
An Equijoin-Optimization Technique For
Malaysian Hydrological Information System (MHIS) Data

Norazrin Kurmin, Harihodin Selamat, Mohd Taib Wahid, Mohd Shafry Mohd Rahim

Faculty of Computer Science and Information System
Universiti Teknologi Malaysia,

81310 Skudai, Johor.
E-mail : azrin@siswa.utm.my, harihodn@itp.utm.my, taib@fsksm.utm.my, shafry@fsksm.utm.my

ABSTRACT

Malaysian Hydrological Information System (MHIS) is one of the GIS applications that storing a large
amount of data (such as rainfall, water level, evaporation and water quality). In such situation, it is important to
ensure that the storage, retrieval and manipulation of these data are efficiently handled. However, the problem in
MHIS is inefficient on retrieval data where it takes a long time to retrieve data. MHIS was developed based on
cube system concept. The main objective introduced the cube system is to describe how the hydrology data will
be store and retrieve in relational database. However, it is still lacking to handle a large amount of data. Thus,
this paper proposed an Equijoin Optimization Technique to solve that problem. This technique was introduced
based on modification of an equijoin method where an entity will be joined based on equijoin algorithm. In
other words, the result relation is a new entity, T, contains tuples t made up of two tuples r and s, where r must
be tuple in entity R and s must be tuple in entity S. Then, there are entity will be classified to other entity based
on the appropriate attribute. Based on this technique, a SQL statement was created for data retrieval processing
which is referring to the optimized entity. There are four main function in that process i) Select ii) Initialize iii)
Operation and iv) Output. Also, in this research, testing and comparison analysis has been done between
proposed technique, an Equijoin optimization and the previous technique MHIS Cube System. The result of the
testing shows that the proposed technique can improve an execution time for query processing, then solve the
issue has been discussed on this research.

KEY WORDS
Temporal data, hydrology data, database, join, retrieval, query optimization.

1. Introduction

An effective system for information
system and analysis is becoming more important
with the continuous and rapid growth of source and
user information. With the rapid growing, “click”
becoming more powerful, the world becoming a
global village and we living in the information age.
This phenomenon is motivated into finding out
ways to achieve the faster response time for query
processing in a database.

A database system is a collection of

information, organized and presented to serve a
specific purpose, where a database management
system (DBMS) is the software that manages the
database system. The information and data are
stored in the database based on certain rules, which
assure that they can be efficiently retrieved and
modified. However, in such application, there is
need to handle temporal data which time period
attached to the data. For example, hydrology data
constitutes of past, present and future state data. As
the amounts become larger, this kind of database
requires more complex of handling and processing
data. Based on the literature review, the main issue

that received big attention among the researchers is
on data retrieval, which is low response time for
data retrieval. Based on the literature review, query
optimization is one of the techniques that can solve
that problem [3, 4, 5, 6]. Its goal is to achieve
efficient processing of user queries that retrieve
data from an often very large database.

2. Temporal Data

For some application such as hydrological
information system (HIS), time is an important
element to be stored. It is a measurement that
records history in a human life[1]. All the changes
must be recorded, that is may be uses for analysis
and forecasting. Data analysis can be more efficient
with take into account the time element. Any
information having a time component known as
temporal data and can be represented in a general
way in a temporal database. Temporal data stored
in temporal database is different from the data
stored in non temporal database in that a time
period attached to the data.

Proceedings of the Postgraduate Annual Research Seminar 2005 82

2.1 Case Study : Malaysian Hydrological
Information System (MHIS) Database

2.1.1 Hydrology Data

In general, Jabatan Pengairan dan Saliran
(JPS) is responsible to handle hydrology data in
Malaysia. JPS is responsible to manage, retrieve
and analysis hydrology data includes rainfall data,
water level data, water quality data, evaporation
and water sediment data. A large database is
needed to store these data properly so that analysis
management and report representation can be
efficient and precise regarding to user
requirement[2].

2.1.2 Cube System Concept

Malaysian Hydrological Information
System (MHIS) was developed based on cube
system concept. The main objective introduced the
cube system is to describes how the hydrology data
will be store and retrieve in relational database.
There are three main coordinate: Feature Identity
(FID), Attribute Identity (DID) and Date and Time
(TID). These coordinates are use to determine the
data that stored in the database. FID refers to data
value that had measured or value key for spatial
data. DID refers to key that describes about FID that
is key for spatial data that had taken. TID is a key
for the time the data is taken. These features will be
referred when accessed data from the database.
Figure 1 describes the logical view of cube system.

Figure 1: Cube System Logical View

This system was implemented using two different
database system; Informix RDBMS and ArcInfo.
Informix RDBMS is used for storing attribute data
or non spatial data, then, ArcInfo is used for storing
spatial data. This technique is lacking to handle a
large amount of data.

3. Related Work (Optimization
Technique)

There has been extensive work in query

optimization and many algorithms have been
developed using join method such as semijoin, two
way semijoin, and composite semi join. The join
operation is one of the fundamental relational
database query operations. In 1983[7], Aper,
Hevner and Yao proposed an optimization
algorithm called Algorithm General (AHY
algorithm), which mainly focused on minimize
response time. It was developed using semijoin
method. This algorithm provides a very efficient
execution for simple queries. However, one
important drawback of AHY algorithm is that static
in nature. It means that once a query plan has been
made, there is no way to change the plan. It strictly
follows a given pattern and provides the response
based on the plan.

 Lubna Sachawani[8] proposed a JAL
dynamic algorithm which is an enhancement of
AHY algorithm. It makes query processing
dynamic. The JAL dynamic algorithm modifies the
AHY algorithm by making use of the profit
concept. Also, like AHY algorithm, this algorithm
was developed based on semi-join method. It is use
this method as a relation reducer in database.

Other techniques to reduce query response
time have also been proposed such as Jing Chen[5]
proposed an optimization technique using
histogram-based method. It was using an equijoin
method to join two relations that has same attribute
value, then implement it using histogram-based
algorithm, Averaged R-ACM and T-ACM to
improve the query processing execution.

(DID) (FID)

4. An Equi-Join Optimization
Technique

An EQ-Optimization technique was
developed based on enhancement of equijoin
method. In this technique, there is an entity will be
join, then produce a new relation (Figure 2 (a)). In
other words, assume a new entity, T, the result
entity contains tuple t made up of two parts, r and s
where r must be tuple in entity R and s must be
tuple in entity S. In each tuple t, the value of the
attributes is an identical value of r and s.

(TID)

Then, an enhancement from an equijoin

method is classified an entity into several entity
based on appropriate attribute (Figure 2(b)). The
main objective is to reduce a number of tuple for
that entity, then can improve the response time
where it’s only refer to the related entity. In

Proceedings of the Postgraduate Annual Research Seminar 2005 83

general, Figure 2 describes the design of the Equi-
join Optimization technique.

Next, query processing phase was

executed based on the optimization technique
above. There are four main function includes i)
Select ii) Initialize iii) Operation and
iv) Output.

Figure 2 : An Equi-join Optimization Technique

4.1 Design of Equi-join Optimization

Technique.

There are many optimization design was
proposed based on a set of rules or heuristics where
it intended to produce query execution with low
cost such as execution time or memory usage[9,
10]. Hence, Equi-join Optimization was produced
based on set rules as following:

i. Eliminate redundant.
ii. Combine entity into one.
iii. Classify entity into several entities

based on appropriate attributes.

4.1.1 Eliminate Redundant Attribute

In this rule, redundant attribute will be
eliminated for the joined attribute. It means,
attribute that has same value for the joined attribute
will be eliminated and place that value in a new
entity. In simplest, this rule can represent as
following:

{ r’ = r1 ∩ r2 | r1 ∈ R1, r2 ∈ R2 , r’∈R’}
 Entiti_S

Att_1
Att_2
.
.
Att_n

Entiti_R

Att_1
Att_2
.
.
Att_n

From that equation, we can describe that R’ is a
new entity, the value r’ is an intersection of r1 and
r2 where r1 and r2, is a subset of R1 and R2
respectively. The main objective of this rule is to
collect the same attribute into one entity. It also can
reduce redundant information and reduce response
time for retrieve data from database. r(a) = s(b)

 Equijoin

4.1.2 Combine Entity Into One

Based on this rule, there has entity will be
joined and placed a result of join into a new entity.
The value of attribute for a new entity is an
attribute value that gets from rule (i) as describes
above. For proposed technique, equality operator is
used as a comparison operator. This rule can be
defined as following:

T = R

Where R’ is a new entity, result of join R1 and R2
that has same attribute value r1(a)=r2(b). Also, main
objective of this rule is to reduce response time,
entity and relation between entities. Data retrieval
processing can be efficiently, where it’s only refer
to one entity compared from previous, needs to
refer two or more entity.

4.1.3 Classify Entity Into Several Entities

Based On Appropriate Attribute.

Same as rule (i) and (ii), objective of this
rule is to make the retrieval process efficiently
handle. Entity has to classify into several entities
based on appropriate attributes.

4.1.4 An Equi-join Optimization Algorithm

In general, all the rules have discussed
above can be represented with the following
equation:

R’ ≡ (Rj ∪ Rj+1 | {r∑
=

n

i 1
ji=rj+1,i, rj,i+1=rj+1,i+1,......,rj,n= rj+1,n })

Where R’= new entity (result entity)
 Rj = entity that will be join; j = 1, 2, 3 ...n
 n = number of tuple

r(a)=s(b)S
Entiti_T

Att_1
Att_2
.
.
Att_n

Entiti_n

Att_1
Att_2
.
.
Att_n

Att_1i

Att_1i+1

Att_1i+2

Att_1n

Att_1i

Att_1
Att_2
.
.
Att_n

Att_1n

Att_1
Att_2
.
.
Att_n

(a)

(b)

R’ = R1 r1(a)=r2(b)R2

Proceedings of the Postgraduate Annual Research Seminar 2005 84

Based on that equation, the value of R’ is
a combination of value from Rj dan Rj+1. For each
tuple Rj dan Rj+1, attribute value for each entity (rj
and rj+1) will be compare using the equality
operation. Whenever the condition is satisfied, the
two tuples are concatenated and placed into a new
entity R’. Figure 3 is an algorithm for the Equi-join
Optimization technique.

Figure 3 : Table Optimization Algorithm
(Equi-join Optimization)

4.2 Query Implementation Process.

In this technique, query is refer as a set of
operation that processing and analyzing a set input
data, then produce required output. Figure 4 depicts
loops for query processing of this technique.

Figure 4 : Query Processing Loop

In above figure, data set can be classified
as an input (I) or output (O). Input is a data where
output is a data was produced from the execution
process. Select function (Step 1) will retrieve data
using Structured Query Language (SQL) statement
(qi), then assigned to Si. Next, several Operation
function (Step 5) will apply to a data set and
produced a required output (Step 6).

5. Conclusion

The proposed technique can be applied for
any database application that has many relations
with large amount of data. In this situation, user has
to determine an appropriate attribute for a join and
classification condition.

As a conclusion, we can say that join
processing and entity classification has been done
to make sure that response time for query
processing can be improved and data retrieval in a
database can be executed efficiently.

1. For each join entity, R1 and R2 , do
1.1 For each tuple R1, do

 a. For each tuple R2, do
 If attribute R1(a) = R2(b) then

concatenate R1 and R2
b. Place in new relation, R’

2. Create a variable number of entity
and set initialize, For example : number_of_entity=0

3. For each classify entity, R3, do
a. Assign the first value of tuple,t1, to

 an array variable,
i.e. array[number_of_entity] = t1

i. for each tuple,tn in R3 ,do
 if attribute R3(tn) = array[number_of_entity]

then eliminate tn
ii. Place tn in new relation Rt1

4. number_of_entity = number_of_entity + 1
5. Repeat step 3, 4 while number of tuple <> 0

6. Acknowledgements

This work has been done under research
grant projek IRPA RMK 8 Vot Number 74074 and
Vot Number 74134, which are sponsored by
Ministry of Science Technology and Innovation
(MOSTI). We would also like to thank the Faculcy
Science Computer and Information System
(FSKSM) and Research Management Center
(RMC) Universiti Teknologi Malaysia for the
management of the research and facilities.

7. References

[1] Mohd Shafry Mohd Rahim.” Spatial and Non
Spatial Enhancement Database for Hydrological
Information System (HIS)”. Master Thesis. UTM
Skudai, 2002.

[2] SMHB ITP (1999). “Establishment of
Hydrological Water Resources Planning,
Development and Management, Jabatan Pengairan
dan Saliran Malaysia, Kuala Lumpur, Technical
Report, Volume 1, 2, 3, 4.

(*Data Set *)
I Input ←
O Output ←
1. Si Select (I, q← i)

(*Initialize*)
2. for each Si do
3. Ij Initialize (S← i)

(*Process*)
4. for each Ij do
5. Pj Operation (I← j)
6. Oj ← Output (Pj)

[3] Shamkan B. N and Rafi Ahmed. “ Temporal
Extension to the Relational Model and SQL In:
Tansel et al. Temporal Databases : Theory, Design
and Implementation, eds. California: The
Benjamin/Cumming Publishing, Inc. 92-109;1993.

[4] Haraty R and Fany R. Distributed Query
Optimization using PERF Join. SAC’00 March 19-
21, 2000. Como, Italy:ACM.2000:284-288.

[5] Jing Chen, B.Cs. “On Utilizing New
Histogram-Based Methods for Query
Optimization”. Master Thesis, Carleton University,
2003.

[6] McMahan B.J. “Structural Heuristics for Query
Optimization”.Master Thesis. Rice University,
Houston, Texas, 2004.

Proceedings of the Postgraduate Annual Research Seminar 2005 85

[7] Alan R.H, Wu O Q and Yao S B (1985),
“Query Optimization on Local Area Networks”.
ACM Transaction on Office Information, 3910:35-
62.

[8] Lubna Sachwani. “Dynamic Techniques in
Distributed Query Optimzation”. Master Thesis.
University of Windsor, 2002.

[9] Christian M (2002). “A Survey of Database
Query Optimization and Genetic Algorithms”

[10] Slivinskas G et al (2001). Adaptable Query
Optimization and Evaluation in Temporal
Middleware

Proceedings of the Postgraduate Annual Research Seminar 2005 86

