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ABSTRACT

Underwater Wireless Sensor Networks (UWSNs) offer new opportunities to
observe and predict the behavior of aquatic environments. A vital service in UWSNs is
localization used in many underwater applications such as warning systems for natural
disaster, ecological applications and military surveillance. In these applications, the
locations of sensors need to be determined for meaningful interpretation of the sensed
data. Localization for underwater is challenging as compared to terrestrial because the
latter has stabilized in WSNs. In underwater networks, acoustic communication is a
typical physical layer technology which has limitations and challenges. Moreover,
there is a need for a large amount of sensor nodes to cover wide and deep (three
dimensional) oceanographic regions. Consequently, it is essential to develop a
localization protocol specifically for Underwater Acoustic Sensor Networks (UASNs).
Unfortunately, many of the existing underwater localization schemes suffer limitations
such as long localization time, low location accuracy, excessive messaging and
limited power. Therefore, the aim of this research is to develop a faster localization
scheme for UASN to reduce energy consumption and communication overhead,
and to be adaptable to the mobility of water current and location changes. The
proposed scheme is named Reverse Localization Scheme (RLS). The developed
localization scheme is mathematically compared with seven efficient methods in
terms of communication cost. Besides that, the RLS results are compared with the
benchmark method Dive’N’Rise Localization using MATLAB. Simulation results
showed that the developed scheme achieved faster localization time with the least
possible message transfers. In addition, the scheme offers a real time localization and
it is less susceptible to errors caused by mobile underwater currents. RLS has been
proven to be power-efficient as all parts of the localization computations are computed
at the onshore sink.
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ABSTRAK

Rangkaian Penderia Tanpa Wayar Dalam Air (RPTWDA) memberi peluang
baru untuk mencerap dan meramal keadaan persekitaran akuatik. Satu perkhidmatan
penting dalam RPTWDA ialah penyetempatan yang digunakan oleh banyak aplikasi
dalam air seperti sistem amaran bencana alam, aplikasi ekologi dan pengawasan
ketenteraan. Dalam aplikasi ini, kedudukan penderia perlu ditentukan untuk mendapat
tafsiran berguna kepada data yang diperolehi. Penyetempatan dalam air adalah
mencabar berbanding dengan daratan kerana penyetempatan daratan dalam RPTW
telah mencapai kestabilan. Untuk rangkaian dalam air, komunikasi akustik adalah
teknologi lapisan fizikal biasa yang mempunyai keterbatasan dan cabaran. Tambahan
pula terdapat keperluan untuk menempatkan bilangan besar nod penderia untuk
meliputi kawasan lautan yang luas dan dalam (tiga dimensi). Oleh yang demikian,
adalah satu keperluan untuk membangunkan protocol penyetempatan khususnya
untuk Rangkaian Penderia Akustik Dalam Air (RPADA). Malangnya kebanyakan
skema penyetempatan terbatas dengan masa penyetempatan yang panjang, ketepatan
kedudukan yang rendah, mesej yang berlebihan dan had kuasa penderia. Oleh itu,
kajian ini bertujuan untuk membangunkan satu skema penyetempatan yang pantas
untuk RPADA supaya penggunaan kuasa tenaga dan overhed komunikasi dikurangkan,
serta boleh beradaptasi dengan pergerakan arus air dan perubahan kedudukan. Skema
yang dicadangkan dikenali sebagai Skema Penyetempatan Balikan (SPB). Skema
penyetempatan yang dicadangkan ini dibanding secara matematik dengan tujuh kaedah
yang cekap dari segi kos komunikasi. Keputusan SPB dibanding juga dengan kaedah
penandaarasan penyetempatan Dive’N’Rise menggunakan MATLAB. Hasil simulasi
menunjukkan skema yang dicadangkan mencapai masa penyetempatan yang lebih
pantas dengan penghantaran mesej yang kurang. Selain daripada itu, skema ini juga
memberikan penyetempatan masa nyata dan kurang terdedah kepada ralat disebabkan
oleh pergerakan arus air. SPB terbukti cekap-kuasa kerana pengiraan penyetempatan
dilakukan di sink pantai.



CHAPTER 1

INTRODUCTION

1.1 General Overview

Sensor networks are becoming common-place for real-time information since
they have ability to gather the information from their deployed area during the
monitoring task. New achievements in wireless communications brought forth the
recent generation of sensors with low cost, low power and multi functional properties.
Whereas the sensors enable to communicate in short distances and deployed in large
numbers, networking them through wireless links promise a wide range of applications
for monitoring homes or controlling cities. Moreover, the wireless networked sensors
have enabled opportunities in the defense areas and surveillance as well as other
tactical applications (Mao et al., 2007).

A Wireless Sensor Network (WSN) is normally designed based on its special
application’s objectives and operational environments. It can be classified into five
main categories: Terrestrial WSN, Mobile WSN, Underground WSN, Underwater
WSN, and Multimedia WSN (Yick et al., 2008).

During the last decades, a growing interest in Underwater Wireless Sensor
Network (UWSN) has been observed, while it is integrated with some different
challenges. The major challenge in UWSN comes from its propagation medium. There
is only one choice for underwater communications which is acoustic link. In fact, radio
waves suffer from high attenuation at long distances. On the other hand, optical waves
are seriously affected by scattering. Hence, underwater acoustic networking is the
enabling technology for the UWSN applications, and it successfully provides some
opportunities of ocean environment monitoring such as the life of the ocean animals
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and target tracking as well as mine recognition. Additionally, the underwater warfare
capabilities of the naval forces can benefit from the UASNs. As one of the humanism
applications of UASN technology, the Earthquake and tsunami forewarning systems
can also be addressed (Erol et al., 2011a).

Localization is a crucial issue in WSN both terrestrial and underwater, while
the collected data will be meaningful with corresponding location information.
Availability of location information of the gathered data can enhance the capability
of the network. The issue also plays a key role in other services such as geographical
routing protocols (Isik and Akan, 2009).

1.2 Problem Background and Motivation

A broad spectrum of applications and opportunities in ocean exploration and
sampling such as oceanographic data collection, early warning system for natural
disasters like tsunami, military underwater surveillance and warfare capabilities are
growing interest in Underwater Wireless Sensor Network (UWSN) (Tan et al., 2011).

Localization is known as location estimation of ordinary sensor nodes in a
network. Most localization schemes rely on some nodes that their locations are known.
These location-aware nodes are known as anchor or beacon nodes (Chandrasekhar
and Seah, 2006). There are different methods to prepare location information for the
beacons such as placed at fix location or using special hardware like Global Positioning
System (GPS) (Erol et al., 2011a). A typical localization process comprises the
following steps (Tan et al., 2011), namely range measurement, location estimation,
and calibration.

With regard to range measurement, the localization schemes are broadly
divided into two main groups, i.e., range-based and range-free. In range-based
schemes, precise estimations of distance or angle are made to estimate the location
of nodes (Erol et al., 2011a). Different techniques are available to calculate distances
to other nodes, e.g., Time of Arrival (TOA), Time Difference of Arrival (TDOA),
Angle of Arrival (AOA) or Received Signal Strength Indicator (RSSI). Range-
free localization schemes do not use range or bearing information. The location
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estimation methods are based on connectivity information instead of distance or angle
measurements.

In location estimation, two well-known range-based localization techniques
include angulation and lateration utilizing bearing and distance information. Range-
based methods provide fine-grained location estimation. Range-based localization is
a proper choice for underwater environments, while acoustic channels are employed
by such an aquatic area. Acoustic channels provide range-measurement much more
accurate than radio channels (Cui et al., 2006; Xie et al., 2005). Although range-
free schemes are less accurate and achieve only a coarse-grained localization but
their simplicity to implement is considerable. Range-free localization techniques are
classified into hop count-based and area-based methods (Chandrasekhar and Seah,
2006). In callibration step, the estimated location is further refined via various
iterations, measurement error models and mobility models (Tan et al., 2011).

Localization in terrestrial wireless sensor networks (TWSN) is mature enough,
while it is still challenging for UWSN due to some major technical differences. Radio
waves propagation through conductive water has some various constraints such as the
requirement of large antenna and high transmission power which make it infeasible.
Optical waves as another propagation media, requires high precision in pointing the
narrow laser beam to travel through the water. It also is impossible to implement.
So, it is implied that links in underwater environment cannot be substantiate without
using acoustic communications (Stojanovic, 2003). Using acoustic communication
among UWSN compared to radio links in TWSN presents different challenges and
constraints in underwater localization. Employing Global Positioning System (GPS)
as the well-known solution for localization is impossible through long distance in
water because RF waves are heavily attenuated (Chandrasekhar and Seah, 2006). The
acoustic channels are characterized by severely limited bandwidth, high propagation
delays and high bit error rates.

Currently, many localization algorithms have been proposed for UWSNs. Erol
et al. (2011a) surveyed many localization algorithms and classified them into two
categories, i.e., distributed and centralized localization algorithms, based on where
the location of unknown node is determined. These two categories are further divided
into subcategories of estimation-based and prediction-based algorithms. Meanwhile,
underwater sensor networks if not anchored, are mobile networks with locations
change continuously. Another recent survey paper is proposed by Han et al. (2012)
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and reclassifies the localization algorithms based on the mobility of sensor nodes.
This research has proposed a new localization scheme for mobile underwater acoustic
sensor networks.

1.3 Problem Statement

Since acoustic communication is employed as convenient choice for
underwater links, the localization schemes suffer from many constraints of acoustic
channel. The limited bandwidth and low data rates are two closely related features
which put some requirements on designing the localization protocols such as avoiding
extensive messaging and huge communication overhead. A practical solution for
achieving more data rate is using short-range communications which is required more
sensor nodes to attain a certain level of connectivity and coverage. So, the existing
small-scale localization schemes are not proper for large-scale UWSNs (Heidemann
et al., 2006). In addition, the mobility feature of water currents may create the lower
accuracy. Since almost often existing underwater localization techniques achieve low
accuracy, highly precise localization is desired for a localization protocol. Beside the
stringent resource limitation of underwater wireless sensor networks, high accurate
localization scheme is specially challenging. Moreover, the speed of sound is slow
(approximately 1500 m/s) yielding large propagation delay. Last, collecting beacons
information required for localization is a time consuming process which is most likely
the movement of underwater sensor nodes to new places during the collection time.

The statement of the problem can be stated as follows:

The development of a novel localization scheme is essential which avoid

excessive overhead and establish localization with minimum number of message

exchange and smaller transmitted message size. This is also dictated by the limited

battery power of the underwater sensor nodes. High accuracy and fast convergence

are desirable properties for the localization scheme.
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1.4 Research Questions

The open issues in the previous section leads to investigation of some research
questions which are addressed in this research as follows:

(i) How can the scheme be developed to reduce average localization time and
achieve a fast localization?

(ii) What are the main factors that contribute to overhead and how the proposed
scheme would avoid excessive overhead?

(iii) How can the proposed scheme deal with 3D underwater localization
problem?

(iv) How can the method deal with the beacon deployment problem in deep ocean
environment?

(v) What are the main factors that contribute to energy consumption?

(vi) How higher accuracy can be achieved in real-time environment?

1.5 Research Aim

The main goal of this study is to design and develop a novel localization scheme
for determining the location of an event-triggered sensor in deep water. The developed
localization scheme aims to localize sensors with energy efficiently, highly precise and
utilizing minimum number of transferred messages. The proposed scheme also aims
to establish a fast localization.

1.6 Research Objectives

To achieve the research aims, the following objectives are specified:

(i) To design and develop an event-driven and reverse message transfer
mechanism in order to reduce the overhead and improve the average
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localization time.

(ii) To develop a centralized and projection-based localization algorithm that
enable nodes to be localized in an accurate and energy-efficiently manner.

(iii) To test and verify the effectiveness and efficiency of the proposed scheme
through simulation.

1.7 Research Scopes

The scopes of this research are defined as follows:

(i) Sensor nodes are to be deployed in deep sea water.

(ii) Beacons are location-aware and deployed on water surface.

(iii) Sink is established above the sea surface.

(iv) Three dimensional deployment is utilized.

(v) Mobility of sensor nodes due to underwater currents is allowed.

(vi) Underwater sensors are synchronized with each other.

(vii) Underwater sensors are equipped with pressure sensor.

1.8 Significance of the Research

Inhomogeneous aquatic environment, harsh mobility of water currents and
relative motion of distributed underwater sensor nodes and large network scale, pose
several challenges towards developing localization for mobile UWSN. Moreover,
various constraints are arisen by employed acoustic channel to fulfill the following
desirable properties:

(i) Highly precise

(ii) Fast convergence

(iii) Energy efficiency
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(iv) Low communication cost

The purpose of this research is to develop an underwater localization scheme which
reduce the energy consumption and communication cost. The developed scheme
consists two phases, transmission and localization. The research finding leads to a
fast and highly precise localization and improve energy efficiency.

1.9 Research Contributions

The main contribution of this research is the development of an event-driven
message transfer mechanism which can significantly reduce the number of transferred
messages. The design of the proposed message transfer mechanism is based on the
event-driven report. Underwater detector sensors will change their mode from sleep
to transmit only if they detect phenomena. So, energy consumption of underwater
sensors will be saved. Moreover, the event-driven method establishes a message
transfer mechanism with minimum number of transmitted message compared with
periodic localizations. Other supportive contribution lies in reverse projection-based
localization. In contrast to all existing localization works, the proposed scheme
is reverse and underwater detector sensors launch localization process, while it
minimizes the negative impact of mobility of water currents and improve a fast
localization algorithm. The method is projection-based and geometrical projection
of underwater detector sensors’ location is completed in sink. Unlike the existing
projection-based localization methods, underwater node’s location is projected into
water surface by sink. The reverse projection-based method helps the scheme to
successfully reduce the transmitted message and also energy consumption.

1.10 Thesis Organization

This thesis is organized as follow:

Chapter 1: It presents a general overview on the topic of the study which
includes problem background and the issues that require to be considered by
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introducing statement of problems, the objectives, and the scopes of the research.

Chapter 2: It provides extensive literature review of the research domain and
the related available researches are reviewed and discussed to gather the necessary
knowledge for developing the research objectives. A survey on underwater localization
is proposed and followed by discussion of existing methods is presented along with a
comparison table of the algorithms.

Chapter 3: It presents a general overview of research methodology and
provides research operational framework flowchart. It discusses problem situation,
solution concept and the scheme design used in this research. The overall research
methodology plan is described in details. In the end it presents evaluation metrics and
simulation setup.

Chapter 4: An overview of the proposed scheme, named RLS, is presented. It
also illustrates a target underwater sensor network model. It continues by discussing
different phases of the algorithm in details and the mobility model and also employed
physical layer. Error analysis of the proposed scheme is also described.

Chapter 5: The main contribution of this research is presented in this chapter.
It provides a broad range of mathematical comparison to validate the first objective. It
also discusses the results of RLS in terms of defined metrics. Finally in this chapter a
comparison with one highlighted method and the new proposed localization scheme in
terms of all simulation metrics are presented.

Chapter 6: It concludes the discussion and highlights the achievements of
all the objectives. Research questions and their solutions are reviewed while they
represent the contributions of this research. In the end, assumptions of the research
and future works are listed.
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