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ABSTRACT

Electric Vehicle (EV) gets the attention and ingtref scientists due to its
advantages of zero green house gaseous emissibmsghrer efficiency. Battery pack is
utilised as energy storage element in EV. Stricidhiag on battery pack is important to
ensure battery pack performs in safe and consistanner under various load demand
and driving state. Therefore, an efficient Batttgnagement System (BMS) which can
perform State Of Charge (SOC) estimation, cell égaton and temperature control,
should be put as the primary concern. In this d@spmt accurate battery model is
required to give high quality SOC estimation andtdsg management. Equivalent
circuit model is widely used as the battery modetes it can be easily connected to
external circuit in a simulation platform. Howevehe existing battery models are
generally built for low capacity battery and do rteake into account on nonlinear
capacity effect. In this thesis, equivalent citcomodel for 18 Ah Lithium Ferro
Phosphates (LiFeRPbattery is developed. LiFeR®attery is a good energy storage
element for EV since it has good thermal and chahsitabilities. The thesis studies the
existing battery modelling technique and invesegathe dynamic characteristics of
18 Ah LiFePQ battery. A new battery modelling approach with ¢desation of
nonlinear capacity effect has also been proposediffh capacity LiFeP©Obattery.
Moreover, a simplified methodology for battery milidg is proposed to improve
existing battery modeParameter extraction is discussed and the profdusésty model
is validated from the experiment data. The comparibetween experiment and
simulation results shows that the proposed modeaiaable of predicting dynamic

behaviours of the battery with minimum error.
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ABSTRAK

Kenderaan elektrik (EV) menarik perhatian dan muofeipada saintis kerana ia
tidak menpunyai masalah pelepasan gas rumah deyaua menpunyai kecekapan yang
tinggi. Pek bateri diguna sebagai elemen simparaaga dalam EV. Pengendalian
bateri pek adalah sangat penting untuk memastik#gritpek berfungsi secara selamat
dan konsisten dalam pelbagai permintaan beban e€adalkn memandu. Maka, sistem
pengurusan bateri (BMS) yang cekap dalam pengaaggatatus caj (SOC),
pengimbangan sel dan pengawalan suhu perlu dijadkbagai fokus utama. Dalam
aspek ini, model bateri yang tepat amat diperluatam penganggaran SOC dan
pengurusan bateri. Model litar setara banyak digamaebagai model bateri kerana ia
mudah disambungkan kepada litar luar dalam platfeimulasi. Walau bagaimanapun,
model bateri yang wujud biasanya dibina untuk bgeang berkapasiti rendah atau tidak
mengambil kira kesan kapasiti tak linear. Dalanstes, model litar setara yang sesuai
bagi 18 Ah bateri Litium Ferro Fosfat (LiFepOdibangunkan. Bateri LiFeRO
merupakan alat penyimpanan tenaga yang sesuai &EMukerana ia mempunyai ciri-
ciri yang stabil dari segi kimia dan terma. Tesismengkaji teknik pemodelan bateri
yang sedia ada serta mengkaji ciri-ciri dinamikg@d8 Ah LiFePQ@bateri. Pemodelan
model bateri yang baru untuk LiFePBerkapasiti tinggi juga dicadangkan. Model baru
ini mengambil kira kesan kapasiti tak linear. Selau, metodologi pemodelan bateri
juga dipermudahkan dan dicadangkan dalam tesisgKaimlangkah pengenalan
parameter telah dibincangkan dan ketepatan model y@ng dicadangkan ini juga
disahkan melalui data uji kaji. Perbandingan anteputusan uji kaji dan simulasi
menunjukkan bahawa model yang dicadangkan dapathkiewciri-ciri dinamik bateri

dengan ralat yang minimum.
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CHAPTER 1

INTRODUCTION

1.1  Background

World energy supply is highly dependent on unsuosatae resources, such as
oil (33.2 %), coal (27 %) and natural gas (21.1[%) Resources of these fossil
fuels are limited and expected could be exhaustédinv40 years [2]. The
consumption of these fossil fuels also producesgrgteuse gaseous (GHGs). For
instance, fossil fuels are responsible for 85 %rdhropogenic carbon dioxides (gO
emissions [3]. International Energy Agen(lf£A) has conducted a BLUE Map
scenario by 2008, which describes the transformatioenergy technology by 2050,
in order to reduce the annual emissions of carliaxides (CQ) [4].

According to the statistics provided by the Orgate for Economic
Co-operation and Development (OECD) [1], there agproximately 27.3 % of the
energy supplies consumed by the transportatioroisedioreover, it was stated that
61.4 % of the world oil is consumed by transpootativhile the price of oil is rising
due to the depletion of oil resources. Thereftre,transformation of energy in this
sector may greatly reduce the overall GHGs emissi@md oil demands. These
situations encourage the research and developnutivitias to build up higher
efficiency and cleaner transportation. Electritiicke (EV) gets the attention and
interest of scientists due to its advantages ob Z8HGs emissions and higher
efficiency. It has been proposed to replace iatecombustion engine (ICE) as the

mainstream vehicle in the near future. The renésvabergy source can be used to



generate the energy sources of EV and thus hekxtace the reliance on fossil fuels
and reduce the GHGs [5]. A technology roadmagEectrical and Plug-in Hybrid
Vehicle (EV/PHEV) is also carried out by IEA. Threadmap outlines the strategies
to popularise the adoption of EV and PHEV worldwaled provide a significant
reduction in light-duty vehicle CQemissions by 2050 [4].

1.1.1 ElectricVehicle

The technology and idea of EV is not entirely nbut, has existed for around
three centuries. The world’s first electric vebi¢EV) was made in 1830s and it
used non-rechargeable batteries as the energygstatavices. The EV with
rechargeable batteries was then released andcitedahe first peak at the end of
19" century [2]. EVs were mass-produced and widelypéed as cars, taxis, buses
and delivery vehicles. Even though the first in&ércombustion engine (ICE)
vehicle was made in 1886, the ICE vehicle is nqytarly implemented due to their
frowziness and inconvenience of manual start [2, G]hese limitations of ICE
vehicle made EVs seem to be a more attractive ehoidlowever, after the self
starter of ICE was invented in 1911 and the chabwas broadly available, ICE
vehicles became more attractive than EVs [6]. & EV’s performances, such as
the higher price of the battery compared to petha,long charging time of battery,
and the short travel distance of EV, have causelé&oéne of the EVS' market after
1910s [2, 6]. The world crisis of fuel that hapeerby the mid of 20 century gave
the second chance of EV development. Howeverctises was solved when the
Middle East countries provided cheap fuel to thekeia[2]. The development of
EV was aroused again at the beginning of 2éntury due to the shortage of fuel

resources and the issue of environmental pollJ&os].

Advantages of EV include zero emissions of GHG amdpollutants, very
low noise, very high efficiency, and relatively lmw@st of electric motor [4]. For EV,
electric motor is used for electric propulsion systwhile battery is used as the

energy storage device. The battery is recharged fyrid electricity, regenerative



braking or photovoltaic panels [4]. However, thatery has lower specific energy
and specific power than ICE fuel [4]. Therefotee performance of battery becomes
the key for EV development. New battery technol@and battery management

system are two important aspects that enhanceetti@rmance of battery [2].

1.1.2 Battery Technologies

Rechargeable battery is an electrochemical devitiehaconverts electrical
energy to chemical energy during charging and cdsvehemical energy to
electrical energy during discharging [7]. Althoutliere are several devices, such as
ultra-capacitor, super-capacitor and ultra-highesip#ywheels that are potentially
applied as the energy storage element in EV [#}ebais still preferable due to its
high specific energy and its capability of rechar@@r regenerative braking practice
[8]. Apart from EV, batteries are broadly usedamsenergy storage element for
portable electronic device, uninterruptible powenpdy (UPS), distributed

generation, and avionics system.

In the aspect of battery technology, the batterynigroved from Lead Acid
battery to Nickel-based battery and from Nickeldmhdattery to Lithium-based
battery [2]. Even though the battery technologg kagnificantly improved, the
battery technology is still unable to keep up wti pace of the current technology
[9-11]. Specific energy, specific power, efficighenaintenance requirement, cost,
management, environment friendliness and safetytlaerequirements for EV’s
energy storage element. In this aspect, speciiiergy is the most important
consideration for EV since the rate of specificrggedetermines the travel range of
EV. A heavier battery is required if the battemghwower specific energy is applied.
Ragone plot of the energy storage element is shiowfigure 1.1. By referring to
Figure 1.1, Lithium ion (Li-ion) battery has theghest specific power and specific

energy compared to others [4, 12].
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Figurel.l  Ragone plot of energy storage element [4]

Lead Acid battery is constructed with lead, leattlexand sulphuric acid. It
is widely implemented in transportation sector daelow cost and maturity in
technology. However, high molecular weight of |¢w$ caused Lead Acid battery
suffers from low specific energy. Additionally, 4@ Acid battery also possesses
poor temperature characteristic, especially atatetemperature (below 1T) [7].
Furthermore, the release of flammable hydrogendgaisg self-discharging and the
attendance of corrosive sulphuric acid may becaaet\sthreats to the vehicle [7].

Nickel-based battery can be categorized into sévgpas, such as Nickel-
Iron (NiFe), Nickel-Zinc (NizZn), Nickel-Cadmium (Kid) and Nickel-Metal
Hydride (NiMH). Nickel-based batteries possessaigspecific energy and specific
power than Lead Acid battery since nickel has lowwiecular weight than lead.
NiMH battery has highest rate of specific power apécific energy among all the
Nickel-based battery. In addition to that, NiMHteay also has long cycle life, good

temperature characteristics, low self-dischargee, rdlat discharge profile and



negligible corrosion. However, NiMH battery hasigh initial cost. Moreover,
Nickel-based battery has suffers from memory effékt In this aspect, the capacity
of Nickel-based battery would be reduced becausei®hot fully discharged before
it is recharged [13]. NiMH battery has lesser akiagf memory effect compared to
NiCd battery [14].

Lithium Polymer (Li-P) and Li-ion are the two majdechnologies of
Lithium-based battery. At the beginning of devetgmt, Li-ion battery suffered
from safety issue due to the use of metal Lithissmagative electrode. This safety
problem is then solved by using carbon materiahwitthium insertion as the

negative electrode material [12].

Lithium is the lightest metal and allows very hitifermodynamic voltage.
Therefore, Lithium-based battery has higher terinioitage, higher specific energy
and higher specific power compared to the othehamgeable batteries [12]. It is
considered as the most promising battery in theréuf7]. By referring to Ragone
plot in Figure 1.1, the specific energy and speqifower of Li-ion battery is the
highest among all type of batteries. The sped@fergy of Li-ion battery is up to
150 Whkg' whereas the specific power of Li-ion battery caach above 5 kWKy
[12]. The desired specific energy and specific @owan be achieved by varying the
thickness of electrodes [12]. In the field of adue electronic, the majority market

of electronic devices is occupied by Lithium-babattery [12].

Lithium Ferro Phosphate (LiFeRis one of the Lithium based battery
which uses the phosphates as the cathode matefiaé theoretical capacity of
LiFePQ, battery is up to 170 mAh/g, which is the highestoag lithium based
batteries [15]. Moreover, the materials used iFelHQ are widely available,
economical and environmental friendly [15]. Thendliang of LiFePQ battery is
safe and easy due to its excellent thermal stalilithe fully charged condition and
good humidity resistant [15]. The stability of EIFQ, effectively reduces the risk of
explosion when the battery is accidentally overghdrand thus promises the safety
of usage. Table 1.1 provides a comparison of Wwithbased battery according to

their chemistry. For EV application, a good safetythe battery also ensures the



safety of usage. Hence, LiFeP@attery is more suitable to be applied as energy
source in EV compared to another Lithium-basecebgatt

Table 1.1 : Characteristics of Lithium-based batteries

Characteristics Lithium cobalt | Lithium Lithium ferro

oxide (LiCoO;) | manganese oxide | phosphate

(LiMn20y) (LiFePQy)

Specific energy Good Average Poor
Power Good Good Average
Low temperature Good Good Average
Calendar life Average Poor Poor abovéB30
Cycle life Average Average Average
Safety* Poor Average Good
Cost/kWh Higher High High
Maturity High High Low

1.1.3 Battery Management System

Battery is the main energy storage device of EVhakdling of battery is
necessary so that the battery performs as a sasjstent and competent energy
source under various load demand and driving $1&e Besides, accurate battery
information such as state-of-charge (SOC), stateeaith (SOH), current and
voltage are vital for energy management system\bflz]. Therefore, an efficient
battery management system (BMS) which can perfor®C Sestimation, cell
equalisation and temperature management shouldtlesghe primary concern [17].
BMS gives battery protection, increases battery dind its performance. Figure 1.2

shows the block diagram of general BMS.
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Figurel.2  Battery management system (BMS)

SOC is the most important parameter to be realsede it demonstrates
remaining capacity of the battery. The best pentorce of battery can be achieved
by accurate assessment of SOC [18]. Unwanted loérbattery will occur if the
value of SOC is extremely high (overcharged) or (owdercharged). The value of
SOC is not readily measurable and thus estimatoomequired [16]. Several
algorithms for SOC estimation have been proposasth as Kalman Filter (KF) [19],
Extended Kalman Filer (EKF) [20-21] and Sigma-pdfiaiman Filter (SPKF) [22-
23]. High accurate performance of these SOC estimalgorithms is proven.
These SOC estimation algorithms are model-basednigees which require a
battery model that can provide current-voltage YItMormation of the battery [17].
An accurate battery model is required since theuraoy of battery model would
affect the quality of the SOC estimation [24]. ldenaccurate battery model should

become the first issue in BMS design.

1.1.4 Battery Mode

Battery model is important not only for SOC estilmiat but also it is equally
important for EMS controllers design, manage chaigeharge process, and

lengthening the life of battery [5, 17]. By usiagcurate battery model, the



characteristics of battery under various chargeldisgge conditions can be
effectively forecasted and thus optimize the usaEdmattery [18].

Numerous studies conducted on battery modellingnigces are published
in various scientific journals. The battery modeds be categorised into analytical,
electrochemical and equivalent circuit models [25Electrochemical model is
complex and involve time-varying spatial partiaffeliential equations. It is also
impossible to connect to the rest of the systeractiy [25]. On the other hand,
analytical model is unable to give a good view bé tinternal electrochemical
process of the battery [26] whereas equivalentuttimmodel has lower accuracy
compared to electrochemical model [25]. Howeveuiealent circuit model is
popularly used by circuit designers since the éffedattery control is permitted by

applying the mathematical equations that derivethfequivalent circuit model.

1.2 Statement of Problem

UTM-PROTON Future Drive Laboratory, which was efisdted in UTM
Johor Bahru campus, is actively involved in theea@sh and development of the
EV’s technologies. Research in areas such asrpattanagement system, energy

management system, machine controller and powefectar are conducted.

Model of battery is vital as a guide for systemigiesr to forecast the
electrical characteristics of battery. By applyargaccurate battery model, BMS can
estimate the SOC and the runtime of the battericiefitly and optimise the

performance of battery [27].

Generally, high capacity lithium based batterieskpes applied as energy
sources of electric vehicle. LiFeRP®@ potentially to be implemented in electric
vehicle since it promises safe usage. Howeverrdésearch on battery model for
LiFePQ is still limited. Moreover, most of the batteryodels in previous research

are focus on low capacity battery and only suitafole certain type of battery.



Additionally, battery model that provided by MATLASImulink does not able to

accurately simulate the dynamic behaviours of tttead battery as presented in [28-

29].

The lack of suitable and accurate battery modelldvdead to unreliable

control of battery. Since battery model is the kéBMS design, it is important to

develop an accurate battery model for high capdd®ePQ, battery in order to

capture the nonlinearity of battery in term of leWaracteristic, SOC and runtime of

high capacity LiFeP@battery.

13

Thesis Objectivesand Contributions

The objectives of this study are:

1.
2.

to study the existing techniques used in battergetimg.
to investigate the dynamic characteristics of 9,218 Ah LiFePQ
battery.

3. to propose a new model for Lithium Ferro Phospbatéery.

to propose a simple yet significant method of inweroent in existing

battery modelling techniques.

While performing this study, the thesis makes ti®iving contributions:

1.

It develops modified model with nonlinear capa&ffects consideration
to improve the performance of the existing battergdel. A novel
method to capture nonlinear capacity effects ippsed.

It introduces a simple battery model which expresgarameters as a
function of SOC and current. Parameters for loadedditions are
differentiated from parameters of unloaded condgio This is because
the characteristics of battery can be differenidaded and unloaded
conditions as stated in [17], [30], and [31]. Thi#l be discussed further

in Chapter 6. Transient response correction is usedetermine the
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parameters for loaded conditions. The techniquesimple, yet it
improves the performance of battery model signifia

1.4  ThesisOrganisation

The rest of the thesis is organised as follows:

Chapter 2 discusses the dynamic behaviours and classifitatad battery
model. This chapter briefly discusses on the psedobattery model in previous
researches, such as mathematical models, electnozdlemodels and equivalent

circuit model. Model development for equivalentuit model is reviewed.

Chapter 3 describes the experimental set-up used in theeqroj The
procedures of battery tests, which are used tatifgethe parameters of the battery

model are presented and described.

Chapter 4 discusses conventional battery model. In this ptdra
conventional battery modelling technique is presértriefly. Simulation and the
experimental results on the conventional batterydehare also presented. The

performance of conventional battery model is diseds

Chapter 5 proposes a modified battery model with consideratif nonlinear
capacity effect. In this model, a new approachagfturing nonlinear capacity effect
is presented in detail. Simulation and the expenital results on the proposed
battery model are also presented. The performahaeodified battery model is

discussed.

Chapter 6 proposes a simplified battery model. In this mpgarameters
are expressed as a function of SOC and currenlirntonate the usage of look-up
table in the model. Simulation and the experimeamtsults on the simplified battery
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model are also presented. The performance of sietpbattery model is presented.
The simplified model is further validated with rammd load tests.

Chapter 7 gives the conclusions of the thesis and possiblectibns of

further research on this work.

15 Summary

As a prelude to the thesis, a brief backgroundeftac vehicle that includes
its history and its environmental benefits has bpmsented. Several issues that
related to energy storage system, starting frontebattechnologies to battery
management system, have been presented. Battelgl mbich serves as the key of
monitoring EV energy sources is briefly discusséeh equivalent circuit model has
been chosen to use for this work due to its sintgli@ccuracy and suitability for

battery-powered system design.
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