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ABSTRACT 
 
 
 
 

Electric Vehicle (EV) gets the attention and interest of scientists due to its 

advantages of zero green house gaseous emissions and higher efficiency. Battery pack is 

utilised as energy storage element in EV. Strict handling on battery pack is important to 

ensure battery pack performs in safe and consistent manner under various load demand 

and driving state. Therefore, an efficient Battery Management System (BMS) which can 

perform State Of Charge (SOC) estimation, cell equalisation and temperature control, 

should be put as the primary concern. In this aspect, an accurate battery model is 

required to give high quality SOC estimation and battery management. Equivalent 

circuit model is widely used as the battery model since it can be easily connected to 

external circuit in a simulation platform. However, the existing battery models are 

generally built for low capacity battery and do not take into account on nonlinear 

capacity effect.  In this thesis, equivalent circuit model for 18 Ah Lithium Ferro 

Phosphates (LiFePO4) battery is developed. LiFePO4 battery is a good energy storage 

element for EV since it has good thermal and chemical stabilities. The thesis studies the 

existing battery modelling technique and investigates the dynamic characteristics of     

18 Ah LiFePO4 battery. A new battery modelling approach with consideration of 

nonlinear capacity effect has also been proposed for high capacity LiFePO4 battery. 

Moreover, a simplified methodology for battery modelling is proposed to improve 

existing battery model. Parameter extraction is discussed and the proposed battery model 

is validated from the experiment data. The comparison between experiment and 

simulation results shows that the proposed model is capable of predicting dynamic 

behaviours of the battery with minimum error. 
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ABSTRAK 

 
 
 
 

Kenderaan elektrik (EV) menarik perhatian dan minat daripada saintis kerana ia 

tidak menpunyai  masalah pelepasan gas rumah hijau dan ia menpunyai kecekapan yang 

tinggi. Pek bateri diguna sebagai elemen simpanan tenaga dalam EV. Pengendalian 

bateri pek adalah sangat penting untuk memastikan bateri pek berfungsi secara selamat 

dan konsisten dalam pelbagai permintaan beban dan keadaan memandu. Maka, sistem 

pengurusan bateri (BMS) yang cekap dalam penganggaran status caj (SOC), 

pengimbangan sel dan pengawalan suhu perlu dijadikan sebagai fokus utama. Dalam 

aspek ini, model bateri yang tepat amat diperlukan dalam penganggaran SOC dan 

pengurusan bateri. Model litar setara banyak digunakan sebagai model bateri kerana ia 

mudah disambungkan kepada litar luar dalam platform simulasi. Walau bagaimanapun, 

model bateri yang wujud biasanya dibina untuk bateri yang berkapasiti rendah atau tidak 

mengambil kira kesan kapasiti tak linear. Dalam tesis ini, model litar setara yang sesuai 

bagi 18 Ah bateri Litium Ferro Fosfat (LiFePO4) dibangunkan. Bateri LiFePO4 

merupakan alat penyimpanan tenaga yang sesuai untuk EV kerana ia mempunyai ciri-

ciri yang stabil dari segi kimia dan terma. Tesis ini mengkaji teknik pemodelan bateri 

yang sedia ada serta mengkaji ciri-ciri dinamik pada 18 Ah LiFePO4 bateri. Pemodelan 

model bateri yang baru untuk LiFePO4 berkapasiti tinggi juga dicadangkan. Model baru 

ini mengambil kira kesan kapasiti tak linear. Selain itu, metodologi pemodelan bateri 

juga dipermudahkan dan dicadangkan dalam tesis. Langkah-langkah pengenalan 

parameter telah dibincangkan dan ketepatan model baru yang dicadangkan ini juga 

disahkan melalui data uji kaji. Perbandingan antara keputusan uji kaji dan simulasi 

menunjukkan bahawa model yang dicadangkan dapat mewakili  ciri-ciri dinamik bateri 

dengan ralat yang minimum. 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 

1.1 Background 

 
 

World energy supply is highly dependent on unsustainable resources, such as 

oil (33.2 %), coal (27 %) and natural gas (21.1 %) [1].  Resources of these fossil 

fuels are limited and expected could be exhausted within 40 years [2].  The 

consumption of these fossil fuels also produces green house gaseous (GHGs).  For 

instance, fossil fuels are responsible for 85 % of anthropogenic carbon dioxides (CO2) 

emissions [3].  International Energy Agency (IEA) has conducted a BLUE Map 

scenario by 2008, which describes the transformation on energy technology by 2050, 

in order to reduce the annual emissions of carbon dioxides (CO2) [4].   

 
 
According to the statistics provided by the Organisation for Economic       

Co-operation and Development (OECD) [1], there are approximately 27.3 % of the 

energy supplies consumed by the transportation sector.  Moreover, it was stated that 

61.4 % of the world oil is consumed by transportation while the price of oil is rising 

due to the depletion of oil resources.  Therefore, the transformation of energy in this 

sector may greatly reduce the overall GHGs emissions and oil demands.  These 

situations encourage the research and development activities to build up higher 

efficiency and cleaner transportation.  Electric vehicle (EV) gets the attention and 

interest of scientists due to its advantages of zero GHGs emissions and higher 

efficiency.  It has been proposed to replace internal combustion engine (ICE) as the 

mainstream vehicle in the near future.  The renewable energy source can be used to 
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generate the energy sources of EV and thus help to reduce the reliance on fossil fuels 

and reduce the GHGs [5].  A technology roadmap for Electrical and Plug-in Hybrid 

Vehicle (EV/PHEV) is also carried out by IEA.  The roadmap outlines the strategies 

to popularise the adoption of EV and PHEV worldwide and provide a significant 

reduction in light-duty vehicle CO2 emissions by 2050 [4].   

 
 
 
 
1.1.1 Electric Vehicle 

 
 

The technology and idea of EV is not entirely new, but has existed for around 

three centuries.  The world’s first electric vehicle (EV) was made in 1830s and it 

used non-rechargeable batteries as the energy storage devices.  The EV with 

rechargeable batteries was then released and it reached the first peak at the end of 

19th century [2].  EVs were mass-produced and widely adopted as cars, taxis, buses 

and delivery vehicles.  Even though the first internal combustion engine (ICE) 

vehicle was made in 1886, the ICE vehicle is not popularly implemented due to their 

frowziness and inconvenience of manual start [2, 6].  These limitations of ICE 

vehicle made EVs seem to be a more attractive choice.  However, after the self 

starter of ICE was invented in 1911 and the cheap oil was broadly available, ICE 

vehicles became more attractive than EVs [6].  The poor EV’s performances, such as 

the higher price of the battery compared to petrol, the long charging time of battery, 

and the short travel distance of EV, have cause the decline of the EVs’ market after 

1910s [2, 6].  The world crisis of fuel that happened by the mid of 20th century gave 

the second chance of EV development.  However, the crisis was solved when the 

Middle East countries provided cheap fuel to the market [2].  The development of 

EV was aroused again at the beginning of 21st century due to the shortage of fuel 

resources and the issue of environmental pollution [2, 5].   

 
 

Advantages of EV include zero emissions of GHG and air pollutants, very 

low noise, very high efficiency, and relatively low cost of electric motor [4].  For EV, 

electric motor is used for electric propulsion system while battery is used as the 

energy storage device.  The battery is recharged from grid electricity, regenerative 
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braking or photovoltaic panels [4].  However, the battery has lower specific energy 

and specific power than ICE fuel [4].  Therefore, the performance of battery becomes 

the key for EV development.  New battery technology and battery management 

system are two important aspects that enhance the performance of battery [2]. 

 
 
 
 
1.1.2 Battery Technologies 

 
 

Rechargeable battery is an electrochemical device which converts electrical 

energy to chemical energy during charging and converts chemical energy to 

electrical energy during discharging [7].  Although there are several devices, such as 

ultra-capacitor, super-capacitor and ultra-high speed flywheels that are potentially 

applied as the energy storage element in EV [7], battery is still preferable due to its 

high specific energy and its capability of recharged for regenerative braking practice 

[8].  Apart from EV, batteries are broadly used as an energy storage element for 

portable electronic device, uninterruptible power supply (UPS), distributed 

generation, and avionics system.   

 
 

In the aspect of battery technology, the battery is improved from Lead Acid 

battery to Nickel-based battery and from Nickel-based battery to Lithium-based 

battery [2].  Even though the battery technology has significantly improved, the 

battery technology is still unable to keep up with the pace of the current technology 

[9-11].  Specific energy, specific power, efficiency, maintenance requirement, cost, 

management, environment friendliness and safety are the requirements for EV’s 

energy storage element.  In this aspect, specific energy is the most important 

consideration for EV since the rate of specific energy determines the travel range of 

EV.  A heavier battery is required if the battery with lower specific energy is applied.  

Ragone plot of the energy storage element is shown in Figure 1.1.  By referring to 

Figure 1.1, Lithium ion (Li-ion) battery has the highest specific power and specific 

energy compared to others [4, 12]. 



4 

 

 
 

Figure 1.1 Ragone plot of energy storage element [4] 

 
 

Lead Acid battery is constructed with lead, lead oxide and sulphuric acid.  It 

is widely implemented in transportation sector due to low cost and maturity in 

technology.  However, high molecular weight of lead has caused Lead Acid battery 

suffers from low specific energy.  Additionally, Lead Acid battery also possesses 

poor temperature characteristic, especially at the low temperature (below 10 oC) [7].  

Furthermore, the release of flammable hydrogen gas during self-discharging and the 

attendance of corrosive sulphuric acid may become safety threats to the vehicle [7]. 

 
 

Nickel-based battery can be categorized into several types, such as Nickel-

Iron (NiFe), Nickel-Zinc (NiZn), Nickel-Cadmium (NiCd) and Nickel-Metal 

Hydride (NiMH).  Nickel-based batteries possess higher specific energy and specific 

power than Lead Acid battery since nickel has lower molecular weight than lead.  

NiMH battery has highest rate of specific power and specific energy among all the 

Nickel-based battery.  In addition to that, NiMH battery also has long cycle life, good 

temperature characteristics, low self-discharge rate, flat discharge profile and 
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negligible corrosion.  However, NiMH battery has a high initial cost.  Moreover, 

Nickel-based battery has suffers from memory effect [7].  In this aspect, the capacity 

of Nickel-based battery would be reduced because of it is not fully discharged before 

it is recharged [13].  NiMH battery has lesser extent of memory effect compared to 

NiCd battery [14].  

 
 

Lithium Polymer (Li-P) and Li-ion are the two major technologies of 

Lithium-based battery.  At the beginning of development, Li-ion battery suffered 

from safety issue due to the use of metal Lithium as negative electrode.  This safety 

problem is then solved by using carbon material with Lithium insertion as the 

negative electrode material [12]. 

 
 

Lithium is the lightest metal and allows very high thermodynamic voltage.  

Therefore, Lithium-based battery has higher terminal voltage, higher specific energy 

and higher specific power compared to the other rechargeable batteries [12].  It is 

considered as the most promising battery in the future [7].  By referring to Ragone 

plot in Figure 1.1, the specific energy and specific power of Li-ion battery is the 

highest among all type of batteries.  The specific energy of Li-ion battery is up to  

150 Whkg-1 whereas the specific power of Li-ion battery can reach above 5 kWkg-1 

[12].  The desired specific energy and specific power can be achieved by varying the 

thickness of electrodes [12].  In the field of portable electronic, the majority market 

of electronic devices is occupied by Lithium-based battery [12].   

 
 

Lithium Ferro Phosphate (LiFePO4) is one of the Lithium based battery 

which uses the phosphates as the cathode material.  The theoretical capacity of 

LiFePO4 battery is up to 170 mAh/g, which is the highest among lithium based 

batteries [15].  Moreover, the materials used in LiFePO4 are widely available, 

economical and environmental friendly [15].  The handling of LiFePO4 battery is 

safe and easy due to its excellent thermal stability in the fully charged condition and 

good humidity resistant [15].  The stability of LiFePO4 effectively reduces the risk of 

explosion when the battery is accidentally overcharged and thus promises the safety 

of usage.  Table 1.1 provides a comparison of Lithium-based battery according to 

their chemistry.  For EV application, a good safety of the battery also ensures the 
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safety of usage.  Hence, LiFePO4 battery is more suitable to be applied as energy 

source in EV compared to another Lithium-based battery.  

 

Table 1.1 : Characteristics of Lithium-based batteries 

Characteristics Lithium cobalt 

oxide (LiCoO2) 

Lithium 

manganese oxide 

(LiMn2O2) 

Lithium ferro 

phosphate 

(LiFePO4) 

Specific energy  Good Average Poor 

Power Good Good Average 

Low temperature Good Good Average 

Calendar life Average Poor Poor above 30oC 

Cycle life Average Average Average 

Safety* Poor Average Good 

Cost/kWh Higher High High 

Maturity High High Low 

 
 
 
 
1.1.3 Battery Management System  

 
 

Battery is the main energy storage device of EV. A handling of battery is 

necessary so that the battery performs as a safe, consistent and competent energy 

source under various load demand and driving state [16].  Besides, accurate battery 

information such as state-of-charge (SOC), state-of-health (SOH), current and 

voltage are vital for energy management system of EV [17].  Therefore, an efficient 

battery management system (BMS) which can perform SOC estimation, cell 

equalisation and temperature management should be put as the primary concern [17].  

BMS gives battery protection, increases battery life and its performance.  Figure 1.2 

shows the block diagram of general BMS. 
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Figure 1.2 Battery management system (BMS) 

 
 

SOC is the most important parameter to be realised since it demonstrates 

remaining capacity of the battery.  The best performance of battery can be achieved 

by accurate assessment of SOC [18].  Unwanted harm of battery will occur if the 

value of SOC is extremely high (overcharged) or low (undercharged).  The value of 

SOC is not readily measurable and thus estimation is required [16].  Several 

algorithms for SOC estimation have been proposed, such as Kalman Filter (KF) [19], 

Extended Kalman Filer (EKF) [20-21] and Sigma-point Kalman Filter (SPKF) [22-

23].  High accurate performance of these SOC estimation algorithms is proven.  

These SOC estimation algorithms are model-based techniques which require a 

battery model that can provide current-voltage (I-V) information of the battery [17].  

An accurate battery model is required since the accuracy of battery model would 

affect the quality of the SOC estimation [24].  Hence, accurate battery model should 

become the first issue in BMS design. 

 
 
 
 
1.1.4 Battery Model 

 
 

Battery model is important not only for SOC estimation, but also it is equally 

important for EMS controllers design, manage charge/discharge process, and 

lengthening the life of battery [5, 17].  By using accurate battery model, the 

Battery 

Pack Voltage 

Current 

Temperature 

Measurement 

SOC estimation 

Thermal 

Management 

Cell Balancing 
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characteristics of battery under various charge/discharge conditions can be 

effectively forecasted and thus optimize the usage of battery [18]. 

 
 

Numerous studies conducted on battery modelling techniques are published 

in various scientific journals.  The battery models can be categorised into analytical, 

electrochemical and equivalent circuit models [25].  Electrochemical model is 

complex and involve time-varying spatial partial differential equations.  It is also 

impossible to connect to the rest of the system directly [25].  On the other hand, 

analytical model is unable to give a good view of the internal electrochemical 

process of the battery [26] whereas equivalent circuit model has lower accuracy 

compared to electrochemical model [25].  However, equivalent circuit model is 

popularly used by circuit designers since the effective battery control is permitted by 

applying the mathematical equations that derived from equivalent circuit model.   

  
 
 
 
1.2 Statement of Problem 

 
 

UTM-PROTON Future Drive Laboratory, which was established in UTM 

Johor Bahru campus, is actively involved in the research and development of the 

EV’s technologies.  Research in areas such as battery management system, energy 

management system, machine controller and power converter are conducted.  

 
 

Model of battery is vital as a guide for system designer to forecast the 

electrical characteristics of battery.  By applying an accurate battery model, BMS can 

estimate the SOC and the runtime of the battery efficiently and optimise the 

performance of battery [27].  

 
 

Generally, high capacity lithium based batteries pack is applied as energy 

sources of electric vehicle.  LiFePO4 is potentially to be implemented in electric 

vehicle since it promises safe usage.  However, the research on battery model for 

LiFePO4 is still limited.  Moreover, most of the battery models in previous research 

are focus on low capacity battery and only suitable for certain type of battery.  
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Additionally, battery model that provided by MATLAB/Simulink does not able to 

accurately simulate the dynamic behaviours of the actual battery as presented in [28-

29].   

 
  

The lack of suitable and accurate battery model would lead to unreliable 

control of battery.  Since battery model is the key of BMS design, it is important to 

develop an accurate battery model for high capacity LiFePO4 battery in order to 

capture the nonlinearity of battery in term of I-V characteristic, SOC and runtime of 

high capacity LiFePO4 battery.   

 
 
 
 
1.3 Thesis Objectives and Contributions 

 
 

The objectives of this study are: 

1. to study the existing techniques used in battery modelling.   

2. to investigate the dynamic characteristics of  3.2 V, 18 Ah LiFePO4 

battery. 

3. to propose a new model for Lithium Ferro Phosphate battery. 

4. to propose a simple yet significant method of improvement in existing 

battery modelling techniques.  

 
 

While performing this study, the thesis makes the following contributions: 

1. It develops modified model with nonlinear capacity effects consideration 

to improve the performance of the existing battery model.  A novel 

method to capture nonlinear capacity effects is proposed. 

2. It introduces a simple battery model which expresses parameters as a 

function of SOC and current.  Parameters for loaded conditions are 

differentiated from parameters of unloaded conditions.  This is because 

the characteristics of battery can be different in loaded and unloaded 

conditions as stated in [17], [30], and [31].  This will be discussed further 

in Chapter 6. Transient response correction is used to determine the 
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parameters for loaded conditions.  The technique is simple, yet it 

improves the performance of battery model significantly. 

 

1.4 Thesis Organisation 

 

The rest of the thesis is organised as follows: 

 
 

Chapter 2 discusses the dynamic behaviours and classifications of battery 

model.  This chapter briefly discusses on the proposed battery model in previous 

researches, such as mathematical models, electrochemical models and equivalent 

circuit model.  Model development for equivalent circuit model is reviewed.   

 
 

Chapter 3 describes the experimental set-up used in the project.  The 

procedures of battery tests, which are used to identify the parameters of the battery 

model are presented and described. 

 
 

Chapter 4 discusses conventional battery model.  In this chapter, 

conventional battery modelling technique is presented briefly.  Simulation and the 

experimental results on the conventional battery model are also presented.  The 

performance of conventional battery model is discussed. 

 
 

Chapter 5 proposes a modified battery model with consideration of nonlinear 

capacity effect.  In this model, a new approach of capturing nonlinear capacity effect 

is presented in detail.  Simulation and the experimental results on the proposed 

battery model are also presented.  The performance of modified battery model is 

discussed. 

 
 

Chapter 6 proposes a simplified battery model.  In this model, parameters 

are expressed as a function of SOC and current to eliminate the usage of look-up 

table in the model.  Simulation and the experimental results on the simplified battery 
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model are also presented.  The performance of simplified battery model is presented.  

The simplified model is further validated with random load tests. 

 
 

Chapter 7 gives the conclusions of the thesis and possible directions of 

further research on this work. 

 

1.5 Summary  

 

As a prelude to the thesis, a brief background of electric vehicle that includes 

its history and its environmental benefits has been presented.  Several issues that 

related to energy storage system, starting from battery technologies to battery 

management system, have been presented.  Battery model which serves as the key of 

monitoring EV energy sources is briefly discussed.  An equivalent circuit model has 

been chosen to use for this work due to its simplicity, accuracy and suitability for 

battery-powered system design. 
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