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ABSTRACT 
 
 
 
 

In this study, mercury contaminated carbon steels was prepared using droplet and 

physisorption methods. Various oxidants were applied to oxidize the mercury element and the 

oxidized mercury and the iron leaching were analyzed using Atomic Absorption Spectrometer 

(AAS) for data collections. The effect of oxidant system of KI/I2, peracetic acid, different conditions 

of experiment namely heating, stirring, left at room temperature, the presence of catalysts and the 

addition of imidazoline based corrosion inhibitor were investigated. The experiment revealed the 

oxidant system of 1H2O2:1CH3COOH (peracetic acid) ratio as the best to remove 96.43% 

physisorbed Hg and 96% droplet Hg from carbon steel surfaces under ambient temperature and 

soaking for 5 hours. The total iron leached detected under the optimum condition from used carbon 

steel contaminated with physisorp Hg and droplet Hg were 21.45 ppm and 22.98 ppm respectively. 

Interestingly, the presence of Ru/Mn (25:75)/Al2O3 catalyst calcined at 1000°C with peracetic acid 

as oxidant could further remove 99% of Hg for CS-physisorbed-Hg and 98.71% for CS-droplet-Hg 

resulting in 19.71 ppm and 19.62 ppm respectively iron leached in 3 hours. FESEM illustrated the 

catalyst surface is covered with small and dispersed particles with undefined shape. From FESEM-

EDX analysis, Mn species were detected in all the catalysts tested. The X-Ray Diffraction (XRD) 

analysis revealed that the catalyst is crystalline and Mn species is believed to be the active species 

for the catalysts. Nitrogen Gas Adsorption (NA) analysis showed that both fresh and spent catalysts 

are of mesoporous material with Type IV isotherm and type H3 hysteresis loop. 
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ABSTRAK 
 
 
 
 

Dalam kajian ini, keluli karbon tercemar merkuri telah disediakan menggunakan teknik 

titisan dan fizijerapan. Berbagai bahan pengoksida diaplikasikan untuk mengoksida elemen merkuri 

dengan menggunakan sistem pengoksidaan KI/I2 dan asid perasetik. Kondisi eksperimen yang 

berbeza iaitu pemanasan, pengacauan, dibiarkan pada suhu bilik, dengan kehadiran pemangkin dan 

penambahan perencat kakisan berasaskan imidazolin juga dikaji. Merkuri yang teroksida dan ferum 

terlarut telah dianalisa menggunakan Spektroskopi Serapan Atom (AAS) untuk pengumpulan data. 

Eksperimen membuktikan bahawa sistem pengoksidaan 1H2O2:1CH3COOH (asid perasetik) adalah 

yang terbaik untuk menyingkirkan 96.43% Hg-fizijerapan dan 96% Hg-titisan daripada permukaan 

karbon keluli pada suhu bilik dan direndam selama 5 jam. Ferum terlarut bagi Hg-fizijerapan adalah 

21.45 ppm dan 22.98 ppm bagi Hg-titisan. Menariknya, kehadiran mangkin Ru/Mn (25:75)/Al2O3 

yang telah dikalsinkan pada suhu 1000°C dengan asid perasetik sebagai bahan pengoksida boleh 

menyingkirkan 99% Hg bagi Hg-fizijerapan manakala bagi Hg-titisan adalah 98.71% dengan ferum 

terlarut sebanyak 19.71 ppm dan 19.62 ppm selama 3 jam. Mikroskop Pengimbas Elektron Emisi 

Medan (FESEM) menunjukkan permukaan pemangkin diselaputi dengan zarah-zarah halus yang 

mempunyai bentuk yang pelbagai. Daripada analisis Spektroskopi Sinar-X Penyebar Tenaga (EDX) 

spesis Mn telah dikesan bagi semua mangkin yang telah diuji. Analisis Pembelauan Sinar-X (XRD) 

pula menunjukkan mangkin adalah dalam bentuk kristal dan spesis Mn adalah spesis aktif bagi 

mangkin-mangkin tersebut. Penyerapan Nitrogen (NA) menunjukkan mangkin yang baru dan yang 

telah digunakan masing-masing mempunyai ciri bahan mesoporous dan Isotherm Jenis IV juga 

histerisis lengkokkan H3.   
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 

 
1.1 History of Mercury 
 
 
 Mercury concentrations in natural gas can range from below 1 ng m-3 to 

greater than 1000 μg m-3 depending on the location, the well or the process and is 

measured using amalgamation atomic fluorescence spectrometry. Mercury is of great 

concern receiving a major focus due to its unique high toxicity, volatility, and 

persistence in the environment and easiness of bioaccumulation. Organic forms of 

mercury are more toxic than inorganic forms, but it is possible for inorganic mercury 

to be biologically methylated. Methyl mercury has high affinities for fatty tissues in 

organisms and can accumulate through food chain to higher toxic levels within those 

organisms. Therefore, it is important to have a strict control on inorganic mercury 

leaching from mercury-containing wastes (Jian et al., 2002). 

 
 

 Elemental mercury (Hg°), although is a metal, at normal temperatures, it is in 

liquid form. Thus, because of this unique property, plus its high specific gravity and 

electrical conductivity, has brought about its various types of laboratory equipment 

and instruments extensive use in the industries. The elemental mercury is also 

extremely dense which is 13.5 times denser than liquid water under ambient 

conditions. This high density, low saturation vapor and high surface tension control 
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the immediate behavior of the releasing of elemental mercury on land surface 

(Turner, 1992).  

 
 

 Mercury can exist in three oxidation states, which is Hg° (metallic), Hg2
2+ 

(mercurous) and Hg2+ (mercuric). These oxidation states will determine the 

properties and behavior of the mercury. Mercury (Hg), is one of the most toxic heavy 

metals commonly found in the global environment including lithosphere, 

hydrosphere, atmosphere and biosphere. Cycle of three-oxidation states of Hg to the 

environment is allowed by a series of complex chemical transformations allows. 

Most of the Hg encountered in all environmental media (water/soil/sediments/biota) 

is in the form of inorganic mercuric salts and organomercurics, with the sole 

exception of atmosphere. The mercuric salts HgCl2, Hg(OH)2 and HgS are the 

prevalent forms existing in the environment and CH3HgCl and CH3HgOH are main 

forms of organic compounds, together with other organomercurics (eg: 

dimethylmercury and phenylmercury) existing in small fractions (USEPA, 1997)  

 
 
 
 
1.2 Mercury Flow through Petroleum and its Scenario to Environment 
 
 
 The mercury from industries and power plants is emitted primarily as 

mercury vapour. This vapor consists mainly of elemental mercury and dimethyl 

mercury. It is difficult to say which volatile compound dominates the discharge 

process. Mercury species other than elemental Hg and (CH3)2Hg can also contribute. 

Most mercury is emitted as dimethyl mercury with a relatively fast degradation to 

elemental mercury taking place in the air. Hg (O) is mobilized to the atmosphere 

where it is subjected to atmospheric oxidation processes to yield water soluble forms, 

subsequently scavenged by wet or dry deposition (Elisabeth et al., 2000).. 

 
 

Petroleum products carry mercury from a geological reservoir and distribute 

mercury to the environment along their passage. This section describes the flow and 

trend of mercury as carried by petroleum products. More work with the more 
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sensitive analytical methods developed in the past few years should be performed to 

confirm these numbers. 

 
 

Crude petroleum is identified to contain small but measurable amounts of 

mercury. About 16 to 18 million barrels (672 to 756 million gallons) of crude oil are 

consumed daily in the United States. At an average concentration of 0.41 ppm 

mercury and an average density for crude oil of 6.9 lbs per gallon, the lowest total 

amount of mercury vaporized daily is therefore 1,901 lbs. This value represents an 

annual discharge of 347 tons of mercury nationwide, assuming that all of the oil is 

combusted. As very large volumes of oil consumed, even a small concentration of 

mercury clearly represents a major source of atmospheric deposition of mercury. 

 
 

 Some natural gas regulators made before 1961 contained Hg°, which was 

sometimes spilled when the regulators were removed. After a large Hg° spill, the 

hazard can persist for a long time. In the case of natural gas regulator spills, 

monitoring found elevated airborne Hg0 > 10 years after it was spilled. Spilled Hg0 

forms small beads, which spread, making a thorough cleanup difficult. 

 
 
 
 
1.3 Techniques of mercury removal 
 
 

Chemical leaching where the chemical separation is based upon the reactivity 

of mercury and employs solution leaching of the mercury-contaminated materials 

can do removal of mercury from metal surfaces. Solution leaching may be used to 

remove both elemental and inorganic forms of mercury. Most common used leaching 

solutions are the oxidizing acids such as nitric acid, hypochlorous acid and sulfuric 

acid. These oxidizing acids are used because of their ability to readily dissolve 

elemental and inorganic mercury (Foust, 1993). Preferred oxidizing agents are those, 

which are characterized as being mild, and which do not react with any of the solid 

material to form oxidation products, which complicate separation contamination of 

the solid material. In this case, iodine is a most preferred oxidant. 
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Removal of mercury from solid waste can be conducted by using a lixiviant 

consisting an aqueous solution of potassium iodide/iodine (KI/I2) (Ebadian, 2011a). 

Mercury in contaminated solid wastes in the form of oxides, sulfides, elemental, and 

adsorbed phases is mobilized by the KI/I2 lixiviant through oxidation and complex-

forming reactions. Iodine, which is an oxidizing agent, is capable to oxidize various 

species of mercury including elemental mercury to mercuric iodide. While potassium 

iodide is a complexing agent, thus it can react with mercuric iodide to form a water-

soluble compound, which has the formula of K2HgI4. 

 
 

 In addition, in order to increase mercury solubility for absorption, oxidizers 

such as sodium hypochlorite and hypochlorous acid have been applied to transform 

insoluble Hgº to very soluble Hg2+ which can then be easily moved through aqueous 

scrubbing (Zhao et. al, 2008a). Elemental mercury absorption in hypochlorous acid 

was found to be much more reactive than hypochlorite but the mercury removal 

reactivity of hypochlorite increased in the presence of sodium or potassium chloride 

and potassium hypochlorite was found to be more reactive than sodium hypochlorite 

(Zhao et. al, 2008b and Lynn et. al, 1999). NaOCl strongly absorbs elemental Hg 

vapor even at high pH. At low pH, high concentrations of chlorine- and high 

temperature favor mercury absorption. 

 
 

  One of the most established approches on removing mercury from 

wastewater is precipitation and coagulation/co-precipitation technology (Ebadian, 

2001b). Sulfide is added to the waste stream to convert the soluble mercury to the 

relatively insoluble mercury sulfide form: 

 
 

Hg2+ 
(aq) + S2- (aq)               HgS (s)              (1.0) 

 
 
 The process usually combined with pH adjustment and flocculation, followed 

by solid separation. The sulfide precipitant is added to the wastewater in a stirred 

reaction vessel, where the soluble mercury is precipitated as mercury sulfide. The 

precipitated solids can be removed by gravity settling in a clarifier. Sulfide 

precipitation can achieve 99% removal for initial mercury levels excees of 10 mg/L 
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(Patterson, 1985). Approximately 10 to 100 µg/L are the lowest achievable effluent 

mercury concentration that appeared for various initial concentrations even with 

polishing treatment such as filtration. Sulfide precipitation appears to be the common 

practice for mercury control in many chlor-alkali plants. A 95 to 99.9% of removal 

efficiencies were reported well-designed and managed mercury treatment systems 

(Perry, 1974). 

 
 
 Numerous studies have been conducted on the mercury removal from 

aqueous medium but the most preferable technique is to use photocatalyst. 

Photocatalytic processes use electron-hole pairs photogenerated in semiconductors to 

promote redox reactions. The photocatalytic treatment for mercury (II) produces 

metallic mercury that deposits on the photocatalysts (Aguado et. al, 1995). 

 
 
 
 
1.4 Problem Statement 
 
 

 Crude oil and unprocessed gas condensate can contain significant amount of 

mercury. Elemental mercury Hg0 is independently quantified as volatile species 

evaporated from a single crude oil using selective trapping. Steel sorbs mercury in 

considerable quantity. Hg0 both adsorbs and chemisorps to metal surfaces.  

 
 

 Mercury is common and naturally occurring component of petroleum. 

Petroleum processing often is accompanied by generation waste streams contain 

some mercury. These waste streams become problematic when the mercury 

concentration in process feeds exceeds a few ppb because of the highly toxic nature 

of mercury. 

 
 

In gas processing, mercury damages equipment and fouls cryogenic 

exchangers. Pipelines that carry fluids that contain mercury can become 

contaminated over time and thus require special attention. The interactions of 

mercury with pipe surfaces affect worker health and safety strategies and impacts 
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operational procedures. Therefore, the wastes that contain mercury must be disposed 

in safe manner so that the world will not be a dangerous place to live for another 

generations (Wilhelm, 1999). 

 
 

There are few solution used in industry to solve mercury metal presence on 

material surface, mostly by using inorganic acid, but it reacts with the metal surface 

and became corrode. Recently, technologies claimed lixiviant chemical is potential to 

remove mercury from metal surfaces, but it reacts with the material for example, 

carbon steel. The critical successfulness of the technique should be no or acceptable 

reaction towards the material surface, instead reacts with Hg metal. Thus, this 

research is proposed to suggest the most effective way to treat mercury on metal 

surfaces so that it can be used in the industry. 

 
 
 
 

1.5 Significance of Study 
 
 

In this research, peracetic acid with the addition of a potential catalyst can be 

used to enhance the removal of elemental Hg presence on the metal surfaces.  

 
 

The removal technique via this oxidant and catalyst can remove elemental 

mercury that is hazardous to the environment. This will help to prevent mercury, 

which has been known to be causing serious impact on human health, animals, plants 

and also the environment. Mercury was found to produce several impacts on gas 

processing production. These includes, it forms amalgams with several metals, 

particularly carbon steel, which leads to LME. This is prevelant in pipeline welds, 

cryogenic components, heat exchangers and hydrogenation catalysts. Besides, it may 

be necessary to avoid the corrosion and clogging to the delivery pipeline. This 

cleaning method will certainly improve the quality and quantity of Malaysian oil 

manufacturing company. The utmost important, the oxidant and potential catalyst 

will contribute to the growth of the national economy and create green and 

sustainable environment. This proposed technique enables to conduct treatment of 

elemental mercury in the internal pipeline system. 
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The oxidant and the catalyst are easily prepared and environmental friendly. 

All the ingredients in the fabrication of both oxidant and catalyst are easily available, 

cheap and stable. It requires minimum modification to the already existing system 

and offers cost effective operating system. 

 
 
 
 
1.6 Objective of Study  
 
 

The objectives of this research are: 

1. To develop the oxidizing agent, potential for the treatment of mercury metal 

presence on metal surface 

2. To test the catalytic activity of the prepared catalyst for elemental mercury 

removal from metal surfaces 

3. To optimize the catalytic oxidative reaction for elemental mercury removal 

3. To characterize the prepared catalysts utilizing various analytical techniques 

 
 
 
 
1.7 Scope of Research 
 
 

 The removal of mercury from metal surfaces will be done using five different 

types of oxidizing agents, which are iodine/iodide lixiviant (KI/I2), sodium 

hypochlorite (NaOCl), diperacetic acid (di-PAA), peracetic acid (PAA), and tert-

butylhydroperoxide (TBHP). Next, a series of alumina-supported catalyst based on 

ruthenium oxide doped with noble metal were prepared using wetness impregnation 

techniques. Meanwhile, adding the prepared catalysts to the oxidants carried out 

catalytic testing. Carbon steel physisorbed Hg (CS-physisorbed-Hg) and Carbon steel 

droplet Hg(CS-droplet-Hg) will be used in this experiment. The batch experiments 

will be carried out in a 100 ml glass beaker. Then, the samples that contain mercury 

will be analyzed using Mercury-Hydride System, Atomic Absorption Spectroscopy 
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(MHS-AAS) as the quantitative analytical method to determine the level of mercury 

after the treatment of the samples. Lastly, characterization of the catalysts will be 

carried out by various techniques including X-Ray Diffraction (XRD), Field 

Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Ray 

Analysis (EDX). 
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