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ABSTRACT 

 
 
 
 

A novel biosensor for glucose determination had been developed in this study. 
Glucose biosensor is a good example of a commercial biosensor. It uses glucose oxidase 
(GOx), a redox enzyme to break down glucose to hydrogen peroxide and coupled with 
amperometric detection. For the construction of such a biosensor, a broad applicable 
method in the immobilization of enzyme is critically needed. One way to go about this is 
through the development of a new carrier such as nanoparticles. Here, a silica-based 
material, MCM-41, was used as enzyme support material, functionalized and modified 
with selenium (Se) nanoparticles and then fabricated into a biosensor. MCM-41 was 
synthesized and characterized to analyze the structural, morphological, elemental and 
physicochemical characteristics. It was later confirmed that MCM-41 of high purity and 
high surface area was synthesized. Pristine and unmodified MCM-41 may not be 
suitable as enzyme support material because it cannot provide the necessary sites for 
enzyme attachment. Therefore, two types of MCM-41 supports were produced: f-MCM-
41 and f-SeMCM-41. The first one, f-MCM-41 was modified for immobilization of GOx 
and minimum leaching of the enzyme by functionalizing with amino groups using 3-
aminopropyl triethoxysilane (APTES),  followed by attachment of  aldehyde group using 
glutaraldehyde. The latter, f-SeMCM-41, was co-functionalized with amino group during 
selenium nanoparticles (SNs) attachment onto the silicate framework to increase 
sensitivity and electrical conductivity for a better response. The product was then 
functionalized with glutaradehyde. Selenium nanoparticles (SNs) were successfully 
synthesized using a simple, cost effective and non-hazardous procedure where selenious 
acid was reduced using ascorbic acid, ultrasonicated and aged for 24h. Characterization 
showed that SNs of hexagonal crystalline type with high purity of more than 95.0% was 
produced. The incorporation process of SNs onto MCM-41 did not alter the structure of 
MCM-41 or even the SNs as observed by X-Ray Diffraction Spectroscopy (XRD). It 
was found that GOx-f-Se-MCM-41 was more efficient than GOx-f-MCM-41 as 
determined by the specific activity of GOx immobilized onto them.  The optimum pH for 
immobilization of GOx onto both functionalized MCM-41 and Se-MCM-41 was 
determined to be pH 6.0 and the optimum initial GOx concentration was 2.0 mg/mL. 
GOx-f-MCM-41 and GOx-f-Se-MCM-41 were used in the fabrication of carbon paste 
electrodes (CPE) and the efficiency examined. GOx-f-Se-MCM-41/CPE electrode was 
more sensitive and efficient as compared to GOx-f-MCM-41/CPE electrode, as evaluated 
using cyclic voltammetry. GOx-f-Se-MCM-41/CPE can detect very low range of glucose 
between 3.69 µM to 16.25 µM. Normal human glucose level is between 3.3 to 3.8 mM 
but this biosensor can detect much lower levels making it an excellent biosensor for 
clinical and industrial use. Hence, the newly developed functionalized MCM-41 support 
with immobilized glucose oxidase with Se attached to it, GOx-f-Se-MCM-41/CPE offers 
the potential exploitation of a suitable glucose biosensor. 
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ABSTRAK 
 

 

 

 
Suatu biosensor baru telah dibangunkan dalam kajian ini bagi penentuan glukosa. 

Biosensor glukosa adalah contoh yang terbaik untuk biosensor komersial. Ia 
menggunakan oxidasa glukosa (GOx), enzim redoks bagi glukosa untuk memecahkannya 
kepada hidrogen peroksida dan digabungkan dengan pengesanan amperometrik. Satu 
kaedah yang mudah bagi menyahgerakkan enzim amat diperlukan untuk pembinaan 
biosensor. Salah satu cara adalah melalui pembangunan pengangkut baru seperti 
nanopartikel. Di sini, bahan berasaskan silika, MCM-41 telah digunakan sebagai bahan 
sokongan enzim, difungsikan dan diubahsuai dengan selenium (Se) nanopartikel (SNs) 
yang kemudiannya direka menjadi biosensor. MCM-41 telah disintesis dan dicirikan 
untuk menganalisis struktur, morfologi, unsur dan ciri-ciri fizikokimia. MCM-41 yang 
telah disintesis disahkan mempunyai ketulenan yang tinggi dan luas permukaan yang 
besar. MCM-41 yang asli dan tidak diubahsuai tidak sesuai sebagai bahan sokongan 
enzim kerana ianya tidak dapat menyediakan tapak yang diperlukan untuk sokongan 
enzim tersebut. Oleh itu, dua jenis MCM-41 telah dihasilkan: f-MCM-41 dan f-Se-
MCM-41. Yang pertama, f-MCM-41 telah diubahsuai bagi pergerakan GOx 

menunjukkan larut lesap enzim yang minimum apabila difungsikan dengan kumpulan 
amino menggunakan 3-aminopropil trietoksisilana (APTES), diikuti oleh pelekatan 
kumpulan aldehid menggunakan glutaraldehid. Kedua, f-SeMCM-41, difungsikan seperti 
di atas tetapi dengan pengubahsuaian selanjutnya melalui penggabungan SNs ke dalam 
rangka kerja silikat untuk meningkatkan kepekaan dan kekonduksian elektrik bagi tindak 
balas yang lebih baik. Kemudian, produk telah difungsikan dengan glutaraldehid. SNs 
telah berjaya disintesis dengan menggunakan kaedah yang mudah, kos yang efektif dan 
tidak berbahaya di mana asid selenious telah diturunkan dengan menggunakan asid 
askorbik, diultrasonik dan disimpan di tempat gelap selama 24 jam. Pencirian 
menunjukkan bahawa SNs jenis kristal heksagon dengan ketulenan yang tinggi melebihi 
95.0% telah dihasilkan. Proses penggabungan SNs ke MCM-41 tidak mengubah struktur 
MCM-41 atau SNs seperti yang ditunjukkan oleh Pembelauan sinar-X (XRD). Ia 
mendapati bahawa GOx-f-Se-MCM-41 adalah lebih berkesan daripada GOx-f-MCM-41 
seperti yang dihitung oleh aktiviti spesifik GOx yang dinyahgerak ke atas bahan 
sokongan ini. pH optimum untuk pergerakan GOx ke atas kedua-dua MCM-41 atau Se-
MCM-41 difungsi telah ditetapkan pada pH 6.0 dan kepekatan awal GOx optimum 
adalah 2.0 mg/mL. GOx-f-MCM-41 dan GOx-f-Se-MCM-41 telah digunakan dalam 
fabrikasi elektrod pasta karbon (CPE) dan kecekapannya dikaji. Elektrod GOx-f-Se-
MCM-41/CPE adalah lebih peka dan berkesan berbanding GOx-f-MCM-41/CPE 
elektrod, seperti yang dianalisis dengan menggunakan voltammetri kitaran. GOx-f-Se-
MCM-41/CPE boleh mengesan glukosa yang sangat rendah antara 3.69 µM ke 16.25 
µM. Paras glukosa manusia normal adalah di antara 3.3-3.8 mM tetapi biosensor ini 
dapat mengesan pada tahap yang lebih rendah menjadikannya biosensor yang sangat 
baik untuk kegunaan klinikal dan industri. Oleh itu, MCM-41 sokongan yang baru 
dibangunkan telah difungsikan dengan GOx dinyahgerakkan dengan Se terlekat padanya, 
GOx-f-Se-MCM-41/CPE, berpotensi untuk dieksploitasi sebagai biosensor glukosa. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Diabetes is one of the critical diseases that are characterized by elevated 

glucose levels because the body cannot produce sufficient insulin or the insulin 

becomes resistant in regulating glucose. Worldwide, diabetes is a serious public 

health problem that will impact health care financing (Vinicor, 1998; Narayan et al., 

2000; Zhang et al., 2010). Several Western countries reported that diabetic patients 

have increased their medical expenditure compared to individuals without diabetes 

from the severe macrovascular and microvascular complications associated with 

diabetes (Rubin et al., 1994; Kangas et al., 1996; Selby et al., 1997; Brown et al., 

1999; Oliva et al., 2004). 

 

Latest data reported by the American Diabetes Association (ADA) mention 

that in the United States, 17 million people or 6.2% of the population were diagnosed 

as diabetic with 35% (5.9 millions) of these cases undiagnosed. Each year about 

12,000 to 24,000 new cases of adult blindness caused by diabetes were recorded. In 

1999, more than 114,000 cases of diabetes-related dialysis or transplantation that 

refers to end-stage renal disease were recorded. While between 1997 and 1999, 

82,000 of diabetes-related amputations were recorded as non-traumatic lower 

extremity amputation (Hirsch, 2002).  

 

In 1995, the number of adults with diabetes was around 135 million and this 

figure will rise to 300 million in the year 2025. This number, along with the 
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discovery of a million new cases yearly makes diabetes one of the most important 

national health issues that we must consider as serious  and  it is getting worse in 

developing countries because diabetes rates are increasing faster and is expected to 

increase 170% from 1995 to 2025 (King et al., 1998). This problem lies in our 

lifestyle today as a result of poor nutrition intake and a sedentary lifestyle.  

 

The inability of the body to control blood glucose levels can lead to acute and 

chronic complications. Hypoglycemia is a condition where blood glucose (glycemia) 

level rapidly drops to the lowest level causing mental confusion, convulsions and 

leading to coma or death. Chronically increased levels of glucose in the blood 

(chronic hyperglycemia) and an abnormally high level of proteins covalently bind 

with glucose (glycation or glycosylation) contributing to long-term microvascular 

and macrovascular complications (Lieberman and Marks, 2009). 

 

Biosensor systems were used to detect many biological compounds especially 

in the field of biotechnology based on enzyme-substrate interactions. One of the 

applications of biosensor was to determine the levels of glucose in human body using 

glucose biosensor. Many researchers have developed new biosensors in order to 

increase sensitivity. Recently, the most popular biosensors reported are those 

employing redox enzyme coupled with amperometric detection because this method 

has the advantages of being more stable, inexpensive, simple to operate, disposable 

and suitable for real time detection (Chen et al., 2002; Mitala Jr and Michael, 2006; 

Dai et al., 2007; Sun et al., 2007). Amperometric biosensors possess linear 

concentration dependence and measure changes in the current on the working 

electrode due to the direct oxidation of the products of a biochemical reaction in 

direct or indirect system. One of the key factors in the building of a reliable 

biosensor is the development of better techniques for immobilization of enzymes. 

Thus, new immobilization methods and supports are highly desired to improve the 

analytical capacities of sensor devices to enhance the properties such as reusability, 

operational stability, recovery and self life (Arai et al., 2006; Jena and Raj, 2006; 

Park et al., 2006; Shen et al., 2007; Yogeswaran and Chen, 2008; Chen et al., 2009; 

Vidotti et al., 2011). 
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Electrochemical sensors have improved the performance of the conventional 

analytical tools, eliminated slow preparation, reduced the uses of expensive reagents 

and provided low cost analytical tools. Electrochemical sensors have certain 

advantages over the conventional analytical instruments such as inexpensive, 

portable and simple to operate. On the other hand, they also have some limitations 

where there are electrochemically active interferences in the sample, weak long-term 

stability and troublesome electron transfer pathways. However, electrochemical 

sensors were always applied in clinical diagnosis, environmental monitoring and 

food analysis.   

 

Selenium nanoparticles (SNs) exhibit not only photoelectric, semiconductor 

and X-ray sensing properties, but also biological activity and good adsorptive ability 

due to their interaction between the SNs and N-H, C=O, COO- and CN- groups of 

the protein (Smith, and Cheatham, 1980; Ohara et al., 1997; Gao et al., 2002; Zhang 

et al., 2008; Barnaby et al., 2010). Hence, the SNs can be easily attached to support 

or enzyme and can function as a sensor that provide good amperometric signal. 

Many researchers have studied and synthesized stable SNs in polymer matrices 

(Kopeikin et al., 2003a, b; Zhang et al., 2007) and polysacchrides (Gao et al., 2002; 

Zhang et al., 2004a) such as chitosan (Zhang et al., 2004b). MCM-41 have been 

found to be an exciting candidate as support for SNs compared to polymer and 

polysaccharides because of their uniform and adjustable pore size, defined pore and 

cage system, high surface area, shape and charge selectivity, high thermal stability, 

resistance to biodegradation and opened pore structures.  

 

Glucose oxidase (GOx) is a flavoprotein which catalyzes the oxidation of β-

D-glucose by molecular oxygen to δ-gluconolactone, which subsequently 

spontaneously hydrolyzes to gluconic acid and hydrogen peroxide (Arica and 

Hasirci, 1993; Zoldak et al., 2004). 

 
 

       β-D-glucose  +  H2O  +  O2                D-gluconic acid  + H2O2           Equation 1.1 

 

H2O2   
catalase     ½ O2 + 2 H2O              Equation 1.2 

 
 

GOx 
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Industrially, it is used in the removal of glucose or oxygen from food 

products and also applied in the production of gluconic acid (Szajani et al., 1987; 

Ekinci et al., 2007). The most important application of glucose oxidase was as a 

molecular diagnostic tool. The enzyme was used in biosensors for the quantitative 

determination of D-glucose in samples such as body fluids, foodstuffs, beverages, 

and fermentation products (Zoldak et al., 2004). When it is applied in the 

voltammetry technique as a biosensor, the reaction of glucose oxidase at electrode is 

shown in Equation 1.3 and 1.4. 

 
 
        Glucose + O2            H2O2 + Gluconic Acid            Equation 1.3 

 

H2O2   
Electrode     2e- + O2 + 2 H+   Equation 1.4 

 

 

 

 

1.2 Problem Statements 

 

 

Concern about health and nutrition problems is worldwide, and the detection 

of glucose by glucose biosensor has attracted a high degree of interest especially 

amongst diabetics. There are many types of glucose biosensors in the market but it is 

mostly too expensive. Thus, the development of a new glucose biosensor with better 

accuracy, high sensitivity and lower cost are needed. Today, mesoporous materials 

such as MCM-41, MCM-48, MCF and SBA-15 have received much attention 

because of their wide use in many absorbent and catalytic reactions. In addition, 

mesoporous materials are easy to synthesize. But mesoporous materials have their 

limitation in that they lack active sites for bonding with enzyme. They have to be 

modified to make their surface more conducive for enzyme attachment. In order to 

make these materials as potentially better catalysts, incorporation of metal centers 

such as Al, V, Fe and Mn in the silicate framework are necessary (Ozyilmaz et al., 

2005). 

 

Selenium nanoparticles (SNs) was chosen not only by their unique 

photoelectric, semiconducting and X-ray-sensing properties but also for its biological 

activity and good adsorptive ability due to the interactions between the SNs and NH, 

GOx 
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C=O, COO- and C-N groups of the proteins (Smith and Cheatham, 1980; Ohara et 

al., 1997; Gao et al., 2002; Zhang et al., 2008; Barnaby et al., 2010). So, it can be 

used as a new rectifier for the component of redox enzymes based on biosensors 

(Zhang et al., 2004b) hence chosen in the development of a more sensitive glucose 

biosensor 

 

 

 

 

1.3 Objectives of Study 

 

 

The objectives of this work are as follows: 

 

i. To synthesize and characterize MCM-41 and selenium nanoparticles 

(SNs).  

ii. To modify MCM-41 with the incorporation of SNs into MCM-41 in the 

presence of amino group and its characterization.  

iii. To functionalize MCM-41 and Se-MCM-41 with amino group followed 

by aldehyde groups and their characterization.  

iv. To optimize the immobilization of glucose oxidase enzyme (GOx) onto 

functionalized MCM-41 and Se-MCM-41.  

v. To study the electrochemical properties of the GOx-f-MCM-41 and GOx-

f-Se-MCM-41 as glucose biosensor.  

 
 
 
 
1.4 Scope of Study 

 

 

The scope of study covers the synthesis of MCM-41 and SNs, followed by 

the modification of MCM-41 with SNs in the presence of amino group (Se-MCM-

41) followed by functionalization with aldehyde group (f-Se-MCM-41). In order to 

make comparison, MCM-41 was also functionalized with amino group followed by 

the aldehyde group. The characterization of its structural and chemical characteristics 

of MCM-41, SNs, Se-MCM-41 and functionalized MCM-41 (f-MCM-41) and Se-

MCM-41 (f-Se-MCM-41) were investigated. The optimum conditions for the 
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immobilization of GOx enzyme onto f-MCM-41 and f-Se-MCM-41 were 

investigated. The specific activity and percentage of GOx bound onto f-MCM-41 

(GOx-f-MCM-41) and f-Se-MCM-41 (GOx-f-Se-MCM-41) were determined. Then, 

the GOx-f-MCM-41 and GOx-f-Se-MCM-41 were applied as the working electrode in 

the electrochemical analysis (voltammetry) to determine which of these two types of 

electrode was suitable and feasible for the development of glucose biosensor. 

Particular attentions were given on the scope of electrochemical analysis which were 

focused to differential pulse sweep and cyclic voltammetry analysis.  

 
 
 
 
1.5 Significance of Study 

 

 
Glucose analysis is very important in food industry for quality control 

purposes, fermentation and most importantly in clinics and hospitals for diagnosing 

diabetic patients using glucose biosensor. This method usually involves an enzyme 

which is very specific for glucose and is not easily interfered by other sugars present. 

Due to its high selectivity towards ß–D-glucose, the enzymatic method for glucose 

determination employs the use of glucose oxidase (GOx). It is one of the most robust 

enzymes which can withstand extreme pH, ionic strength and temperature compared 

with other enzymes. Thus, it allows less stringent conditions during the 

manufacturing process and also provides relatively care-free storage which makes it 

more suitable for the glucose biosensors especially for home-users.  

 

This work also deals with the modification of MCM-41 with SNs to 

investigate the development of a better working electrode in glucose biosensor 

compared to pristine MCM-41. The disadvantage of using pure mesoporous material 

for immobilization of enzymes is the absence of active sites in their matrices which 

limit the quantity of enzymes bound onto it. Besides that, incorporation of metal 

centers such as SNs in the silicate framework is necessary in order to increase the 

performance of glucose biosensor due to its semiconductor and antioxidant 

properties. With the incorporation of metal, Se-MCM-41 can be a suitable material 

for GOx loading as well as promote electron transfer between GOx and the 

electrodes.  
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