stress. Consequently, the effects of negative pore 

pressure and nonlinear equations of effective stresses for unsaturated soils were not 

included in the present study.  Moreover, a hydrostatic water condition was assumed 

to include the pore water pressure in the analysis, so the flow of moisture was not 

considered.  The fifth limitation was related to the materials of the slope.  Although 

the present study was able to handle different soil layers including weak layer and 

bedrock, an isotropic and homogeneous condition was assumed for the behavior of 

layers of the slope profile.  

Finally, the mechanism of the failure was limited to 3D rotational or complex 

rotational surfaces, so the translational sliding mode was not in the scope of the 

analysis.  Although a general ellipsoid shape was used in the analysis, other 

rotational slip surfaces were also applicable within the framework of the present 

study. 
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1.9  Definition of Terms 

To provide a basis for discussion, following definitions are used in this study: 

i. Method of slices: This method divides the sliding mass into a number of 

vertical slices to establish the equation of factor of safety. 

ii. Method of columns: This method can be considered as an extension of 

method of slices into the third dimension that discretizes the failure mass 

into a number of columns. 

iii. Plane of symmetry: A hypothetical vertical plane that divides the sliding 

mass into two symmetric parts. 

iv. Graphical user interface: A graphic interface that is used to connect the 

computer code and the user. 

v. Optimization technique: A procees that uses different search techniques 

among a series of probable answers to find the best suitable solution for a 

problem. 
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