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ABSTRACT

Evolvable neural networks are a more recent architecture, and differs from
the conventional artificial neural networks (ANN) in the sense that it allows changes
in the structure and design to cope with dynamic operating environments. Block-
based neural networks (BbNN) provide a more unified solution to the two fundamental
problems of ANNs, which include simultaneous optimization of structure, and viable
implementation in reconfigurable embedded hardware such as field programmable gate
arrays (FPGAs) due to its modular structure. However, BbNNs still have several
outstanding issues to be resolved for an effective implementation. An efficient
hardware design can only be obtained with proper design consideration. To date,
there has been no previous work reported on BbNNs configured in recurrent mode for
complex case studies, even though it is theoretically possible. Existing BbNN models
do not explicitly specify or model the latency of the system, determine how it affects
the system, nor how it can be optimized. Also, current methods of training BbNNs
using genetic algorithm (GA) are slow, especially with large training datasets. This
thesis presents an improved BbNN model, proposes a state-of-the-art simulation and
co-design environment for it, and implements it on a hardware platform for improved
speed and performance. It has a novel architecture with deterministic outputs that
can evolve and operate in both feedforward and recurrent modes. The BbNN is
redesigned for optimal system latency to achieve higher performance, and supports on-
chip training for multi-objective optimization using a multi-population parallel genetic
algorithm. All the algorithms proposed led to an efficient and scalable hardware
implementation. The viability of the resulting BbNN system-on-chip (SoC) is proven
with real-time performance analysis of real-world case studies, where performance
improvements of up to 410× are observed. The hardware logic utilization is minimized
with the help of theoretical analysis and design considerations. A case study requiring
the use of recurrent mode BbNN is also presented. All case studies tested with the
BbNN give equivalent or better classification accuracies compared to those provided
in previous works, but with optimized latency values. As an example, the proposed
BbNN solution achieves a classification accuracy of 99.41% for the heart arrhythmia
case study, which is an improvement over previous work. The validity of the proposed
BbNN model is thus verified.
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ABSTRAK

Rangkaian neural boleubah adalah arkitektur yang lebih terkini, dan berbeza
daripada rangkaian neural tiruan konvensional (ANN) dalam erti kata bahawa
ia membolehkan perubahan dalam struktur dan reka bentuk untuk menghadapi
persekitaran yang dinamik. Blok berasaskan rangkaian neural (BbNN) merupakan
penyelesaian yang mantap untuk dua masalah asas ANN, iaitu pengoptimuman
struktur secara serentak, dan sesuai untuk diimplementasikan di dalam perkakasan
bolehubah terbenam seperti field programmable gate arrays (FPGA) disebabkan
strukturnya yang modular. Walau bagaimanapun, BbNN masih mempunyai beberapa
isu-isu tertunggak yang perlu diselesaikan untuk mendapatkan perlaksanaan yang
lebih cekap. Reka bentuk perkakasan yang cekap hanya boleh diperolehi dengan
pertimbangan reka bentuk yang betul. Sehingga sekarang, tidak ada kerja sebelumnya
yang berjaya menonjolkan BbNN yang dikonfigurasikan dalam mod berulang bagi
kajian kes yang kompleks, walaupun ia adalah mungkin secara teori. Model BbNN
sedia ada tidak jelas menentukan bagaimana latensi sistemnya berfungsi. Ianya juga
tidak menentukan bagaimana latensi memberi kesan kepada sistem dan bagaimana
ia boleh dioptimumkan. Tambahan pada itu, kaedah semasa yang digunakan untuk
melatih BbNN menggunakan algoritma genetik (GA) adalah perlahan, terutamanya
untuk set data yang besar. Tesis ini membentangkan model BbNN yang lebih
baik, mencadangkan sistem simulasi yang sesuai, dan mengimplementasikannya
dalam perkakasan FPGA untuk meningkatkan prestasinya. Ia mempunyai arkitektur
yang unggul dengan keluaran yang berketentuan, sekaligus membolehkannya
berevolusi dan beroperasi dalam mod suap depan dan berulang. BbNN ini direka
untuk mencapai latensi sistem optimum demi memperoleh prestasi yang lebih
tinggi, dan membenarkan latihan pada cip untuk pengoptimuman pelbagai objektif
dengan penggunaan GA selari. Semua algoritma yang dicadangkan membenarkan
implementasi perkakasan yang cekap dan berskala. Kecekapan BbNN di atas
sistem-atas-cip terbukti dengan analisis prestasi kajian kes yang kompleks, di mana
peningkatan dalam prestasi sehingga 410× diperhatikan. Penggunaan perkakasan
logik dikurangkan dengan bantuan analisis teori dan pertimbangan reka bentuk. Kajian
kes yang memerlukan penggunaan BbNN di dalam mod berulang turut dibentangkan.
Semua kajian kes yang diuji dengan sistem ini memberikan kadar klasifikasi yang
sama atau lebih baik dengan kajian-kajian sebelumnya, tetapi dengan latensi yang
optimum. Sebagai contoh, BbNN yang dikemukakan menunjukkan kadar klasifikasi
sebanyak 99.41% bagi kes aritmia jantung, yang merupakan peningkatan berbanding
dengan kajian sebelumnya. Maka, ini mengesahkan kesahihan model BbNN yang
dicadangkan.
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CHAPTER 1

INTRODUCTION

An artificial neural network (ANN) is a mathematical model inspired by
biological neural networks [1]. A neural network consists of an interconnected group
of artificial neurons, and it processes information using a connectionist approach to
computation. Typically, ANNs are used in adaptive systems that require a training
phase to properly configure itself to perform a classification or control task. Figure 1.1
depicts a multilayer perceptron ANN with a single hidden layer.

Figure 1.1: A multilayer-perceptron ANN with a single hidden layer.

ANNs have been successfully deployed in solving various kinds of
classification and control problems, which include speech recognition, image analysis,
adaptive control, and biomedical signal analysis [1–3]. Typically, existing ANN
solutions are based on statistical estimations of a given complex problem, in which
the relation between the datasets are inferred through heuristics during the training
process.

However, ANNs have been criticized for many shortcomings [4, 5]. One
weakness of conventional ANNs is the difficulty of obtaining an optimal structure
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for a given problem. Another issue is that the internal structure of conventional
ANNs are rigid, massively interconnected, and allows for little change, making it
unsuitable for digital hardware implementation. Also, most types of neural networks
are computationally intensive and cannot be implemented in embedded software
without sacrificing real time execution [5].

1.1 Block-based Neural Networks

Evolvable neural networks are a more recent architecture, and differs from the
conventional ANNs in the sense that it allows changes in the structure and design
to cope with dynamic operating environments [6]. Block-based neural networks
(BbNNs) were first introduced in 2001 by Moon and Kong [7]. It provides a more
unified solution to the two fundamental problems of ANN, which include simultaneous
optimization of structure, and viable implementation in reconfigurable digital hardware
such as field programmable gate arrays (FPGAs). A BbNN structure is a network
of neuron blocks interconnected in the form of a grid as shown in Figure 1.2. A
neuron block is a basic data processing unit comprising of a neural network having
four variable input/output nodes.

B
0

B
1

B
(r-1)c+0

B
(r-1)c+1

B
c-1

B
rc-1

B
c+0

B
c+1

B
2c-1

 

 

Figure 1.2: Neuron blocks interconnected as a scalable grid to form a BbNN
structure [8].
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BbNNs have a modular structure, allowing it to be scaled easily by adding
or removing neuron blocks. It has been successfully deployed for various kinds of
classification problems [6], and is specifically meant to be implemented in digital
hardware due to its regular structure. The number of rows (r) and columns (c) differ
according to the complexity of the problem being tackled. In addition to this, the
internal configuration of the neuron blocks can also change or evolve according to
the problem being tackled. These two structural aspects can change dynamically, and
provide the evolutionary feature of a BbNN system.

Optimization algorithms are used for training BbNN structures, as is in the
case of most evolvable ANNs. Almost all previous work reported in literature make
use of genetic algorithm (GA), a search heuristic that mimics the process of natural
evolution [9]. The GA methodology has been shown to be able to solve difficult
and complex problems that fall in the domain of optimization and search. In GA, a
chromosome represents a possible solution, and the chromosome is divided into genes
which represent parameters of the solution to a problem. Hence in digital systems, a
chromosome is represented in the form of a binary string [10]. In the case of BbNN
training, the chromosome represents the synaptic weights and configuration of the
BbNN structure.

BbNNs have been successfully used in various applications such as ECG signal
classification [8], hypoglycemia detection [11], pattern recognition [12], heart rate
variation [13, 14], network intrusion [15, 16], mobile robot control [7], dynamic fuzzy
control [17] and many more [6]. Most of these works report very high classification
rates, often outperforming equivalent regular ANNs designs. This is mostly due to its
evolvable structure.

1.2 Problem Statement

The main advantage of BbNNs when compared to other forms of evolvable
ANNs is its modular structure, making it a very promising candidate for an efficient
hardware implementation. Hardware implementation platforms such as FPGAs have
limited logic elements, and efficient neural network designs allow better resource
utilization. Efficient hardware implementation of BbNN structures is the primary goal
of this thesis.
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Even though BbNNs give relatively promising results as reported in current
literature, there are still several outstanding issues to be resolved with currently
defined models. These relate to the modeling, hardware design, and optimization
of BbNN structures. This thesis tackles these issues by redefining certain aspects
of BbNN operation in order to obtain an improved model for better hardware and
software implementation. It is likely that the reluctant adoption of BbNNs in practical
applications is related to these outstanding issues. Also, to properly apply BbNNs in
complex real world problems, it should ideally be implemented in hardware, and must
be able to handle on-chip training.

Despite the wide range of applications reported in literature, to date there has
been no work reported on BbNNs configured in recurrent mode for complex case
studies, even though it is theoretically possible [7]. This is due to a lack of a time-step
model required for the design and simulation of recurrent neural networks. Figure 1.3
shows an example of a 2 × 2 BbNN structure configured in recurrent mode. The
behavior of such a configuration in hardware would be indeterministic if a registered
architecture is not used, and would normally result in an asynchronous feedback that
can lead to circuit metastability. Existing BbNN models in literature do not discuss
registering the outputs of the neuron blocks in depth, nor do they include a latency
variable that is essential for properly using such models.

x0

y0

x1

y1

Figure 1.3: Example of a 2× 2 BbNN structure configured in recurrent mode.

Related to the recurrent BbNN issue mentioned above, existing BbNN models
do not explicitly specify or model the latency of the system, determine how it affects
the system, nor how it can be optimized. This is important because optimizing the
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latency not only provides obvious benefits such as improved performance and reduced
power consumption, but also allows the BbNN to behave in a more deterministic
manner. This deterministic behavior will allow BbNNs to be able to function properly
in recurrent or feedback mode, and can even have internal configurations that would
have been normally deemed invalid. Also, previous works on BbNNs [6, 11, 12, 15,
17–20] are difficult to be repeated without latency control because specifying different
latency values will often cause different results to appear at the outputs. This thesis
proposes a redefined BbNN model with latency control taken into account.

Another issue with BbNN structures is in regards to its hardware design.
Previous work only presented the modeling of the BbNN, after which a hardware
design is obtained [20, 21]. The methodology and process of mapping the
models to hardware are not provided, thus leaving several open questions on the
design considerations such as the architectural options, system partitioning, selected
activation function, lower/upper limits of internal network parameters (synaptic weight
and neuron biases), number representation for arithmetic operations (fixed or floating
point), bit precision, finite state machine flow, and register transfer level (RTL) design.

The optimum range for the lower/upper limits of internal network parameters,
such as the synaptic weight, neuron biases, and activation function saturation points
are not clearly defined in existing work. An efficient hardware design can only be
obtained after the optimum range of these values is known. The main rationale of
using BbNNs instead of conventional ANNs is the advantage in hardware utilization,
but this cannot be achieved if the hardware design is not efficient. This thesis explores
this aspect of BbNN modeling with the goal of obtaining an optimal neuron block
design for effective hardware implementation.

Current methods of training BbNNs using GA are slow, especially with large
training datasets. The problem worsens when training for recurrent BbNNs whereby
the convergence rate will drop significantly. An improved GA mechanism is required
to improve speed and convergence rate, as well as to allow multithreaded simulation
of BbNN structures for parallel fitness evaluation. This will allow the use of superior
computational techniques to be applied on BbNN training, such as supercomputing
clusters or parallelized FPGAs.

BbNNs, like most evolvable ANNs, have complex neuron interconnects. The
interconnections are simple for small BbNN structures, but gradually increase in
complexity as the structure grows bigger. Thus a parameterizable interconnection
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algorithm is required for experimentation, and will not only be useful for creating
scalable BbNN structures in simulation models, but also facilitate automated
generation of interconnects in hardware implementations. To date, no such algorithm
exists in published literature. Such an algorithm would be complex and prone to errors,
and the lack of this in current literature is possibly another reason for the reluctant
adoption of BbNN systems.

1.3 Objectives

The primary objective of this thesis is to improve on existing BbNN models,
to propose a state-of-the-art simulation and co-design environment for it, and to
implement it on hardware for performance analysis. In detail, the objectives of this
thesis are:

1. To propose a block-based neural network (BbNN) architecture that has the
following novel features:

• Evolvable architecture with deterministic outputs that can operate in both
feedforward and recurrent mode.

• Redesigned for optimal system latency to achieve higher performance.

• On-chip training and multi-objective optimization using state-of-the-art
parallel genetic algorithms.

• Allows for an efficient and scalable hardware implementation.

• Provides a platform for effective solutions to real world complex
classification problems.

2. To develop an effective implementation platform for practical BbNN solutions
that is based on FPGA embedded hardware, and prove the viability of the
resulting hardware-software design with real-time performance analysis of
complex, real world case studies.

1.4 Scope of Work

The work in this thesis uses a combination of tools mostly obtained from open
source software and libraries. This allows for a work that is easier to repeat in the
future. The platform for testing and using BbNN models are built from scratch using a
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variety of tools. The software tools and prototyping platform applied in this thesis are
described as follows:

a) Algorithmic models are verified and analyzed using GNU Octave, an open
source Matlab alternative freely available on Linux. It is also used for graph
plotting, data preprocessing, and equation optimization.

b) The proposed BbNN software model is developed in C/C++ and modeled
using the proposed array interconnect algorithm. It is compiled with the GCC
compiler under Ubuntu Linux, with all compiler optimizations turned on for
maximum performance (optimization level 3).

c) This work utilizes GAlib, a powerful C/C++ open source library for applying
GA optimization in software [22]. The optimization algorithm applied is scoped
to a multiple population version of steady state GA, which is better suited for
multi-objective problems.

d) Parallel processing for BbNN simulation and training is achieved using a
computer equipped with a 2.8 Ghz Intel Core i7 processor. For performing
multithreaded execution, the libpthread library is used.

e) Verilog and SystemVerilog HDL is used to model the hardware design of the
BbNN. Hardware prototyping and implementation of the BbNN system as an
SoC is done on an Altera Stratix III FPGA as shown in Fig. 1.4. The Nios
II processor used is clocked at 266 MHz, and provides a platform in which
the Nios2-Linux operating system can execute. This allows the use of the
GAlib library, filesystem support, and USB host support (through libUSB) for
embedded systems. It also allows the usage of external USB-based sensors.

f) The neuron blocks are verified in Icarus Verilog and Modelsim using
SystemVerilog tesbenches. The DPI-C interface in Modelsim is used for
more advanced testbenches to incorporate co-verification with C/C++ golden
reference models. The BbNN structure is constructed by combining these
neuron blocks to form an array.

g) The BbNN structure is modeled in such a way that the rows and columns
are parameterizable, by using the proposed array interconnect algorithm in
conjunction with the Verilog generate command. SystemVerilog is used for the
top-level BbNN structure because of the better support for multi-dimensional
arrays for signals and registers.

h) The entire BbNN hardware structure is verified using co-simulation with C/C++
due to the complexity of the design. Verilator is used for this purpose.
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i) The case studies used to verify and analyze the performance of the proposed
BbNN model are limited to the following problems:

i The XOR classification problem.

ii Driver drowsiness detection based on HRV.

iii Heart arrhythmia classification from ECG signals.

iv Grammar inference of the Tomita language.

Problem Specific
Application

DDR
SDRAM

FPGA 
SoC

GAlib Library Routines

Nios2-Linux RTOS

BbNN
Array

Nios II
CPU

Application
Layers

Operating
System Layer

Hardware
Layer

Device
Controllers

(USB, 
Ethernet)

Figure 1.4: Layers of the proposed embedded BbNN SoC.

1.5 Contributions

The proposed BbNN model in this thesis has an improved architecture
over existing work. A platform is developed for the simulation, verification, and
implementation of the proposed BbNN model. In summary, the main contributions
of this thesis are:

• Based on all known previous works, this work is among the first successful
attempts at training a BbNN in recurrent mode, hence demonstrating the
ability to evolve recurrent structures through feedback signals with the help
of latency optimization. The recurrent mode BbNN is applied in a test case
study on grammar inference using randomly generated datasets from the Tomita
language [23–25].

• This thesis is also among the first work in the field to describe and optimize
the latency of evolvable BbNNs using multi-objective genetic algorithm (GA)
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during the training process. This is done by introducing the latency value as
a gene in the BbNN chromosome, and is simultaneously optimized during the
training process. A suitable fitness function for the GA is proposed for achieving
this.

• This work proposes an effective hardware implementation platform for BbNN
with on-chip training. The performance of the hardware implementation allows
real-time classification.

• A novel multithreaded solution is proposed for accelerating the training of BbNN
simulation models, which are repetitively evaluated by the GA fitness function.
Significant reduction in simulation time is obtained when compared to using a
only a single thread.

• An equation describing the optimum range for the upper/lower boundaries of
the internal BbNN parameters is proposed. This equation was obtained through
geometric analysis, and is empirically proven. Using this equation, it is possible
to select an optimum range for these parameters that is suitable for resource
constrained hardware implementation platforms.

• This thesis also presents the RTL design of a neuron block with properly
described methodology, using a single multiplier for each neuron block. A novel
method of reusing the multiplier to smoothly approximate a hyperbolic tangent
(tanh) function to be used as the activation function for the neuron blocks is
presented. This is an important contribution, because a sigmoid-like activation
function (which provides faster learning rates [26,27]) is provided at almost zero
cost.

• This thesis also provides a parameterizable BbNN array interconnect algorithm
that works for software simulation models as well as hardware implementation
models. Without this algorithm, designing a BbNN array will pose an obstacle
due to the complexity of the neuron block interconnects, especially when the
size of the array needs to be changed during the experiments.

1.6 Dissertation Organization

The thesis is organized as follows.

Chapter 2 covers literature review and discusses previous work done, including
works on the case studies used in this thesis. It also covers all related background
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theory.

Chapter 3 covers the methodology for the work done in this thesis. This also
includes the general approach taken for the research done in this work, as well as the
tools and platform used. It also includes a section describing the case studies used and
the methodology for creating the datasets.

Chapter 4 presents the development of the models, algorithms, system latency
and design considerations for the proposed BbNN model. The architecture of a
parameterizable multithreaded simulation model is discussed. The application of GA
for performing multi-objective optimization in the training of the proposed BbNN is
also presented.

Chapter 5 provides a complete description on the RTL design used for the
implementation of the proposed BbNN system in hardware, and an overview of the
hardware system architecture. Hardware related design considerations are discussed
here.

Chapter 6 presents the results and analysis of all the experimentation done in
this thesis, including the geometric analysis for the synaptic weight boundaries of
the neuron blocks, the results of the four different case studies used, the hardware
verification results, and the performance analysis of all proposed BbNN models.

Chapter 7 summarizes the thesis, re-stating the contributions, and suggest
directions for future research.
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PUBLICATIONS

This appendix shows the papers written based on the results obtained from the
work done in this thesis. It also includes papers that are related to the work done
in thesis, such as SoC design, GA-based hardware designs, embedded hardware and
computing systems. The following is a summary of these papers:
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