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Abstract  
 
In query optimization, a query can be executed 
with different strategies, known as execution 
plan.  The query optimizer will determine the 
best execution plan for a single query.  However, 
when there are more than one query to be 
executed together, the locally optimal strategies 
for single queries may not be the best choice for 
obtaining a globally optimal execution cost.    
This will require for a multiple query optimizer 
that is able to select an alternative plan for each 
query in order to obtain an optimal global 
execution plan for the multiple queries.  An 
optimal global plan can be obtained in two ways, 
by using an admissible heuristic with the search 
algorithms or by decreasing the number of search 
space through reducing the number of alternative 
plans generated. In generating alternative plans, 
the number and quality of the alternative plans 
produced are the major factors that will 
determine the performance of multiple-query 
optimization.  In this paper, we propose the 
sharing opportunities for identifying the common 
sub-expressions.  
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Introduction 
 
One of the fundamental and important problems 
in the database field is query optimization.  In 

database applications, a set of queries may be 
submitted together to the system for evaluation.  
This set of queries is most likely to have some 
tasks that are common to every query in the set.  
These queries can be processed one at a time, 
however it is inefficient. To process these 
queries efficiently, the optimizer should try to 
take benefit of the common tasks existence.  
Multiple-query optimization is beneficial 
especially when there are many common tasks 
between the queries.  We can reduce the cost of 
executing these common tasks by executing 
these tasks only once, avoiding redundant disk 
accesses, and thus a considerable decrease in the 
execution time of the queries.  This thus 
becomes the goal of multiple-query optimization, 
i.e. to reduce the execution time of multiple 
queries with common tasks. 
 

The multiple-query optimization 
(MQO) problem has been studied in the database 
literature since 1980s. In general, the MQO 
problem can be divided in two phases [1]. The 
first phase is the process of constructing the 
search space for the optimizer, which will 
produce a set of alternative plans for each query 
in the query set, while the second phase is the 
process of selecting the most optimal plan from 
the alternative plans of each query in the query 
set.  In the first phase, there are two main 
processes involved.  The first process is to 
identify common tasks among for the queries in 
the query set.  Next, a set of alternative plans for 
each query in the query set is generated.  These 
plans will become the basis of the second phase.  
The result of the second phase is a single global 
execution plan for each query in the queries set.  
Figure 1 reflects the phases involved in MQO 
problem. 
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Figure 1.  Phases in MQO  

 
 

This paper is outlining our approach in 
solving the multiple-query optimization problem, 
and our focus is at the first phase, the alternative 
plan generator.  In multiple-query optimization, 
the alternative plans generated will be the 
content of the search space of the multiple-query 
optimizer.  The number of alternative plans 
generated will have an effect to the performance 
of the optimizer.  In this paper we will describe 
our approach in identifying the common tasks of 
the alternative plans (the notions of sharing.)   
 
 
Research Background 
 
In query optimization, a query can be executed 
with different strategies, known as execution 
plan.  The query optimizer will determine the 
best execution plan for a single query.  However, 
when there are more than one query to be 
executed together, the locally optimal strategies 
for single queries may not be the best choice for 
obtaining a globally optimal execution cost.    
This will require for a multiple query optimizer 
that is able to select an alternative plan for each 

query in order to obtain an optimal global 
execution plan for the multiple queries. 
 

In determining the best optimal solution 
for multiple-query optimization, several 
approaches have been proposed in determining 
the best optimal solution (execution plan) for 
multiple queries. One approach, as described by 
Finkelstein [2], is based on the idea of building 
the multiple query optimizer on top of the 
current single query optimizers.  In this 
approach, a single query optimizer generates one 
optimal plan for each query.  A plan merger, 
another component in the system, will next 
examine all the plans and merges them to 
generate a global execution plan. This global 
plan is derived from the shared temporary results 
of the common parts of the queries.   This 
approach is however may not guarantee the 
optimal global cost because it may miss some 
other plans (which are not necessary optimal for 
each query) that contain more common tasks 
with other queries.   

 
Another approach in determining the 

optimal solution tries to solve the problem 
mentioned above. The approach [1] generates 
several alternative plans for each query instead 
of generating only one optimal plan.  It detects 
and uses all common tasks found within the 
queries.   

 
An optimal global plan can be obtained 

in two ways, by using an admissible heuristic 
with the search algorithms or by decreasing the 
number of search space through reducing the 
number of alternative plans generated.   To 
generate alternative plans, the relational algebra 
transformation operations are used, which 
modify the execution plan for a query without 
affecting the final output of the plan.  A large 
query may produce many alternative plans. In 
order to reduce the size of the search space for 
the alternative plans, queries must be analyzed 
carefully while generating the alternative plans 
through maximizing the common tasks of 
queries. Cosar [3] developed two alternative plan 
generator methods by considering two and three 
queries at a time.  The first method is through 
pair-wising the initial plans of the queries (two 
queries at a time) with common tasks, thus 
producing new plans for the queries.  The second 
method is by matching each query plan with 
every other query plan and thus obtaining new 
plans and the process continues until no more 
plans can be generated for the queries.  Both of 
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the proposed methods whilst managed to 
generate alternative plans they also created a 
large search space, which will increase the cost 
of MQO.   

 
 
 

Alternative Plan Generator  
 
The above Figure 1 depicts the main phases of 
MQO problem.  As mentioned above, the 
alternative plans generated will be the input to 
the global optimal plan selector.  In generating 
alternative plans, the number and quality of the 
alternative plans produced are the major factors 
that will determine the performance of multiple 
query optimization [4].  In order for the plans to 
be generated efficiently, it involves with two 
major issues, first is the identification of 
common sub-expressions that will contribute to 
the query rewriting of the original query and 
second, the number of alternative plans 
produced, which will contribute to the size of 
search space for the global optimal plan selector.  
For the first issue, which is the subject of 
discussion of this paper, we are proposing our 
strategy to identify the common sub-expression.  
The next section outlines our proposed sharing 
opportunities for consideration.   Since the 
number and the quality of alternative plans 
generated have a substantial effect on the cost of 
the MQO, it is important to be able to estimate 
the cost of the sharing among the queries.  This 
is the next step in our approach. Among factors 
that can be considered in estimating the sharing 
cost are the common relations, joins and 
conditions [4].  Figure 2 reflects our approach in 
generating the alternative plans (i.e. the 
alternative plans generator phase).   
 
 

 Alternative Plan Generator 

Identify common sub-expressions 

Estimate the sharing factor based on 
the amount of sharing   

Generate alternative plans based on 
the estimated sharing factor   

Alternative plans

Figure 2.  Approach in Alternative Plan Generator 

  
 
Identifying Common Sub-expressions 
Strategy 
 
Identifying common sub-expressions (CSE) 
among queries is important in multiple-query 
optimization problem.  In this paper, we 
introduce our strategy in identifying the common 
operators and our focus is currently on the most 
important and complex operator, the two-way 
join operator.   
 
 Consider two queries, Q1 and Q2.  
Assume there are two two-way joins, twj1 and 
twj2, where twj1 is a join of relations R1 and S1, 
while twj2 is a join of relations R2 and S2, both 
joins are over predicate p1 and p2, respectively. 
 

 twj1  :   R1   ⋈  S1  
       p1 
   

twj2  :   R2   ⋈  S2  
       p2 
 

Sharing opportunities considered are: 
 

a) R1 = R2,  S1 =  S2 
 

For equivalent condition:  p1 is 
identical to p2 (P1 ≡  P2), then twj1 is 
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the CSE.  In rewriting the query, twj2 
will be deleted, and twj1 is shared by 
Q1 and Q2.   
 
For implication condition:  p2 implies 
p1  (P2 → P1), (an example :  p1 is r.a 
>= s.a, p2 is r.a = s.a) then twj1 is the 
CSE.  A Select operator should be 
added on twj1’s result in order to get 
twj2’s result.   
 
For intersection condition:  P1 ∧ P2, a 
join operator with predicate p1 v p2 is 
the common operator.  In rewriting, two 
Select operator is added on top to 
further restrict the CSE’s result.   
 

b) R1 = R2,   S1 ⊂  S2   (i.e.  S1 = σt (S2)  
or  S1 = σt1 (S1) ∧ S2 = σt2 (S) ∧ t1 → 
t2) 

 
For equivalent condition:  P1 ≡ P2, twj1 
is the CSE.  In rewriting Q2, predicate t 
is moved up. 

  
For implication condition:  P2 →P1, 
similar to equivalent condition above. 

  
For intersection condition:  P1 ∧ P2, the 
CSE and rewriting is shown in the 
Figure 3.  
 

c) S1 = S2,  R1  ⊂  R2 
 

The sharing condition is analogous to 
(b) above. 

 
d) R1 = R2,  S1 ∩  S2  ≠ φ  (i.e.  S1 = σt1 

(S),  S2 = σt2 (S),  t1 ∧ t2 ≠ false) 
 
For equivalent condition, P1 ≡  P2,  the 
original two joins will be combined and 
then divided into 3 joins.  One of the 
join is the CSE, see figure 4. 
 
Similar goes to implication and 
intersection condition. 

 
The above sharing strategies are applied to the 
next described algorithm in searching for the 
CSE and rewriting the queries trees.  (To 
simplify explanation, we are considering only for 
two queries) 
 
 

 
Algorithm:  Searching for CSE and Query 
Rewriting 

Input:  Operator trees for each query.     
Output:  Operator forest after rewriting 

 
1. Traverse the operator trees in post-order  

(post-order traversal). 
2. Compare between operator nodes of 

every operator trees. 
2.1 Find the same type nodes. 
2.2 Get the predicate over the operator 

nodes (i.e. p1 and p2) 
2.3 If p1 and p2 empty,  
2.3.1 Get the input relations for the 

operator nodes. 
2.3.2 If the two operator nodes have 

common relations, use strategies 
described above to rewrite the 
query trees. 

2.4 If p1 and p2 is not empty, traverse p1 in 
inorder way.  

2.4.1 For each node n in p1 
2.4.1.1 Traverse p2 in inorder way.  Get 

node x in p2. 
2.4.1.2 If node x and node n access 

different relations or different attributes, 
then backtrack p2 to grandfather node 
of x. 

2.4.1.3 Else compare the father nodes and 
the right-brother nodes of node x and 
node n.  Rewrite the query trees using 
the strategies described above. 

2.4.1.4 Continue until traversing is over. 
2.5 Continue loop 2 until post-order 

traversal for q1 and q2 is completed. 
 
 

 The efficiency (theoretic) of the CSE 
search for the above algorithm can be calculated 
based on the number of comparisons between 
nodes when traversing the operator trees (step 2), 
the number of comparisons between the 
predicates (step 2.4.1-2.4.1.3) and the average 
association degree (AAD) between queries[5].  
The AAD is given by 

 k 
 ∑ i *mi      

i=1 
AAD =  ------------ where r is number of tables, m 

r * m  is the number of queries,  
mi  is the number of i-table 
queries   
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The number of comparison between nodes 
(CBN) is  
           m-1

CBN= n * (n* ∑ (m – i))    
           i=1           
 
where n is the average number of nodes in a tree, 
m is the number of queries.   
  
The number of comparison between predicates 
(CBP) for m queries is 
              m
 CBP = ∑ (i – 1) * p * 3 * AAD    
            i=1              
 
where p is the average number of predicate for 
each query. 
 
Therefore, the total number of comparison 
(TNC) is the sum of comparison between nodes 
and comparison between predicates. 
 

TNC = CBN + CBP 
  m-1                              m
=  n * (n* ∑ (m – i))  +  ∑ (i – 1) * p * 3 * AAD    

 i=1                   i=1 
         
=  ½ m (3*p*AAD + n2) 
 
 
 
Conclusion 
 
In this paper, we proposed our approach in 
generating alternative plans.  We have discussed 
briefly on the approach, which is shown in 
Figure 2.  Included in our discussion is our 
strategy in identifying the common sub-
expressions by producing the sharing 
opportunities, the algorithm to search for 
common sub-expressions and the theoretical 
analysis for the efficiency of the search 
algorithm.  Our future work in the research is to 
experiment this algorithm with the sharing 
opportunities. 
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Figure 3.  Sharing Opportunity Case (b) 
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