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ABSTRACT

In this research, the development of an in-pipe microrobot system with 
intelligent active force control (AFC) capability was investigated and presented, 
including both simulation and experimental studies. Three actuated microrobot 
mechanisms driven by pneumatic, piezoelectric and voice-coil actuators were 
modelled and simulated in a constrained environment inside a pipe. The mechanisms 
were then embedded into the proposed AFC-based control strategy. The worm-like 
movement of these microrobots with the respective actuators were effectively 
modelled using the impact drive mechanism (IDM). A classic proportional-integral- 
derivative (PID) controller was first designed and applied to the microrobot system 
to follow a desired trajectory in the presence o f disturbances, which may be created 
due to the frictional force or fluid viscosity inside a pipe. Later, an AFC-based 
controller was utilized to enhance the system dynamic performance by robustly 
rejecting the disturbances. To estimate the inertial mass of the AFC loop, artificial 
intelligence (AI) techniques, namely the variants of fuzzy logic (FL) and iterative 
learning algorithms (ILA) were explicitly employed. The dynamic response of the 
fully developed model o f the in-pipe microrobot systems (with three different 
actuators) subject to various input excitations and disturbances was rigorously 
explored and numerically experimented. This involved the parametric study and 
sensitivity analysis to observe and to analyse the effects of a number of influential 
parameters that were deemed to have positive impact on the system performance. 
The simulation work was validated through an experimental investigation performed 
on a rig prototype that employed the voice-coil actuated mechanism to drive the 
selected AFC-based microrobot scheme, considering the given operating and loading 
conditions. Full mechatronic approach was adopted in the design of the rig by 
integrating the related sensors, actuator, mechanical parts and digital controller in a 
hardware-in-the-loop simulation (HILS) configuration. Parametric study was carried 
out to complement the simulation counterpart by taking into account the different 
settings and working environments. From the experimental results, the developed in
pipe microrobot system was proven to be effective and robust in its trajectory 
tracking, in spite o f the existence of various excitation inputs and external 
disturbances. This implied that the produced experimental responses were in good 
agreement with those acquired via simulation. The outcomes of the study shall 
provide a strong foundation for furthering the design of specific in-pipe microrobot 
applications, such as visual inspection of the inner surface of pipes, fault-diagnostics, 
obstacle removal and other related tasks.



ABSTRAK

Pembangunan satu sistem robot mikro dalam paip dengan keupayaan kawalan 
daya aktif pintar (AFC) telah dikaji dan dipersembahkan dalam kajian simulasi dan 
eksperimen. Tiga jenis mekanisme penggerak robot mikro, iaitu penggerak 
pneumatic, piezoelektrik, dan voice-coil telah dimasukkan ke dalam strategi kawalan 
berasaskan-AFC, dan disimulasikan seterusnya dengan mempertimbangkan beberapa 
operasi dan keadaan beban di dalam persekitaran paip yang terhad. Robot mikro 
yang mempunyai pergerakan seperti cacing telah dimodelkan secara efektif dengan 
menggunakan mekanisme penggerak hentaman (IDM). Pengawal klasik berkadaran- 
kamiran-terbitan (PID) telah direka bentuk terlebih dahulu dan diaplikasikan kepada 
sistem robot mikro untuk menjejaki trajektori kehendak dengan kehadiran gangguan 
akibat daripada daya geseran atau kelikatan cecair dalam paip. Kemudian, pengawal 
berasaskan AFC digunakan untuk meningkatkan prestasi sistem dinamik berdasarkan 
kekukuhannya untuk menangkis gangguan. Dalam penganggaran jisim inersia bagi 
gelung AFC, teknik kepintaran buatan (AI) melalui variasi logik kabur (FL) dan 
algoritma lelaran pembelajaran (ILA) telah digunakan secara khusus. Respons dan 
gerak balas dinamik bagi model sistem robot mikro dalam-paip yang telah 
dibangunkan sepenuhnya (dengan tiga penggerak berbeza) dan tertakluk kepada 
pelbagai ujaan masukan dan gangguan telah dikaji dengan rapi melalui eksperimen 
numerical (simulasi). Ini melibatkan kajian parametric dan analisis sensitiviti untuk 
memerhati dan menganalisis kesan beberapa parameter berpengaruh yang dianggap 
mempunyai kesan positif terhadap prestasis sistem. Sebahagian proses simulasi 
disahkan melalui kajian eksperimen ke atas prototaip rig yang menggunakan 
mekanisme penggerak voice-coil untuk memacu robot mikro berasaskan skema 
AFC, dengan mengambil kira operasi dan beban keadaan yang telah diberikan. 
Pendekatan mekatronik yang sempurna telah diguna pakai dalam merekabentuk rig, 
di mana alat penderia, penggerak, bahagian mekanikal dan pengawal digital telah 
diintegrasikan bersama melalui konfigurasi simulasi perkakasan di dalam gelung 
(HILS). Kajian parametrik dijalankan untuk mengambil kira persekitaran dan 
penetapan yang berbeza berpandukan simulasi sebelum ini. Keputusan eksperimen 
jelas menunjukkan keberkesanan penjejakan trajektori sistem robot mikro dalam- 
paip yang telah dibangunkan, walaupun terdapatnya pelbagai ujaan masukan dan 
gangguan luar. Ini dengan jelas menunjukkan bahawa keputusan yang dihasilkan 
melalui eksperimen fizikal mempunyai banyak persamaan dengna hasil simulasi. 
Hasil kajian menyediakan satu asas yang kukuh untuk memajukan reka bentuk yang 
spesifik untuk aplikasi robot mikro dalam paip seperti pemeriksaan visual permukaan 
paip, diagnostik kegagalan, penyingkiran halangan dan lain-lain tugas yang 
berkaitan.
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IN TRO D U CTIO N

1.1. Research Background

Nowadays, microrobots are widely used in a number of engineering 

applications since robots of this type may be able to operate in unstructured 

environments thanks to their enhanced adaptability to operate effectively, even under 

hostile conditions such as radioactivity, electromagnetic field and high temperature 

gradients. For industrial applications, microrobots and micromechanisms have found 

more applications like equipping with appropriate instrument or micro tools which 

make them more beneficial. On the other hand, the application of interest is the 

operation of microrobot in unreachable or hazardous pipes that can perform a 

number of tasks such as in-pipe inspection, fault diagnostics, condition monitoring 

and obstacle removal. Detection or maintenance inside pipes is a very common 

application for in-pipe microrobots. This type of application is often related to 

difficulties such as unreachability (size restriction) or hazardous environments 

(poisonous gas). The establishment of microrobots for in-pipe applications is based 

on navigation, maintenance, obstacle removal, or fault detection abilities. Inside 

pipes there are also different constraints that the mechanism should adapt to like 

different pipe diameter or different inner surface.



1.2. Problem Statements

In this decade, microrobots are widely used in a number of engineering 

applications such as high-precision manipulation system, intelligent micro

transportation system, support surgical operation, and others. One of the major 

applications of these types of robots is in-pipe application, in which microrobots are 

able to operate in unstructured environments because of their enhanced adaptability 

to operate effectively, even under hostile conditions such as radioactivity, 

electromagnetic field and high temperature gradients. Mechatronic development of 

in-pipe application microrobot systems embedded with intelligent active force 

control strategy is presented and investigated in this research.

The proposed microrobots are driven by pneumatic, piezoelectric and voice- 

coil actuators which are modelled and simulated with AFC-based control strategy. 

The intelligent active force control strategy is applied to the proposed microrobot 

systems and the performance o f the controller in rejection o f disturbance is 

investigated. Based on the advantages and benefits of the proposed actuators, voice- 

coil actuated microrobot is selected for experimental study. An experimental rig was 

set up including the integration of the related sensors, actuator, mechanical parts and 

digital controller via a hardware-in-the-loop simulation configuration. Outcomes of 

the study provide a strong foundation for furthering the design of specific in-pipe 

microrobot applications such as visual inspection of the inner surface of pipes, fault- 

diagnostics, surface machining, obstacle removal and other related tasks. Finally, a 

comparative study among the proposed intelligent control schemes and some design 

features (spring compression, mass material, inner pipe surface, inclined surface and 

etc) was carried out.

1.3. Research Objectives

This research focuses on the mechatronic design and development of a novel 

intelligent AFC scheme for the proposed in-pipe application microrobot mechanisms. 

Hence, three main objectives of thesis are as follows:



❖ To present three different microrobot mechanisms driven by pneumatic, 

piezoelectric, and voice-coil actuators

❖ To model, simulate, and control the proposed system using intelligent 

AFC method

❖ To validate the overall proposed system through experimentation and 

evaluation performed on a developed physical test for voice-coil actuated 

microrobot

To achieve these objectives, the following sub-objectives are considered:

>  To derive and develop the mathematical model o f the microrobot systems to 

study the kinematic and dynamic behaviour of the system

> To implement a robust and effective feedback control scheme for the 

proposed microrobot systems through a comprehensive simulation study

> To reduce the effect of disturbance through the intelligent AFC method 

(AFCILA and AFCFL)

> To design and develop an experimental rig employing mechatronic approach 

for voice-coil actuated microrobot

>  To evaluate the performance of the controller through simulation and 

experimental study for voice-coil microrobot



1.4. Scope of Research

The scope of this research comprises the following:

>  Propose three microrobot mechanisms for in-pipe application driven by 

pneumatic, piezoelectric, and voice-coil actuators

>  Derive the kinematic and dynamic equations of microrobot mechanisms 

based on the type o f mechanism, actuator, and movement.

>  Design suitable feedback controllers based on the PID and AFC strategies for 

simulation study

> Apply intelligent techniques (FL and ILA) to AFC strategy for robust 

movement for the time that the system is under disturbance

> Carry out a comparative study of the proposed control schemes

> Employ a Voice-coil actuated microrobot mechanism for the experimental rig

> Perform experimental validation of the intelligent AFC algorithm on the 

developed voice-coil actuated microrobot

>  Investigate the performance of the control systems under different case 

studies and input excitations

> Equip the microrobot with a laser pointer for specified application and a 

wireless high definition video scope inspection camera



> Consider the effects of different conditions (friction, disturbance, pipe 

surface, microrobot material, and etc) on microrobot movement

1.5. Research Significance and C ontribution

This research focuses on the mechatronic design of a new control system to 

control movement effectively and suppress unwanted disturbances of in-pipe 

application microrobots driven by pneumatic, piezoelectric and voice-coil actuators. 

Voice-coil actuated microrobot is selected for mechatronic approach and there is no 

background with voice-coil actuators for this kind of motion and application. By 

assuming some conditions inside the pipe, the derived kinematic and dynamic 

equations are unique. Intelligent AFC as a robust strategy was shown to be a 

powerful disturbance rejecter is applied as main control scheme o f the system. 

External force as disturbance effect is applied to the microrobot and effectiveness of 

intelligent AFC to perform robust movement is examined. There is no published 

research in which AFCILA or AFCFL is applied to this type of in-pipe application 

microrobot. This research attempts to present an in-depth investigation of intelligent 

AFC controller incorporated to voice-coil actuated microrobot and show how the 

controller rejects the unwanted disturbances effectively and controls the movement 

of robot precisely by experimental and simulation studies.

A brief outline of the main contributions of this research is given in this 

subsection as follows:

• A comprehensive kinematic/dynamic model that justifies the dynamic 

characteristics of microrobot mechanisms which are driven by pneumatic, 

piezoelectric, and voice-coil actuators

• A novel in-pipe application microrobot driven by voice-coil actuator

• A novel AFC algorithm to control system behaviour in order to reject 

unwanted disturbance while moving inside the pipe



• Intelligent algorithms applied to the main controller of system (AFC) to 

find the parameters of the controller by programming the related codes 

inside LabVIEW software

1.6. Research Methodology

The project is divided into five main stages i.e.; literature review, modeling 

and simulation, design and development of the experimental rig, experimentation and 

performance evaluation, and analysis. Mechatronic approach involving the synergy 

of mechanical, electrical/electronic and computer control would be the main feature 

of the research methodology. More detailed description of the research methodology 

is as follows:

1.6.1 L iterature Review

In-pipe application microrobot mechanisms and their application, available 

actuators and mechanisms are first reviewed based on previous studies. PID and AFC 

controllers are also introduced and reviewed in the second section. Finally, intelligent 

algorithms like FL and ILA which are used to determine specifications o f controllers 

intelligently are reviewed.

1.6.2 Modelling and Simulation

Prior to the performance evaluation of the proposed model of the system, the 

modelling and simulation phase include the mathematical equations, representing the 

system’s dynamics and kinematics is presented. The modelling will take into account 

realistic and valid assumptions related to the physical systems. Three suitable and



practical microrobot mechanisms driven by pneumatic, piezoelectric and voice-coil 

actuators are introduced based on real physical system. A number of intelligent 

methods such as Fuzzy Logic (FL) and Iterative Learning Algorithm (ILA) will be 

studied and later implemented with the AFC strategy to control the system robustly. 

Simulation works shall include the evaluation of the system’s performance and 

robustness against the disturbance. Differences in the design parameters, 

environmental situations, simulation, and learning algorithms shall also be taken into 

account. Comparative study between the control strategies shall also be done to 

provide a useful platform in determining the best control method. The simulation 

works serve as a basis for designing and developing the experimental rig in later 

stages. MATLAB and Simulink software’s shall be the main tool for the simulation 

study.

1.6.3 Design and Development of Experim ental Rig

The design and development of the experimental rig is based on 

Mechatronics approach. In this approach, all main important aspects of mechanism 

and environmental situation are considered. This involves the integration o f a 

number of classical engineering disciplines namely, the mechanical, electrical, 

electronics and computer-based control. A complete integration o f the mentioned 

disciplines is very essential to realize a mechatronic product.

• M echanical

Mechanical design initially involves the conceptual design of in-pipe 

application microrobot driven by voice-coil actuator. A number of factors and 

suitable design criteria should be carefully considered in the design process. The 

design process will involve the development of suitable mechanisms, dynamic 

analysis o f the structure of the system, selection o f materials and others which should 

all comply with the pre-determined design criterion. A finalized design for voice-coil 

actuated microrobot will be subsequently chosen with the detailed production 

drawings ensured for fabrication purposes. Some of the mechanical aspects of the



system such as the computation of the parameters for the actuator, mass and shape of 

masses, dimensions o f the system structure or parts can be obtained and/or 

manipulated from the simulation study. The design should also take into account the 

ease of the fabrication of the parts to be processed.

• Electrical/Electronics

The selection of the actuator and sensors should be based on the advantages 

comparison to ensure proper actuation of the system is achieved. Voice-coil actuator 

is suitable to be used in the system with some powerful specifications related to other 

actuators and its novelty. Voice-coil actuator should be driven by a set of suitable 

power supply and related amplifier. A good knowledge and skill in electronics 

assembly is highly desirable at this stage. Again, the outcome of the simulation 

works help in determining for example the size (power, force, friction etc.) of the 

actuators to be used.

• Computer-Based Control

The next stage is involve rigorous computer interfacing and control involving 

data acquisition process through the use of analogue to digital, digital to analogue 

(ADDA) card and a PC/Laptop for software control. All the sensors and actuator 

shall be connected to a PC-based data acquisition system (DAS). All the important 

elements are later integrated and fully tested prior to the experimentations. Matlab, 

Simulink, and LabVIEW serve as the link between the mechanical, electrical, and 

electronics components.

• Experim entation

When the mechatronic system prototype is ready, experimental procedures 

will be drafted and testing will be done to validate the effectiveness and the 

robustness o f the control strategy. An experimental rig prototype shall be designed 

and developed using full mechatronic approach involving the integration mechanical 

engineering, electrical, electronic and computer control elements for voice-coil 

actuated microrobot. The design of the rig shall be largely based on the parameters



and results obtained from the theoretical and simulation study carried out earlier 

since the main aim o f developing the rig is in fact to complement simulation 

counterpart. Experimentation will be rigorously carried out to test the effectiveness 

of the proposed control scheme. The tests will take into account various operating 

and loading conditions like applied voltage, applied frequency, different masses, pipe 

surface, etc. Finally, the outcomes o f the research are summed up.

1.6.4 Perform ance Evaluation and Analysis

The system performance will be critically evaluated and analyzed based on 

the capability of the control schemes. An experimental rig is setup and tested to 

validate the AFCILA scheme. A comparative study of the proposed schemes in terms 

of their performance and differences shall also be presented in the research. The 

research outcomes should provide the information which would be useful for future 

development, improvement and expansion of the system. In addition to that, 

suggestions for the further research works will also be outlined.

The flowchart presented in Figure 1.1 describes the research methodology 

considered in this thesis.



Figure 1.1Flow chart of research procedure



1.7. Organization of Thesis

This thesis is organized into eight chapters. A brief outline o f the contents of the 

thesis is as follows:

C hapter 1 presents an introduction to the research problem. It involves the 

background and significance of the research as well as the problem statement and 

contributions. The logical flow and structure of the thesis are also outlined in this 

chapter.

C hapter 2 is devoted to literature study that has been carried out related to 

subjects concerning this thesis. Firstly, the types and classifications o f 

microrobots and their actuators are studied. Secondly, Impact Drive Mechanism 

(IDM) and its application on microrobots are reviewed and discussed. Thirdly, 

the applications of PID and AFC strategy are described. Finally, intelligent 

techniques including ILA and FL are described and reviewed due to their 

application in next chapters.

C hapter 3 focuses on introducing principle of three proposed mechanisms driven 

by pneumatic, piezoelectric, and voice-coil actuators. Mathematical formulations 

of proposed microrobots are done. Kinematic/dynamic relations o f microrobots 

are derived to model the systems and find transfer functions.

C hapter 4 presents the application and principles of the PID and AFC methods. 

FL and ILA which are employed as intelligent methods to estimate the value of 

mass required in AFC loop are introduced. The optimum learning parameter as 

well as appropriate stopping criteria for the mentioned ILA is proposed based on 

the simulation. The microrobot mechanisms are studied when the simulated 

model is excited by disturbing signals and the performance of AFCFL and 

AFCILA in suppressing the unwanted disturbance is investigated. First, different 

types of signals are input to system. After that, of the system after applying 

disturbance is considered.



C hapter 5 focuses on mechatronic design and evaluation of the experimental rig. 

An in-pipe application microrobot actuated by voice-coil is developed and 

fabricated. The control action is applied to the voice-coil actuator through a data 

acquisition system which has been connected to a PC equipped with LabVIEW 

software. The control algorithm is coded using the LabVIEW graphical 

programming. Performance of the intelligent control system is evaluated through 

experimental measurements. Different case-studies are prepared by altering the 

design parameters (mass material, spring stiffness, friction, etc.) which are then 

compared together and their effects on the output response are studied.

C hapter 6 describes the comparative study among the proposed control schemes 

presented in the previous chapters. The effectiveness and imperfections o f the 

each technique is described and compared with each other.

C hapter 7 sums up the research project and the directions for the future research 

works are outlined.
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