
AN EVOLVABLE BLOCK-BASED NEURAL NETWORK
ARCHITECTURE FOR EMBEDDED HARDWARE

VISHNU A/L PARAMASIVAM

UNIVERSITI TEKNOLOGI MALAYSIA



AN EVOLVABLE BLOCK-BASED NEURAL NETWORK
ARCHITECTURE FOR EMBEDDED HARDWARE

VISHNU A/L PARAMASIVAM

A thesis submitted in fulfilment of the
requirements for the award of the degree of

Doctor of Philosophy (Electrical Engineering)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

JUNE 2013



iii

Dedicated to

my beloved family



iv

ACKNOWLEDGEMENT

First and foremost, I would like to extend my deepest gratitude to my supervisor
and teacher, Prof. Dr. Mohamed Khalil Hani, for giving me the opportunity to work
in an amazing field of research. His constant encouragement, criticism and guidance
were the key to bringing this project to a fruitful completion, especially during the final
period of the research. I have learned and gained much, not only in research skills, but
also in the lessons of life, which has helped shaped my character. Thanks to him, I
now talk and act with better rationale and much gained wisdom. Had we not crossed
paths, I would have never realized my full potential.

My sincerest appreciation goes to my co-supervisor Dr. Nadzir Marsono who
was always there for me with his cheery attitude, and was of great help academically.
Not to forget my seniors Jasmine Hau Yuan Wen and Rabia Bakhteri for their support,
help, and technical advices. I have learned much from them, as well as receiving plenty
of guidance and motivation.

I would also like to thank all those who have contributed directly and indirectly
to the completion of this research and thesis. This includes my fellow postgraduate
students who provided me with help and company during my study here. Otherwise,
it would have been a lonely journey.

I also want to thank the original developers of the utmthesis LATEX project for
making the thesis writing process a lot easier for me. Thanks to them, I could focus on
the content of the thesis, and not waste time with formatting issues.

Finally, I would like to thank my family for always being there for me, through
thick and thin. Especially my parents, who are such wonderful role models and
respected members of the society. Their role in my life is something I will always
need and constantly appreciate.



v

ABSTRACT

Evolvable neural networks are a more recent architecture, and differs from
the conventional artificial neural networks (ANN) in the sense that it allows changes
in the structure and design to cope with dynamic operating environments. Block-
based neural networks (BbNN) provide a more unified solution to the two fundamental
problems of ANNs, which include simultaneous optimization of structure, and viable
implementation in reconfigurable embedded hardware such as field programmable gate
arrays (FPGAs) due to its modular structure. However, BbNNs still have several
outstanding issues to be resolved for an effective implementation. An efficient
hardware design can only be obtained with proper design consideration. To date,
there has been no previous work reported on BbNNs configured in recurrent mode for
complex case studies, even though it is theoretically possible. Existing BbNN models
do not explicitly specify or model the latency of the system, determine how it affects
the system, nor how it can be optimized. Also, current methods of training BbNNs
using genetic algorithm (GA) are slow, especially with large training datasets. This
thesis presents an improved BbNN model, proposes a state-of-the-art simulation and
co-design environment for it, and implements it on a hardware platform for improved
speed and performance. It has a novel architecture with deterministic outputs that
can evolve and operate in both feedforward and recurrent modes. The BbNN is
redesigned for optimal system latency to achieve higher performance, and supports on-
chip training for multi-objective optimization using a multi-population parallel genetic
algorithm. All the algorithms proposed led to an efficient and scalable hardware
implementation. The viability of the resulting BbNN system-on-chip (SoC) is proven
with real-time performance analysis of real-world case studies, where performance
improvements of up to 410× are observed. The hardware logic utilization is minimized
with the help of theoretical analysis and design considerations. A case study requiring
the use of recurrent mode BbNN is also presented. All case studies tested with the
BbNN give equivalent or better classification accuracies compared to those provided
in previous works, but with optimized latency values. As an example, the proposed
BbNN solution achieves a classification accuracy of 99.41% for the heart arrhythmia
case study, which is an improvement over previous work. The validity of the proposed
BbNN model is thus verified.



vi

ABSTRAK

Rangkaian neural boleubah adalah arkitektur yang lebih terkini, dan berbeza
daripada rangkaian neural tiruan konvensional (ANN) dalam erti kata bahawa
ia membolehkan perubahan dalam struktur dan reka bentuk untuk menghadapi
persekitaran yang dinamik. Blok berasaskan rangkaian neural (BbNN) merupakan
penyelesaian yang mantap untuk dua masalah asas ANN, iaitu pengoptimuman
struktur secara serentak, dan sesuai untuk diimplementasikan di dalam perkakasan
bolehubah terbenam seperti field programmable gate arrays (FPGA) disebabkan
strukturnya yang modular. Walau bagaimanapun, BbNN masih mempunyai beberapa
isu-isu tertunggak yang perlu diselesaikan untuk mendapatkan perlaksanaan yang
lebih cekap. Reka bentuk perkakasan yang cekap hanya boleh diperolehi dengan
pertimbangan reka bentuk yang betul. Sehingga sekarang, tidak ada kerja sebelumnya
yang berjaya menonjolkan BbNN yang dikonfigurasikan dalam mod berulang bagi
kajian kes yang kompleks, walaupun ia adalah mungkin secara teori. Model BbNN
sedia ada tidak jelas menentukan bagaimana latensi sistemnya berfungsi. Ianya juga
tidak menentukan bagaimana latensi memberi kesan kepada sistem dan bagaimana
ia boleh dioptimumkan. Tambahan pada itu, kaedah semasa yang digunakan untuk
melatih BbNN menggunakan algoritma genetik (GA) adalah perlahan, terutamanya
untuk set data yang besar. Tesis ini membentangkan model BbNN yang lebih
baik, mencadangkan sistem simulasi yang sesuai, dan mengimplementasikannya
dalam perkakasan FPGA untuk meningkatkan prestasinya. Ia mempunyai arkitektur
yang unggul dengan keluaran yang berketentuan, sekaligus membolehkannya
berevolusi dan beroperasi dalam mod suap depan dan berulang. BbNN ini direka
untuk mencapai latensi sistem optimum demi memperoleh prestasi yang lebih
tinggi, dan membenarkan latihan pada cip untuk pengoptimuman pelbagai objektif
dengan penggunaan GA selari. Semua algoritma yang dicadangkan membenarkan
implementasi perkakasan yang cekap dan berskala. Kecekapan BbNN di atas
sistem-atas-cip terbukti dengan analisis prestasi kajian kes yang kompleks, di mana
peningkatan dalam prestasi sehingga 410× diperhatikan. Penggunaan perkakasan
logik dikurangkan dengan bantuan analisis teori dan pertimbangan reka bentuk. Kajian
kes yang memerlukan penggunaan BbNN di dalam mod berulang turut dibentangkan.
Semua kajian kes yang diuji dengan sistem ini memberikan kadar klasifikasi yang
sama atau lebih baik dengan kajian-kajian sebelumnya, tetapi dengan latensi yang
optimum. Sebagai contoh, BbNN yang dikemukakan menunjukkan kadar klasifikasi
sebanyak 99.41% bagi kes aritmia jantung, yang merupakan peningkatan berbanding
dengan kajian sebelumnya. Maka, ini mengesahkan kesahihan model BbNN yang
dicadangkan.



vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xix
LIST OF SYMBOLS xxi
LIST OF APPENDICES xxii

1 INTRODUCTION 1
1.1 Block-based Neural Networks 2
1.2 Problem Statement 3
1.3 Objectives 6
1.4 Scope of Work 6
1.5 Contributions 8
1.6 Dissertation Organization 9

2 LITERATURE REVIEW AND THEORETICAL BACK-
GROUND 11
2.1 Artificial Neural Networks (ANN) 11

2.1.1 Background Theory of ANNs 11
2.1.2 Neuron Activation Functions 13
2.1.3 Common Criticism of Conventional

ANNs 16
2.2 Background Theory of BbNNs 18

2.2.1 Previous Work on BbNNs in Hardware 20



viii

2.3 Genetic Algorithm 22
2.3.1 Multi-objective Optimization Models Us-

ing GA 25
2.4 Previous Work on Selected Case Studies 26

2.4.1 Driver Drowsiness Classification Using
Heart Rate Variability 26

2.4.2 ECG Signal Classification in Detection
Heart Arrhythmia 28

2.4.3 Tomita Language Grammar Inference 30

3 METHODOLOGY 31
3.1 Research Approach 31

3.1.1 System Latency and GA-based Training
for the Proposed BbNN 33

3.1.2 Design Considerations in Neuron Block
Hardware Development 34

3.1.3 Design Approach of the Simulation
Model for the Proposed BbNN 35

3.1.4 Hardware Design: Co-Design and SoC
Implementation 36

3.2 Software Tools and Design Environment 38
3.2.1 The GAlib Library 38
3.2.2 Mentor Graphics Modelsim 40
3.2.3 Icarus Verilog 40
3.2.4 Verilator 41
3.2.5 Nios2-Linux Embedded Operating Sys-

tem 42
3.3 Hardware Design Verification Methodology 44

3.3.1 Using the Command-line Version of
Modelsim for Verification 45

3.3.2 Using SystemVerilog DPI-C in Modelsim
for Co-Verification 47

3.3.3 Viewing Waveforms with GTKWave 49
3.3.4 Using Icarus Verilog for Verification 49
3.3.5 Using Verilator for Advanced Co-

Simulation 51
3.4 Case Studies for Verification of the Proposed BbNN 54

3.4.1 Test Dataset Creation from HRV Feature
Vectors for Case Study 2 55



ix

3.4.2 Test Dataset Creation from ECG Signal
Feature Vectors for Case Study 3 58

3.4.3 Test Dataset Creation Using Tomita
Grammar for Case Study 4 61

4 MODELING, ALGORITHMS, AND SIMULATION OF
PROPOSED BLOCK-BASED NEURAL NETWORKS 63
4.1 BbNN as a Structured Neural Network 63
4.2 Modeling of a Neuron Block in the Proposed BbNN 65

4.2.1 System Latency and Synchronous Logic
Structure of Neuron Blocks 68

4.2.2 Design Considerations: Range of Values
for the Synaptic Weights 71

4.3 GA-based Training and Optimization of the
Proposed BbNN 72
4.3.1 Formulation of the GA Fitness Function 75

4.4 BbNN Array Interconnect Algorithm 79
4.5 Implementation of the BbNN Simulation Model 84

5 HARDWARE DESIGN AND IMPLEMENTATION 87
5.1 System Architecture of BbNN in Hardware 87
5.2 Hardware Design Considerations 89

5.2.1 Number Representation for Fixed-Point
Arithmetics and Precision 89

5.2.2 Activation Function of the Hardware
Neuron Block 92

5.3 Design of the Proposed Hardware Neuron Block 96
5.3.1 Neuron Block FSM Control Unit 98
5.3.2 Multiplexing Sequence of the Multiplier

Inputs 100
5.3.3 Neuron Block Dual-Port On-chip Mem-

ory Submodule 102
5.3.4 Neuron Block Input Multiplexer Submod-

ule 104
5.3.5 Neuron Block ALU Submodule 105
5.3.6 Neuron Block Operand Selector Submod-

ule 108



x

5.3.7 Top Level BbNN Controller with Avalon
Bus Interfacing 109

6 EXPERIMENTAL RESULTS, CASE STUDIES, AND
ANALYSIS 113
6.1 Analysis to Obtain Optimum Range of Weight

Values 113
6.1.1 Geometric Analysis of a Neuron Block

with One Synapse 114
6.1.2 Geometric Analysis of a Neuron Block

with Two Synapses 116
6.1.3 Geometric Analysis of a Neuron Block

with Three Synapses 118
6.1.4 Weight Boundary Selection and Empiri-

cal Analysis 121
6.2 Verification and Analysis of Proposed BbNN

through Case Studies 122
6.2.1 Functional Verification of Proposed

BbNN Using the XOR Classification
Problem 123

6.2.2 Case Study 2: Driver Drowsiness Detec-
tion Based on HRV 125

6.2.3 Case Study 3: Heart Arrhythmia Classifi-
cation from ECG Signals 127

6.2.4 Case Study 4: Grammar Inference of the
Tomita Language 130

6.3 Verification of the BbNN Implementation Model in
Hardware 133
6.3.1 Simulation Results of the Neuron Block

Submodules 134
6.3.2 Simulation Results of the Neuron Block 136
6.3.3 Co-Simulation of BbNN HW-SW Design 138

6.4 Resource Utilization of the BbNN Implementation
Model in Hardware 140

6.5 Performance Analysis of the Proposed BbNN
Models 142
6.5.1 Single Thread vs Multithreaded BbNN

Simulation Models 143



xi

6.5.2 Software vs Verilated BbNN Simulation
Models 144

6.5.3 Embedded Software vs Hardware BbNN
Implementation Models 144

7 CONCLUSION 147
7.1 Concluding the Experimental Results 148
7.2 Contributions 150
7.3 Future Work 151

REFERENCES 153
Appendices A – E 160 – 182



xii

LIST OF TABLES

TABLE NO. TITLE PAGE

5.1 All the required multiplication operands used for computing
Equation 5.12-5.15 used in this work. 101

5.2 Summary of ALU adder operation based on opcode. 106
5.3 The values of Sel Addr, Sel X and Sel Y based on the

operand counter that is required by the state machine. 109
5.4 Description of all the registers in the BbNN controller

module. 111
6.1 Distribution cases for Equation 6.1. 115
6.2 Distribution cases for Equation 6.2 with an ignored bias (b =

0). 117
6.3 All possible combination of offsets used on Equation 6.2 with

x1 and x2 preset to maximum positive values. 119
6.4 Parameters used for GA evolution for this analysis. 122
6.5 Statistics of generations required by GA to achieve a fitness

of 0.95 when training a 7×1 BbNN for classification of heart
arrhythmia. 122

6.6 XOR training dataset for the BbNN structure. 123
6.7 Parameters used for GA evolution. 125
6.8 Results on BbNN classification accuracy of heart arrhythmia

using individual record training. 129
6.9 Benchmarking results on BbNN classification accuracy of the

heart arrhythmia case study with all records combined. 130
6.10 Results on BbNN classification accuracy for Tomita

languages. 131
6.11 Results on BbNN configuration and optimum latency

achieved for each Tomita language. 132
6.12 Benchmarking results in classification accuracy for the

grammar inferencing case study. 133
6.13 The training accuracy and latency of all the case studies tested

with the verilated BbNN model. 139



xiii

6.14 FPGA logic utilization of the proposed design in relation
to previous works using various neuron block array
configurations. 141

6.15 Selected FPGA prototyping platform and BbNN bit precision
for the proposed design in comparison with previous work. 141

6.16 Benchmark of the processors used in this work. 142
6.17 Performance analysis for the training of single and

multithreaded BbNN simulation models. 143
6.18 Performance analysis for the training of the software and

verilated BbNN simulation models. 144
6.19 Performance analysis for both embedded software and

hardware implementation BbNN models for various latency
values. 145

6.20 Performance analysis for the training of the embedded
software and hardware implementation BbNN models. 145



xiv

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 A multilayer-perceptron ANN with a single hidden layer. 1
1.2 Neuron blocks interconnected as a scalable grid to form a

BbNN structure [8]. 2
1.3 Example of a 2 × 2 BbNN structure configured in recurrent

mode. 4
1.4 Layers of the proposed embedded BbNN SoC. 8
2.1 A single neuron with three synapses in a conventional ANN. 12
2.2 A multilayer-perceptron ANN with a single hidden layer. 12
2.3 The observable bell shaped curve from the plot of a sigmoidal

function. 15
2.4 Depiction of a massively interconnected multilayer-

perceptron ANN. 17
2.5 Neuron blocks interconnected as a scalable grid to form a

BbNN structure [8]. 18
2.6 Functional block diagram of a neuron block in hardware as

described in [20, 36, 37]. 21
2.7 Behavioral flow chart for Simple GA [38]. 23
2.8 Spectral analysis of heart rate using the three different power

bands. 27
2.9 ECG signals from a patient depicting (a) a normal heartbeat

and (b) a heartbeat with premature ventricular contraction
(PVC). 29

3.1 BbNN structure with a latency of three computational cycles. 33
3.2 Verification of the neuron block using Modelsim and DPI-

C interfacing with a golden reference software model as
comparison. 37

3.3 Methodology for co-simulation of the BbNN hardware design
using Verilator and C/C++. 37

3.4 Layers of the proposed embedded BbNN SoC. 38



xv

3.5 Diagram of the connection between Nios2-Linux, FPGA,
Nios II CPU and the external hardware. 43

3.6 The testbench design environment [69]. 44
3.7 Constrained-random test progress over time vs. directed

testing [69]. 45
3.8 Modelsim compilation and simulation output for the

TestVerilog module. 46
3.9 Verification of a hardware module using Modelsim and DPI-

C interfacing with a golden reference software model as
comparison. 47

3.10 GTKWave displaying the waveforms of a simulated module. 50
3.11 The methodology of verifying a design using Verilator

by converting SystemVerilog hardware modules into cycle
accurate C/C++ libraries. 51

3.12 Output from the C/C++ verification program for testing the
verilated adder module. 54

3.13 HRV sleep state classification using BbNN. 55
3.14 QRS complex detection. 55
3.15 HR plotting at the center of every RR interval. 57
3.16 HRV extraction to obtain power bands. 57
3.17 Spectral analysis of HR. 58
3.18 Overview of ECG signal preprocessing and feature extrac-

tion. 60
3.19 ECG signal preprocessing flow. 60
4.1 Diagram depicting (a) neuron blocks interconnected as a

scalable grid to form a BbNN structure and (b) an example
of a configured neuron block. 64

4.2 All possible internal configurations of a neuron block. 65
4.3 Conceptual model of a single neuron block. 66
4.4 BbNN structure with a latency of (a) five computational

cycles and (b) three computational cycles. 68
4.5 Example of a recurrent mode 2× 2 BbNN structure. 70
4.6 A flowchart depicting the (a) basic concept of the BbNN

training model and (b) multi-population parallel GA with
migration applied in this work. 73

4.7 Encoding the chromosome of a BbNN structure. 74
4.8 A r × c BbNN with detailed labeling of the input/output

interconnects. 80
4.9 Architecture of the proposed BbNN simulation model. 86



xvi

4.10 CPU utilization during BbNN training. 86
5.1 System architecture of the proposed FPGA-based BbNN

SoC. 88
5.2 Layers of the proposed embedded BbNN SoC. 88
5.3 The Q4.11 fixed-point number format used in this work. 90
5.4 A neuron block with the maximum possible combination of

weights connected to the output neuron. 90
5.5 Performing addition (or subtraction) using fixed-point

arithmetic on Q4.11 type numbers. 91
5.6 Performing multiplication using fixed-point arithmetic on

Q4.11 type numbers with truncation. 92
5.7 Plot of the proposed piecewise quadratic (PWQ) function. 95
5.8 Functional block diagram of the proposed neuron block in

hardware. 97
5.9 Algorithmic state machine chart for the FSM control unit. 99
5.10 Individual interconnections of the multiplier unit within the

neuron block. 100
5.11 Block diagram of the dual-port on-chip memory of the neuron

block. 102
5.12 Using the direction bits to perform a conditional statement to

enable or disable the first operand. 103
5.13 The architecture of the input multiplexer within the neuron

block. 104
5.14 The architecture of the ALU within the neuron block. 105
5.15 The logic circuit for obtaining the select signal S2. 106
5.16 Logic circuit for determining the positive and negative limit

of the x value in register A. 107
5.17 Block diagram of the operand selector module within the

neuron block. 108
5.18 Functional block diagram of the BbNN controller module

designed for handling the CPU bus interface. 110
6.1 A neuron block with one synapse connected to the output

node. 115
6.2 Geometric structure of Equation 6.1 for both input cases with

weights ranging from −1 to +1. 115
6.3 Geometric structure of Equation 6.1 with weights ranging

from −3 to +3. 116
6.4 A neuron block with two synapses connected to the output

node. 116



xvii

6.5 Geometric structure of Equation 6.2 with weights ranging
from −1 to +1 using (a) ignored bias and (b) maximum bias
offset. 117

6.6 Geometric structure of Equation 6.2 with weights ranging
from −3 to +3 with (a) maximum positive bias offset and
(b) maximum negative bias offset. 118

6.7 A neuron block with three synapses connected to the output
node for mathematical analysis. 118

6.8 Geometric structure of Equation 6.3 for case 7 with weights
ranging from (a) −1 to +1 and (b) −3 to +3. 120

6.9 Geometric structure of Equation 6.3 for case 8 with weights
ranging from (a) −1 to +1 and (b) −3 to +3. 120

6.10 Geometric structure of Equation 6.3 for case 9 with weights
ranging from (a) −1 to +1 and (b) −3 to +3. 121

6.11 Evolved BbNN that solves the XOR problem. 124
6.12 Fitness trend of the BbNN evolution for the XOR problem

case study. 124
6.13 Evolved BbNN structure in driver drowsiness detection. 126
6.14 Fitness trend of the BbNN evolution for the driver drowsiness

detection case study. 126
6.15 Fitness trend of the BbNN evolution for the heart arrhythmia

classification case study. 128
6.16 Evolved BbNN structure for the classification of heart

arrhythmia using all records combined as training data. 128
6.17 Evolved BbNN structure for the classification of Tomita

language 3. 131
6.18 Fitness trend of the BbNN evolution for the grammar

inference of Tomita language 3. 132
6.19 Simulation results (in dumpfile form) for the dual-port on-

chip memory. 134
6.20 Simulation results (in dumpfile form) for the ALU

submodule. 135
6.21 Simulation results (in dumpfile form) for the FSM

submodule. 135
6.22 Simulation results (in dumpfile form) for the operand selector

submodule. 136
6.23 SystemVerilog testbench with DPI-C interfacing for co-

verification of the neuron block. 137
6.24 Results of the neuron block co-verification routine. 138



xviii

6.25 Co-simulation of the BbNN hardware design using Verilator
and C/C++. 139

6.26 Terminal output from the training algorithm after successfully
training the verilated BbNN hardware applied on case study
2. 140



xix

LIST OF ABBREVIATIONS

ALU – Arithmetic Logic Unit

ANN – Artificial Neural Network

BPF – Band Pass Filter

BbNN – Block-based Neural Network

CPU – Central Processing Unit

DDR SDRAM – Double Data Rate Synchronous Dynamic Random-Access
Memory

DPI – Direct Programming Interface

DUT – Device-Under-Test

DUV – Device-Under-Verification

EA – Evolutionary Algorithm

ECG – Electrocardiogram

FFT – Fast Fourier Transform

FPU – Floating Point Unit

FPGA – Field Programmable Gate Array

FSM – Finite State Machine

GA – Genetic Algorithm

GCC – GNU Compiler Collection

GNU – Gnu’s Not Unix

GUI – Graphical User Interface

HDL – Hardware Description Language

HF – High Frequency

HPF – High Pass Filter

HRV – Heart Rate Variability

HW – Hardware

HW-SW – Hardware-Software

IC – Integrated Circuit

I/O – Input/Output



xx

LE – Logic Elements

LF – Low Frequency

LPF – Low Pass Filter

LUT – Lookup Table

Mbit – Mega Bits

MDIPS – Millions of Dhrystone Instructions Per Second

MHz – Mega Hertz

MLP – Multilayer perceptron

MMU – Memory Management Unit

ms – Millisecond

MUX – Multiplexer

MWIPS – Millions of Whetstone Instructions Per Second

NoC – Network-on-Chip

ns – Nanosecond

OS – Operating System

PC – Personal Computer

PWL – Piecewice Linear

PWQ – Piecewice Quadratic

RTL – Register Transfer Level

RTOS – Real Time Operating System

SoC – System-on-Chip

SOM – Self Organizing Maps

SW – Software

USB – Universal Serial Bus

VHDL – Very High Speed Integrated Circuit Hardware Description
Language

VLF – Very Low Frequency

WFDB – Waveform Database



xxi

LIST OF SYMBOLS

x0−3 – Inputs of a neuron block

y0−3 – Outputs of a neuron block

w0−5 – Weight values for the synapses inside a neuron block

b0−3 – Bias values for the nodes inside a neuron block

d0−3 – Direction values for the neuron block interconnects

r – The amount or rows in a BbNN structure

c – The amount or columns in a BbNN structure

fBbNN – Fitness value of the BbNN structure

Perr – BbNN error parameter

PLQ – BbNN latency quality parameter

Ppen – BbNN penalty parameter

α – General scaling or modifier constant

β – General scaling or modifier constant

β1−3 – BbNN parameter scaling constants

Ls – Specified latency value of the BbNN system

Lmin – Minimum possible latency value

Lmax – Maximum possible latency value

σ – Latency modifier for Lmax

φ – Latency offset for Lmin

Ninv – Number of neuron blocks with invalid configurations

g(x) – General representation of an activation function

sp – Activation function saturation point

Ca – Classification accuracy

TP – The number of true positives

FP – The number of false positives

TN – The number of true negatives

FN – The number of false negatives



xxii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Publications 160
B BbNN Simulation Model Source Codes 162
C BbNN Hardware Implementation Source Codes 167
D Verification Routines 176
E Octave Routines used for Experimentation and Data

Preparation 182



CHAPTER 1

INTRODUCTION

An artificial neural network (ANN) is a mathematical model inspired by
biological neural networks [1]. A neural network consists of an interconnected group
of artificial neurons, and it processes information using a connectionist approach to
computation. Typically, ANNs are used in adaptive systems that require a training
phase to properly configure itself to perform a classification or control task. Figure 1.1
depicts a multilayer perceptron ANN with a single hidden layer.

Figure 1.1: A multilayer-perceptron ANN with a single hidden layer.

ANNs have been successfully deployed in solving various kinds of
classification and control problems, which include speech recognition, image analysis,
adaptive control, and biomedical signal analysis [1–3]. Typically, existing ANN
solutions are based on statistical estimations of a given complex problem, in which
the relation between the datasets are inferred through heuristics during the training
process.

However, ANNs have been criticized for many shortcomings [4, 5]. One
weakness of conventional ANNs is the difficulty of obtaining an optimal structure



2

for a given problem. Another issue is that the internal structure of conventional
ANNs are rigid, massively interconnected, and allows for little change, making it
unsuitable for digital hardware implementation. Also, most types of neural networks
are computationally intensive and cannot be implemented in embedded software
without sacrificing real time execution [5].

1.1 Block-based Neural Networks

Evolvable neural networks are a more recent architecture, and differs from the
conventional ANNs in the sense that it allows changes in the structure and design
to cope with dynamic operating environments [6]. Block-based neural networks
(BbNNs) were first introduced in 2001 by Moon and Kong [7]. It provides a more
unified solution to the two fundamental problems of ANN, which include simultaneous
optimization of structure, and viable implementation in reconfigurable digital hardware
such as field programmable gate arrays (FPGAs). A BbNN structure is a network
of neuron blocks interconnected in the form of a grid as shown in Figure 1.2. A
neuron block is a basic data processing unit comprising of a neural network having
four variable input/output nodes.

B
0

B
1

B
(r-1)c+0

B
(r-1)c+1

B
c-1

B
rc-1

B
c+0

B
c+1

B
2c-1

 

 

Figure 1.2: Neuron blocks interconnected as a scalable grid to form a BbNN
structure [8].



3

BbNNs have a modular structure, allowing it to be scaled easily by adding
or removing neuron blocks. It has been successfully deployed for various kinds of
classification problems [6], and is specifically meant to be implemented in digital
hardware due to its regular structure. The number of rows (r) and columns (c) differ
according to the complexity of the problem being tackled. In addition to this, the
internal configuration of the neuron blocks can also change or evolve according to
the problem being tackled. These two structural aspects can change dynamically, and
provide the evolutionary feature of a BbNN system.

Optimization algorithms are used for training BbNN structures, as is in the
case of most evolvable ANNs. Almost all previous work reported in literature make
use of genetic algorithm (GA), a search heuristic that mimics the process of natural
evolution [9]. The GA methodology has been shown to be able to solve difficult
and complex problems that fall in the domain of optimization and search. In GA, a
chromosome represents a possible solution, and the chromosome is divided into genes
which represent parameters of the solution to a problem. Hence in digital systems, a
chromosome is represented in the form of a binary string [10]. In the case of BbNN
training, the chromosome represents the synaptic weights and configuration of the
BbNN structure.

BbNNs have been successfully used in various applications such as ECG signal
classification [8], hypoglycemia detection [11], pattern recognition [12], heart rate
variation [13, 14], network intrusion [15, 16], mobile robot control [7], dynamic fuzzy
control [17] and many more [6]. Most of these works report very high classification
rates, often outperforming equivalent regular ANNs designs. This is mostly due to its
evolvable structure.

1.2 Problem Statement

The main advantage of BbNNs when compared to other forms of evolvable
ANNs is its modular structure, making it a very promising candidate for an efficient
hardware implementation. Hardware implementation platforms such as FPGAs have
limited logic elements, and efficient neural network designs allow better resource
utilization. Efficient hardware implementation of BbNN structures is the primary goal
of this thesis.



4

Even though BbNNs give relatively promising results as reported in current
literature, there are still several outstanding issues to be resolved with currently
defined models. These relate to the modeling, hardware design, and optimization
of BbNN structures. This thesis tackles these issues by redefining certain aspects
of BbNN operation in order to obtain an improved model for better hardware and
software implementation. It is likely that the reluctant adoption of BbNNs in practical
applications is related to these outstanding issues. Also, to properly apply BbNNs in
complex real world problems, it should ideally be implemented in hardware, and must
be able to handle on-chip training.

Despite the wide range of applications reported in literature, to date there has
been no work reported on BbNNs configured in recurrent mode for complex case
studies, even though it is theoretically possible [7]. This is due to a lack of a time-step
model required for the design and simulation of recurrent neural networks. Figure 1.3
shows an example of a 2 × 2 BbNN structure configured in recurrent mode. The
behavior of such a configuration in hardware would be indeterministic if a registered
architecture is not used, and would normally result in an asynchronous feedback that
can lead to circuit metastability. Existing BbNN models in literature do not discuss
registering the outputs of the neuron blocks in depth, nor do they include a latency
variable that is essential for properly using such models.

x0

y0

x1

y1

Figure 1.3: Example of a 2× 2 BbNN structure configured in recurrent mode.

Related to the recurrent BbNN issue mentioned above, existing BbNN models
do not explicitly specify or model the latency of the system, determine how it affects
the system, nor how it can be optimized. This is important because optimizing the



5

latency not only provides obvious benefits such as improved performance and reduced
power consumption, but also allows the BbNN to behave in a more deterministic
manner. This deterministic behavior will allow BbNNs to be able to function properly
in recurrent or feedback mode, and can even have internal configurations that would
have been normally deemed invalid. Also, previous works on BbNNs [6, 11, 12, 15,
17–20] are difficult to be repeated without latency control because specifying different
latency values will often cause different results to appear at the outputs. This thesis
proposes a redefined BbNN model with latency control taken into account.

Another issue with BbNN structures is in regards to its hardware design.
Previous work only presented the modeling of the BbNN, after which a hardware
design is obtained [20, 21]. The methodology and process of mapping the
models to hardware are not provided, thus leaving several open questions on the
design considerations such as the architectural options, system partitioning, selected
activation function, lower/upper limits of internal network parameters (synaptic weight
and neuron biases), number representation for arithmetic operations (fixed or floating
point), bit precision, finite state machine flow, and register transfer level (RTL) design.

The optimum range for the lower/upper limits of internal network parameters,
such as the synaptic weight, neuron biases, and activation function saturation points
are not clearly defined in existing work. An efficient hardware design can only be
obtained after the optimum range of these values is known. The main rationale of
using BbNNs instead of conventional ANNs is the advantage in hardware utilization,
but this cannot be achieved if the hardware design is not efficient. This thesis explores
this aspect of BbNN modeling with the goal of obtaining an optimal neuron block
design for effective hardware implementation.

Current methods of training BbNNs using GA are slow, especially with large
training datasets. The problem worsens when training for recurrent BbNNs whereby
the convergence rate will drop significantly. An improved GA mechanism is required
to improve speed and convergence rate, as well as to allow multithreaded simulation
of BbNN structures for parallel fitness evaluation. This will allow the use of superior
computational techniques to be applied on BbNN training, such as supercomputing
clusters or parallelized FPGAs.

BbNNs, like most evolvable ANNs, have complex neuron interconnects. The
interconnections are simple for small BbNN structures, but gradually increase in
complexity as the structure grows bigger. Thus a parameterizable interconnection



6

algorithm is required for experimentation, and will not only be useful for creating
scalable BbNN structures in simulation models, but also facilitate automated
generation of interconnects in hardware implementations. To date, no such algorithm
exists in published literature. Such an algorithm would be complex and prone to errors,
and the lack of this in current literature is possibly another reason for the reluctant
adoption of BbNN systems.

1.3 Objectives

The primary objective of this thesis is to improve on existing BbNN models,
to propose a state-of-the-art simulation and co-design environment for it, and to
implement it on hardware for performance analysis. In detail, the objectives of this
thesis are:

1. To propose a block-based neural network (BbNN) architecture that has the
following novel features:

• Evolvable architecture with deterministic outputs that can operate in both
feedforward and recurrent mode.

• Redesigned for optimal system latency to achieve higher performance.

• On-chip training and multi-objective optimization using state-of-the-art
parallel genetic algorithms.

• Allows for an efficient and scalable hardware implementation.

• Provides a platform for effective solutions to real world complex
classification problems.

2. To develop an effective implementation platform for practical BbNN solutions
that is based on FPGA embedded hardware, and prove the viability of the
resulting hardware-software design with real-time performance analysis of
complex, real world case studies.

1.4 Scope of Work

The work in this thesis uses a combination of tools mostly obtained from open
source software and libraries. This allows for a work that is easier to repeat in the
future. The platform for testing and using BbNN models are built from scratch using a



7

variety of tools. The software tools and prototyping platform applied in this thesis are
described as follows:

a) Algorithmic models are verified and analyzed using GNU Octave, an open
source Matlab alternative freely available on Linux. It is also used for graph
plotting, data preprocessing, and equation optimization.

b) The proposed BbNN software model is developed in C/C++ and modeled
using the proposed array interconnect algorithm. It is compiled with the GCC
compiler under Ubuntu Linux, with all compiler optimizations turned on for
maximum performance (optimization level 3).

c) This work utilizes GAlib, a powerful C/C++ open source library for applying
GA optimization in software [22]. The optimization algorithm applied is scoped
to a multiple population version of steady state GA, which is better suited for
multi-objective problems.

d) Parallel processing for BbNN simulation and training is achieved using a
computer equipped with a 2.8 Ghz Intel Core i7 processor. For performing
multithreaded execution, the libpthread library is used.

e) Verilog and SystemVerilog HDL is used to model the hardware design of the
BbNN. Hardware prototyping and implementation of the BbNN system as an
SoC is done on an Altera Stratix III FPGA as shown in Fig. 1.4. The Nios
II processor used is clocked at 266 MHz, and provides a platform in which
the Nios2-Linux operating system can execute. This allows the use of the
GAlib library, filesystem support, and USB host support (through libUSB) for
embedded systems. It also allows the usage of external USB-based sensors.

f) The neuron blocks are verified in Icarus Verilog and Modelsim using
SystemVerilog tesbenches. The DPI-C interface in Modelsim is used for
more advanced testbenches to incorporate co-verification with C/C++ golden
reference models. The BbNN structure is constructed by combining these
neuron blocks to form an array.

g) The BbNN structure is modeled in such a way that the rows and columns
are parameterizable, by using the proposed array interconnect algorithm in
conjunction with the Verilog generate command. SystemVerilog is used for the
top-level BbNN structure because of the better support for multi-dimensional
arrays for signals and registers.

h) The entire BbNN hardware structure is verified using co-simulation with C/C++
due to the complexity of the design. Verilator is used for this purpose.



8

i) The case studies used to verify and analyze the performance of the proposed
BbNN model are limited to the following problems:

i The XOR classification problem.

ii Driver drowsiness detection based on HRV.

iii Heart arrhythmia classification from ECG signals.

iv Grammar inference of the Tomita language.

Problem Specific
Application

DDR
SDRAM

FPGA 
SoC

GAlib Library Routines

Nios2-Linux RTOS

BbNN
Array

Nios II
CPU

Application
Layers

Operating
System Layer

Hardware
Layer

Device
Controllers

(USB, 
Ethernet)

Figure 1.4: Layers of the proposed embedded BbNN SoC.

1.5 Contributions

The proposed BbNN model in this thesis has an improved architecture
over existing work. A platform is developed for the simulation, verification, and
implementation of the proposed BbNN model. In summary, the main contributions
of this thesis are:

• Based on all known previous works, this work is among the first successful
attempts at training a BbNN in recurrent mode, hence demonstrating the
ability to evolve recurrent structures through feedback signals with the help
of latency optimization. The recurrent mode BbNN is applied in a test case
study on grammar inference using randomly generated datasets from the Tomita
language [23–25].

• This thesis is also among the first work in the field to describe and optimize
the latency of evolvable BbNNs using multi-objective genetic algorithm (GA)



9

during the training process. This is done by introducing the latency value as
a gene in the BbNN chromosome, and is simultaneously optimized during the
training process. A suitable fitness function for the GA is proposed for achieving
this.

• This work proposes an effective hardware implementation platform for BbNN
with on-chip training. The performance of the hardware implementation allows
real-time classification.

• A novel multithreaded solution is proposed for accelerating the training of BbNN
simulation models, which are repetitively evaluated by the GA fitness function.
Significant reduction in simulation time is obtained when compared to using a
only a single thread.

• An equation describing the optimum range for the upper/lower boundaries of
the internal BbNN parameters is proposed. This equation was obtained through
geometric analysis, and is empirically proven. Using this equation, it is possible
to select an optimum range for these parameters that is suitable for resource
constrained hardware implementation platforms.

• This thesis also presents the RTL design of a neuron block with properly
described methodology, using a single multiplier for each neuron block. A novel
method of reusing the multiplier to smoothly approximate a hyperbolic tangent
(tanh) function to be used as the activation function for the neuron blocks is
presented. This is an important contribution, because a sigmoid-like activation
function (which provides faster learning rates [26,27]) is provided at almost zero
cost.

• This thesis also provides a parameterizable BbNN array interconnect algorithm
that works for software simulation models as well as hardware implementation
models. Without this algorithm, designing a BbNN array will pose an obstacle
due to the complexity of the neuron block interconnects, especially when the
size of the array needs to be changed during the experiments.

1.6 Dissertation Organization

The thesis is organized as follows.

Chapter 2 covers literature review and discusses previous work done, including
works on the case studies used in this thesis. It also covers all related background



10

theory.

Chapter 3 covers the methodology for the work done in this thesis. This also
includes the general approach taken for the research done in this work, as well as the
tools and platform used. It also includes a section describing the case studies used and
the methodology for creating the datasets.

Chapter 4 presents the development of the models, algorithms, system latency
and design considerations for the proposed BbNN model. The architecture of a
parameterizable multithreaded simulation model is discussed. The application of GA
for performing multi-objective optimization in the training of the proposed BbNN is
also presented.

Chapter 5 provides a complete description on the RTL design used for the
implementation of the proposed BbNN system in hardware, and an overview of the
hardware system architecture. Hardware related design considerations are discussed
here.

Chapter 6 presents the results and analysis of all the experimentation done in
this thesis, including the geometric analysis for the synaptic weight boundaries of
the neuron blocks, the results of the four different case studies used, the hardware
verification results, and the performance analysis of all proposed BbNN models.

Chapter 7 summarizes the thesis, re-stating the contributions, and suggest
directions for future research.



REFERENCES

1. Haykin, S. S. Neural networks and learning machines. vol. 3. Prentice Hall.
2009.

2. Bishop, C. M. Pattern Recognition and Machine Learning. Springer. 2006.

3. Hassoun, M. Fundamentals of artificial neural networks. MIT press. 1995.

4. Francis, L. Neural networks demystified. Casualty Actuarial Society Forum.
2001. 253–320.

5. Skrbek, M. Fast neural network implementation. Neural Network World, 1999.
9(5): 375–391.

6. Merchant, S. G. and Peterson, G. D. Evolvable block-based neural network
design for applications in dynamic environments. VLSI Design, 2010. 2010:
25. ISSN 1065-514X.

7. Moon, S. W. and Kong, S. G. Block-based neural networks. IEEE Transactions

on Neural Networks, 2001. 12(2): 307–17. ISSN 1045-9227.

8. Jiang, W. and Kong, S. G. Block-based neural networks for personalized ECG
signal classification. IEEE Transactions on Neural Networks, 2007. 18(6):
1750–61. ISSN 1045-9227.

9. Holland, J. H. Adaptation in Natural and Artificial Systems. Ann Arbor, MI,
USA: University of Michigan Press. 1975.

10. Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine

Learning. Upper Saddle River,NJ, USA: Addison-Wesley Professional. 1989.

11. San, P. P., Ling, S. H. and Nguyen, H. T. Block based neural network for
hypoglycemia detection. 2011 Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC). IEEE. 2011. 5666–
5669.

12. Moon, S. and Kong, S. Pattern recognition with block-based neural networks.
Proceedings of the 2002 International Joint Conference on Neural Networks,

2002 (IJCNN’02). 2002, vol. 1. ISBN 0780372786. 992–996.



154

13. Nambiar, V. P., Khalil-Hani, M., Sia, C. and Marsono, M. Evolvable Block-
based Neural Networks for classification of driver drowsiness based on heart
rate variability. 2012 IEEE International Conference on Circuits and Systems

(ICCAS). 2012. 156–161.

14. Khalil-Hani, M., Sia, C. W., Shaikh-Husin, N. and Nambiar, V. P. FPGA-based
Embedded System for the detection of Driver Drowsiness using ECG signals.
Proceedings of the 2012 International Conference on Electrical Engineering

and Computer Science (ICEECS 2012). 2012.

15. Tran, Q. A., Jiang, F. and Ha, Q. M. Evolving Block-Based Neural Network
and Field Programmable Gate Arrays for Host-Based Intrusion Detection
System. 2012 Fourth International Conference on Knowledge and Systems

Engineering (KSE). IEEE. 2012. 86–92.

16. Tran, Q. A., Jiang, F. and Hu, J. A Real-Time NetFlow-based
Intrusion Detection System with Improved BBNN and High-Frequency Field
Programmable Gate Arrays. 2012 IEEE 11th International Conference on

Trust, Security and Privacy in Computing and Communications (TrustCom).
IEEE. 2012. 201–208.

17. Karaköse, M. and Akin, E. Dynamical Fuzzy Control with Block Based

Neural Network. Technical report. Technical Report, Department of Computer
Engineering, Firat University. 2006.

18. Jiang, W. and Kong, S. A Least-Squares Learning for Block-based Neural
Networks. Advances in Neural Networks, A Supplement (DCDIS), 2007.
14(SI): 242–247.

19. Haridass, S. and Hoe, D. Fault Tolerant Block Based Neural Networks. System

Theory (SSST), 2010 42nd Southeastern Symposium on. IEEE. 2010. ISBN
9781424456925. 357–361.

20. Jewajinda, Y. and Chongstitvatana, P. A parallel genetic algorithm for adaptive
hardware and its application to ECG signal classification. Neural Computing

and Applications, 2012: 1–18.

21. Kothandaraman, S. Implementation of block-based neural networks on

reconfigurable computing platforms. Master’s Thesis. The University of
Tennessee, Knoxville. 2004.

22. Wall, M. GAlib : A C ++ Library of Genetic Algorithm Components.
Technical Report August. Massachusetts Institute of Technology. 1996.

23. Blanco, A., Delgado, M. and Pegalajar, M. A genetic algorithm to obtain
the optimal recurrent neural network. International Journal of Approximate



155

Reason, 2000. 23(July 1999): 67–83.

24. Giles, C., Chen, D., Miller, C., Chen, H., Sun, G. and Lee, Y. Second-order
recurrent neural networks for grammatical inference. Neural Networks, 1991.,

IJCNN-91-Seattle International Joint Conference on. Ieee. 1991. ISBN 0-
7803-0164-1. 273–281.

25. Angeline, P., Saunders, G. and Pollack, J. An Evolutionary Algorithm
that Constructs Recurrent Neural Networks An Evolutionary Algorithm that
Constructs Recurrent Neural Networks. Neural Networks, IEEE Transactions

on, 1994. 5(1): 54–65.

26. Omondi, A. and Rajapakse, J. FPGA implementations of neural networks.
vol. 1. Springer New York, NY, USA:. 2006.

27. Jordan, M. et al. Why the logistic function? A tutorial discussion on
probabilities and neural networks, 1995.

28. Cheung, V. and Cannons, K. An Introduction to Neural Networks. Technical
report. Signal & Data Compression Laboratory, Electrical & Computer
Engineering University of Manitoba, Winnipeg, Manitoba, Canada. 2002.

29. McCullagh, P. and Nelder, J. A. Generalized Linear Models, Second Edition

(Chapman & Hall/CRC Monographs on Statistics & Applied Probability).
Chapman and Hall. 1989.

30. Teuscher, C. FPGA Implementations of Neural Networks (Ormondi. A.R. and
Rajapakse, J.C., Eds.; 2006). IEEE Transactions on Neural Networks, 2007.
18(5): 1550. ISSN 1045-9227. doi:10.1109/TNN.2007.906886.

31. Kwan, H. Simple sigmoid-like activation function suitable for digital hardware
implementation. IET Electronics Letters, 1992. 28(15): 1379–1380.

32. Moreno, F., Alarcon, J., Salvador, R. and Riesgo, T. FPGA implementation
of an image recognition system based on Tiny Neural networks and on-line
reconfiguration. Industrial Electronics, 2008. IECON 2008. 34th Annual

Conference of IEEE. IEEE. 2008. 2445–2452.

33. Kong, S. G. Time series prediction with evolvable block-based neural
networks. Neural Networks, 2004. Proceedings. 2004 IEEE International

Joint Conference on. IEEE. 2004, vol. 2. 1579–1583.

34. Jiang, W., Kong, S. and Peterson, G. ECG signal classification using block-
based neural networks. Neural Networks, 2005. IJCNN’05. Proceedings. 2005

IEEE International Joint Conference on. IEEE. 2005, vol. 1. 326–331.

35. Merchant, S., Peterson, G. D., Park, S. K. and Kong, S. G. FPGA



156

Implementation of Evolvable Block-based Neural Networks. IEEE Congress

on Evolutionary Computation, 2006 (CEC 2006). 2006. 3129–3136.

36. Jewajinda, Y. An adaptive hardware classifier in FPGA based-on a
cellular compact genetic algorithm and block-based neural network. 2008

International Symposium on Communications and Information Technologies

(ISCIT 2008). 2008. ISBN 9781424423361. 658–663.

37. Jewajinda, Y. and Chongstitvatana, P. FPGA-based online-learning using
parallel genetic algorithm and neural network for ECG signal classification.
2010 International Conference on Electrical Engineering/Electronics Com-

puter Telecommunications and Information Technology (ECTI-CON). 2010.
1050–1054.

38. Samarah, A., Habibi, A., Tahar, S. and Kharma, N. Automated Coverage
Directed Test Generation Using a Cell-Based Genetic Algorithm. High-

Level Design Validation and Test Workshop, 2006. Eleventh Annual IEEE

International. 2006. ISSN 1552-6674. 19–26. doi:10.1109/HLDVT.2006.
319996.

39. Sivanandam, S. N. and Deepa, S. N. Introduction to genetic algorithms.

Springer. 2008.

40. Weise, T. Global Optimization Algorithms {–} Theory and Application.
it-weise.de (self-published): {Germany}. 2009. URL http://www.

it-weise.de/projects/book.pdf.

41. Nickray, M., Dehyadgari, M. and Afzali-kusha, A. Power and delay
optimization for network on chip. Circuit Theory and Design, 2005.

Proceedings of the 2005 European Conference on. IEEE. 2005, vol. 3. III–273.

42. Bhardwaj, K. and Jena, R. Energy and bandwidth aware mapping of IPs onto
regular NoC architectures using multi-objective genetic algorithms. System-

on-Chip, 2009. SOC 2009. International Symposium on. 2009. 27–31.

43. Ascia, G., Catania, V. and Palesi, M. Multi-objective mapping for mesh-based
NoC architectures. Proceedings of the 2nd IEEE/ACM/IFIP international

conference on Hardware/software codesign and system synthesis. 2004. ISBN
1581139373. 182–187.

44. Morgan, A. a., Elmiligi, H., El-Kharashi, M. W. and Gebali, F. Multi-objective
optimization for Networks-on-Chip architectures using Genetic Algorithms.
Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International

Symposium on. Ieee. 2010, 1. ISBN 978-1-4244-5308-5. 3725–3728.

45. Rogado, E., Garcia, J. L., Barea, R., Bergasa, L. M. and Lopez, E. Driver



157

fatigue detection system. Robotics and Biomimetics, 2008. ROBIO 2008. IEEE

International Conference on. IEEE. 2009. 1105–1110.

46. Michail, E., Kokonozi, A., Chouvarda, I. and Maglaveras, N. EEG and HRV
markers of sleepiness and loss of control during car driving. Engineering in

Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International

Conference of the IEEE. IEEE. 2008, vol. 2008. ISBN 9781424418152. ISSN
1557-170X. 2566–2569. doi:10.1109/IEMBS.2008.4649724.

47. Furman, G. D., Baharav, A. and Cahan, C. Early detection of falling asleep
at the wheel: A heart rate variability approach. in Cardiology, 2008. 2008.
1109–1112. doi:10.1109/CIC.2008.4749240.

48. Jeong, I. C., Lee, D. H., Park, S. W., Ko, J. I. and Yoon, H. R. Automobile
driver’s stress index provision system that utilizes electrocardiogram.
Intelligent Vehicles Symposium, 2007 IEEE. IEEE. 2007. 652–656.

49. Bonnet, M. H. and Arand, D. L. Heart rate variability: sleep stage,
time of night, and arousal influences. Electroencephalography and Clinical

Neurophysiology, 1997. 102(5): 390–396. ISSN 0013-4694.

50. Ramesh, M. V., Nair, A. K. and Kunnathu, A. T. Real-Time Automated
Multiplexed Sensor System for Driver Drowsiness Detection. Wireless

Communications, Networking and Mobile Computing (WiCOM), 2011 7th

International Conference on. IEEE. 2011. 1–4.

51. McCartt, A. T., Rohrbaugh, J. W., Hammer, M. C. and Fuller, S. Z. Factors
associated with falling asleep at the wheel among long-distance truck drivers.
Accident Analysis & Prevention, 2000. 32(4): 493–504.

52. Gislason, T., Tomasson, K., Reynisdottir, H., Björnsson, J. K. and
Kristbjarnarson, H. Medical risk factors amongst drivers in single-car
accidents. Journal of internal medicine, 1997. 241(3): 217–223.

53. Podrid, P. and Kowey, P. Cardiac arrhythmia: mechanisms, diagnosis, and

management. Lippincott Williams & Wilkins. 2001.

54. Wolf, P., Dawber, T., Thomas Jr, H. and Kannel, W. Epidemiologic assessment
of chronic atrial fibrillation and risk of stroke. Neurology, 1978. 28(10): 973–
973.

55. Moody, G. and Mark, R. The MIT-BIH arrhythmia database on CD-ROM and
software for use with it. Computers in Cardiology 1990, Proceedings. IEEE.
1990. 185–188.

56. Tsai, Y., Hung, B. and Tung, S. An experiment on ECG classification



158

using back-propagation neural network. Engineering in Medicine and Biology

Society, 1990., Proceedings of the Twelfth Annual International Conference of

the IEEE. IEEE. 1990. 1463–1464.

57. Prasad, G. and Sahambi, J. Classification of ECG arrhythmias using multi-
resolution analysis and neural networks. TENCON 2003. Conference on

Convergent Technologies for Asia-Pacific Region. IEEE. 2003, vol. 1. 227–
231.

58. Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L. and Sornmo, L.
Clustering ECG complexes using Hermite functions and self-organizing maps.
Biomedical Engineering, IEEE Transactions on, 2000. 47(7): 838–848.

59. Nambiar, V. P., Khalil-Hani, M. and Marsono, M. Evolvable Block-Based
Neural Networks for Real-Time Classification of Heart Arrhythmia From
ECG Signals. 2012 IEEE EMBS Conference on Biomedical Engineering &

Sciences. 2012.

60. Watrous, R. L. and Kuhn, G. M. Induction of finite-state languages using
second-order recurrent networks. Neural Computation, 1992. 4(3): 406–414.

61. Delgado, M. and Pegalajar, M. A multiobjective genetic algorithm for
obtaining the optimal size of a recurrent neural network for grammatical
inference. Pattern Recognition, 2005. 38(9): 1444–1456. ISSN 00313203.
doi:10.1016/j.patcog.2004.03.026.

62. Cochran, J., Horng, S. and Fowler, J. A multi-population genetic algorithm to
solve multi-objective scheduling problems for parallel machines. Computers

& Operations Research, 2003. 30(7): 1087–1102.

63. Altera. Using ModelSim to Simulate Logic Circuits for Altera FPGA Devices.
Published online, 2011.

64. Mentor Graphics. Modelsim Users Manual. Published online, 2011.

65. Williams, S. Homepage for the Icarus Verilog project. Published online, 2012.
URL http://iverilog.icarus.com.

66. Snyder, W., Galbi, D. and Wasson, P. Free Verilog and SystemC Software
- Serious Tools for Real Projects. Published online, 2012. URL http://

www.veripool.org/wiki/verilator.

67. Bennett, J. Processor Verification using Open Source Tools and the GCC
Regression Test Suite: A Case Study. Design Verification Club Meeting.
Infineon, Bristol. 2010. 1–13.

68. Ungerer, G., Dionne, J. and Durant, M. uClinux: Embedded



159

Linux/Microcontroller Project. Published online, 2008. URL http://www.

uclinux.org.

69. Spear, C. SystemVerilog for Verification: A Guide to Learning the Testbench

Language Features. Springer Verlag. 2008.

70. Tomita, M. Efficient parsing for natural language: a fast algorithm for

practical systems. vol. 8. Springer. 1985.

71. De Jong, K. and Spears, W. Using genetic algorithms to solve NP-complete
problems. Proceedings of the third international conference on Genetic

algorithms. Morgan Kaufmann, San Mateo, CA. 1989, vol. 124. 132.

72. Yates, R. Fixed-point arithmetic: An introduction. Digital Signal Labs, 2009.
81(83): 198.

73. Khalil-Hani, M. Digital Systems: VHDL & Verilog Design. UTM Skudai:
Prentice Hall. 2012.

74. Cummings, C. The fundamentals of efficient synthesizable finite state machine
design using nc-verilog and buildgates. Proceedings of International Cadence

Usergroup Conference. 2002. 16–18.

75. Merchant, S. G. and Peterson, G. D. An evolvable artificial neural network
platform for dynamic environments. Circuits and Systems, 2008. MWSCAS

2008. 51st Midwest Symposium on. 2008. ISSN 1548-3746. 77–80.

76. Longbottom, R. Roy Longbottom’s PC Benchmark Collection. Published
online, 2012. URL http://www.roylongbottom.org.uk.



APPENDIX A

PUBLICATIONS

This appendix shows the papers written based on the results obtained from the
work done in this thesis. It also includes papers that are related to the work done
in thesis, such as SoC design, GA-based hardware designs, embedded hardware and
computing systems. The following is a summary of these papers:

1. Vishnu P. Nambiar, Khalil-Hani, M., & Marsono, M. N. (2012). HW/SW co-
design of reconfigurable hardware-based genetic algorithm in FPGAs applicable
to a variety of problems. Springer Computing. (Scopus indexed, IF 0.9).
Published.

2. Vishnu P. Nambiar, Khalil-Hani, M., & Zabidi, M. M. (2009). Accelerating
the AES encryption function in OpenSSL for embedded systems. International
Journal of Information and Communication Technology, 2(1/2), 83. (Scopus
indexed). Published.

3. Vishnu P. Nambiar, Khalil-Hani, M., & Marsono, M. N. (2012). Optimization of
Structure and System Latency in Evolvable Block-Based Neural Networks using
Genetic Algorithm. IEEE Transactions on Evolutionary Computation. (Scopus
indexed, IF 3.3). Under Review.

4. Vishnu P. Nambiar, Khalil-Hani, M., & Marsono, M. N. (2013). Hardware
Implementation of Evolvable Block-Based Neural Networks Utilizing a Cost
Efficient Sigmoid-Like Activation Function. Elsevier Neurocomputing. (Scopus
indexed, ISI IF 1.6). Under Review.

5. Khalil-Hani, Vishnu P. Nambiar, M., & Marsono, M. N. (2013). Co-
Simulation Methodology for Improved Design and Verification of Hardware
Neural Networks. Annual Conference of the IEEE Industrial Electronics Society
(IECON2013). (Scopus indexed). Under Review.

6. Vishnu P. Nambiar, Khalil-Hani, M., & Marsono, M. N. (2012). Evolvable
Block-Based Neural Networks for Real-Time Classification of Heart Arrhythmia



161

From ECG Signals. 2012 IEEE EMBS Conference on Biomedical Engineering
& Sciences. (Scopus indexed). Published.

7. Vishnu P. Nambiar, Khalil-Hani, M., Sia, C. W., & Marsono, M. N.
(2012). Evolvable Block-Based Neural Networks for Classification of Driver
Drowsiness based on Heart Rate Variability. IEEE International Conference on
Circuits & Systems (ICCAS2012). (Scopus indexed). Published.

8. Khalil-Hani, M., Sia, C.W. & Vishnu P. Nambiar. (2012). FPGA-based
Embedded System for the detection of Driver Drowsiness using ECG signals.
International Conference on Electrical Engineering and Computer Sciences
(ICEECS 2012). (Scopus indexed). Published.

9. Khalil-Hani, M., Vishnu P. Nambiar, & Marsono, M. (2012). GA-based
Parameter Tuning in Finger-Vein Biometric Embedded Systems for Information
Security. 2012 1st IEEE International Conference on Communications in China
(ICCC) (pp. 236–241). (Scopus indexed). Published.

10. Irwansyah, A., Vishnu P. Nambiar, & Khalil-Hani, M. (2009). An AES Tightly
Coupled Hardware Accelerator in an FPGA-based Embedded Processor Core.
2009 International Conference on Computer Engineering and Technology (pp.
521–525). (Scopus indexed). Published.

11. Khalil-Hani, M., Vishnu P. Nambiar, & Marsono, M. (2010). Hardware
Acceleration of OpenSSL cryptographic functions for high-performance Internet
Security. Intelligent Systems, Modelling and Simulation (ISMS), 2010
International Conference on (pp. 374–379). IEEE. (Scopus Indexed). Published.




