
COMMON SUB-EXPRESSION IDENTIFICATION
STRATEGY FOR MQO

Nor Hawaniah Zakaria, AP Dr Shamsul Sahibuddin, AP Dr Harihodin Selamat

Fakulti Sains Komputer & Sistem Maklumat, UTM
hawaniah, shamsul@fsksm.utm.my,

07-5532410

Abstract

In query optimization, a query can be executed
with different strategies, known as execution
plan. The query optimizer will determine the
best execution plan for a single query. However,
when there are more than one query to be
executed together, the locally optimal strategies
for single queries may not be the best choice for
obtaining a globally optimal execution cost.
This will require for a multiple query optimizer
that is able to select an alternative plan for each
query in order to obtain an optimal global
execution plan for the multiple queries. An
optimal global plan can be obtained in two ways,
by using an admissible heuristic with the search
algorithms or by decreasing the number of search
space through reducing the number of alternative
plans generated. In generating alternative plans,
the number and quality of the alternative plans
produced are the major factors that will
determine the performance of multiple-query
optimization. In this paper, we propose the
sharing opportunities for identifying the common
sub-expressions.

Keywords

Query optimization, multiple query optimization,
alternative plan, common tasks, global optimal
plan

Introduction

One of the fundamental and important problems
in the database field is query optimization. In

database applications, a set of queries may be
submitted together to the system for evaluation.
This set of queries is most likely to have some
tasks that are common to every query in the set.
These queries can be processed one at a time,
however it is inefficient. To process these
queries efficiently, the optimizer should try to
take benefit of the common tasks existence.
Multiple-query optimization is beneficial
especially when there are many common tasks
between the queries. We can reduce the cost of
executing these common tasks by executing
these tasks only once, avoiding redundant disk
accesses, and thus a considerable decrease in the
execution time of the queries. This thus
becomes the goal of multiple-query optimization,
i.e. to reduce the execution time of multiple
queries with common tasks.

The multiple-query optimization
(MQO) problem has been studied in the database
literature since 1980s. In general, the MQO
problem can be divided in two phases [1]. The
first phase is the process of constructing the
search space for the optimizer, which will
produce a set of alternative plans for each query
in the query set, while the second phase is the
process of selecting the most optimal plan from
the alternative plans of each query in the query
set. In the first phase, there are two main
processes involved. The first process is to
identify common tasks among for the queries in
the query set. Next, a set of alternative plans for
each query in the query set is generated. These
plans will become the basis of the second phase.
The result of the second phase is a single global
execution plan for each query in the queries set.
Figure 1 reflects the phases involved in MQO
problem.

Proceedings of the Postgraduate Annual Research Seminar 2006 213

 Parser
Lexical and Grammer

Parsing

Multiple Query Optimizer

Alternative Plan Generator

Global Optimal Plan
Selector

Query Tree

Alternative
Plans

Optimal Global
Execution Plan

Query Executor

Figure 1. Phases in MQO

This paper is outlining our approach in
solving the multiple-query optimization problem,
and our focus is at the first phase, the alternative
plan generator. In multiple-query optimization,
the alternative plans generated will be the
content of the search space of the multiple-query
optimizer. The number of alternative plans
generated will have an effect to the performance
of the optimizer. In this paper we will describe
our approach in identifying the common tasks of
the alternative plans (the notions of sharing.)

Research Background

In query optimization, a query can be executed
with different strategies, known as execution
plan. The query optimizer will determine the
best execution plan for a single query. However,
when there are more than one query to be
executed together, the locally optimal strategies
for single queries may not be the best choice for
obtaining a globally optimal execution cost.
This will require for a multiple query optimizer
that is able to select an alternative plan for each

query in order to obtain an optimal global
execution plan for the multiple queries.

In determining the best optimal solution
for multiple-query optimization, several
approaches have been proposed in determining
the best optimal solution (execution plan) for
multiple queries. One approach, as described by
Finkelstein [2], is based on the idea of building
the multiple query optimizer on top of the
current single query optimizers. In this
approach, a single query optimizer generates one
optimal plan for each query. A plan merger,
another component in the system, will next
examine all the plans and merges them to
generate a global execution plan. This global
plan is derived from the shared temporary results
of the common parts of the queries. This
approach is however may not guarantee the
optimal global cost because it may miss some
other plans (which are not necessary optimal for
each query) that contain more common tasks
with other queries.

Another approach in determining the

optimal solution tries to solve the problem
mentioned above. The approach [1] generates
several alternative plans for each query instead
of generating only one optimal plan. It detects
and uses all common tasks found within the
queries.

An optimal global plan can be obtained

in two ways, by using an admissible heuristic
with the search algorithms or by decreasing the
number of search space through reducing the
number of alternative plans generated. To
generate alternative plans, the relational algebra
transformation operations are used, which
modify the execution plan for a query without
affecting the final output of the plan. A large
query may produce many alternative plans. In
order to reduce the size of the search space for
the alternative plans, queries must be analyzed
carefully while generating the alternative plans
through maximizing the common tasks of
queries. Cosar [3] developed two alternative plan
generator methods by considering two and three
queries at a time. The first method is through
pair-wising the initial plans of the queries (two
queries at a time) with common tasks, thus
producing new plans for the queries. The second
method is by matching each query plan with
every other query plan and thus obtaining new
plans and the process continues until no more
plans can be generated for the queries. Both of

Proceedings of the Postgraduate Annual Research Seminar 2006 214

the proposed methods whilst managed to
generate alternative plans they also created a
large search space, which will increase the cost
of MQO.

Alternative Plan Generator

The above Figure 1 depicts the main phases of
MQO problem. As mentioned above, the
alternative plans generated will be the input to
the global optimal plan selector. In generating
alternative plans, the number and quality of the
alternative plans produced are the major factors
that will determine the performance of multiple
query optimization [4]. In order for the plans to
be generated efficiently, it involves with two
major issues, first is the identification of
common sub-expressions that will contribute to
the query rewriting of the original query and
second, the number of alternative plans
produced, which will contribute to the size of
search space for the global optimal plan selector.
For the first issue, which is the subject of
discussion of this paper, we are proposing our
strategy to identify the common sub-expression.
The next section outlines our proposed sharing
opportunities for consideration. Since the
number and the quality of alternative plans
generated have a substantial effect on the cost of
the MQO, it is important to be able to estimate
the cost of the sharing among the queries. This
is the next step in our approach. Among factors
that can be considered in estimating the sharing
cost are the common relations, joins and
conditions [4]. Figure 2 reflects our approach in
generating the alternative plans (i.e. the
alternative plans generator phase).

 Alternative Plan Generator

Identify common sub-expressions

Estimate the sharing factor based on
the amount of sharing

Generate alternative plans based on
the estimated sharing factor

Alternative plans

Figure 2. Approach in Alternative Plan Generator

Identifying Common Sub-expressions
Strategy

Identifying common sub-expressions (CSE)
among queries is important in multiple-query
optimization problem. In this paper, we
introduce our strategy in identifying the common
operators and our focus is currently on the most
important and complex operator, the two-way
join operator.

 Consider two queries, Q1 and Q2.
Assume there are two two-way joins, twj1 and
twj2, where twj1 is a join of relations R1 and S1,
while twj2 is a join of relations R2 and S2, both
joins are over predicate p1 and p2, respectively.

 twj1 : R1 ⋈ S1
 p1

twj2 : R2 ⋈ S2
 p2

Sharing opportunities considered are:

a) R1 = R2, S1 = S2

For equivalent condition: p1 is
identical to p2 (P1 ≡ P2), then twj1 is

Proceedings of the Postgraduate Annual Research Seminar 2006 215

the CSE. In rewriting the query, twj2
will be deleted, and twj1 is shared by
Q1 and Q2.

For implication condition: p2 implies
p1 (P2 → P1), (an example : p1 is r.a
>= s.a, p2 is r.a = s.a) then twj1 is the
CSE. A Select operator should be
added on twj1’s result in order to get
twj2’s result.

For intersection condition: P1 ∧ P2, a
join operator with predicate p1 v p2 is
the common operator. In rewriting, two
Select operator is added on top to
further restrict the CSE’s result.

b) R1 = R2, S1 ⊂ S2 (i.e. S1 = σt (S2)
or S1 = σt1 (S1) ∧ S2 = σt2 (S) ∧ t1 →
t2)

For equivalent condition: P1 ≡ P2, twj1
is the CSE. In rewriting Q2, predicate t
is moved up.

For implication condition: P2 →P1,
similar to equivalent condition above.

For intersection condition: P1 ∧ P2, the
CSE and rewriting is shown in the
Figure 3.

c) S1 = S2, R1 ⊂ R2

The sharing condition is analogous to
(b) above.

d) R1 = R2, S1 ∩ S2 ≠ φ (i.e. S1 = σt1

(S), S2 = σt2 (S), t1 ∧ t2 ≠ false)

For equivalent condition, P1 ≡ P2, the
original two joins will be combined and
then divided into 3 joins. One of the
join is the CSE, see figure 4.

Similar goes to implication and
intersection condition.

The above sharing strategies are applied to the
next described algorithm in searching for the
CSE and rewriting the queries trees. (To
simplify explanation, we are considering only for
two queries)

Algorithm: Searching for CSE and Query
Rewriting

Input: Operator trees for each query.
Output: Operator forest after rewriting

1. Traverse the operator trees in post-order

(post-order traversal).
2. Compare between operator nodes of

every operator trees.
2.1 Find the same type nodes.
2.2 Get the predicate over the operator

nodes (i.e. p1 and p2)
2.3 If p1 and p2 empty,
2.3.1 Get the input relations for the

operator nodes.
2.3.2 If the two operator nodes have

common relations, use strategies
described above to rewrite the
query trees.

2.4 If p1 and p2 is not empty, traverse p1 in
inorder way.

2.4.1 For each node n in p1
2.4.1.1 Traverse p2 in inorder way. Get

node x in p2.
2.4.1.2 If node x and node n access

different relations or different attributes,
then backtrack p2 to grandfather node
of x.

2.4.1.3 Else compare the father nodes and
the right-brother nodes of node x and
node n. Rewrite the query trees using
the strategies described above.

2.4.1.4 Continue until traversing is over.
2.5 Continue loop 2 until post-order

traversal for q1 and q2 is completed.

 The efficiency (theoretic) of the CSE
search for the above algorithm can be calculated
based on the number of comparisons between
nodes when traversing the operator trees (step 2),
the number of comparisons between the
predicates (step 2.4.1-2.4.1.3) and the average
association degree (AAD) between queries[5].
The AAD is given by

 k
 ∑ i *mi

i=1
AAD = ------------ where r is number of tables, m

r * m is the number of queries,
mi is the number of i-table
queries

Proceedings of the Postgraduate Annual Research Seminar 2006 216

The number of comparison between nodes
(CBN) is
 m-1

CBN= n * (n* ∑ (m – i))
 i=1

where n is the average number of nodes in a tree,
m is the number of queries.

The number of comparison between predicates
(CBP) for m queries is
 m
 CBP = ∑ (i – 1) * p * 3 * AAD
 i=1

where p is the average number of predicate for
each query.

Therefore, the total number of comparison
(TNC) is the sum of comparison between nodes
and comparison between predicates.

TNC = CBN + CBP
 m-1 m
= n * (n* ∑ (m – i)) + ∑ (i – 1) * p * 3 * AAD

 i=1 i=1

= ½ m (3*p*AAD + n2)

Conclusion

In this paper, we proposed our approach in
generating alternative plans. We have discussed
briefly on the approach, which is shown in
Figure 2. Included in our discussion is our
strategy in identifying the common sub-
expressions by producing the sharing
opportunities, the algorithm to search for
common sub-expressions and the theoretical
analysis for the efficiency of the search
algorithm. Our future work in the research is to
experiment this algorithm with the sharing
opportunities.

P1

R S

Q1

P1

R

S

Q2

t

S’

P1 t ∧ p2

P1 ∧ p2

R S

Q1 Q2

Figure 3. Sharing Opportunity Case (b)

P1

R

S

Q2

t2

S2

P1

R

S

Q1

t1

S1

P1

t1 ∧ t2

R S

Q1 Q2

t1 ∧ ¬ (t1∧t2) t2 ∧ ¬ (t1∧t2)

P1 P2

union union

Figure 4. Sharing Opportunity Case (d)

Proceedings of the Postgraduate Annual Research Seminar 2006 217

Bibliography:

1. Sellis, T.K., Multiple-Query

Optimization. ACM Transaction on
Database Systems, 1988. 13(1): p. 23-
52.

2. Finkelstein, S. Common Subexpression

Analysis in Database Applications. in
ACM-SIGMOD International
Conference on the Management of
Data. 1982. Orlando, Florida: ACM.

3. Cosar, A., Multiple Query Optimization,

Phd Thesis, in Department of Computer
Science, University of Minnesota. 1996:
Minneapolis.

4. Polat, F., A. Cosar, and R. Alhajj,

Semantic Information-based Alternative
Plan Generation For Multiple Query
Optimization. Information Sciences,
2001. 137(1-4): p. 103-133.

5. Chen, H., S. Zhou, and S. Wang.

Multiple Query Optimization in
PBASE/3. in Fourth International
Conference on High-Performance

Computing in Asia-Pasific Region.
2000: IEEE.

6. Hong, C., Z. Sheng, W. Shan. Multiple

Query Optimization in PBASE/3. 4th
International Conference on High-
Performance Computing in Asia-Pasific
Region. 2000. Volume 2.

7. Alsabbagh, J.R., V.V. Raghavan. A

Framework for Multiple-Query
Optimization. International Workshop
on Research Issues in Data Engineering
– Transaction and Query Processing.
1992. p.157-162.

8. Alsabbahgh, J. R., V.V. Raghavan.

Analysis of Common Sub-expressions
Explotation Models in Multiple-Query
Processing. 10th International
Conference on Data Engineering.
1994. p. 488-497.

9. Alsabbahgh, J. R., V.V. Raghavan . A

Model for Multiple-Query Processing
based Upon Strong Factoring.
International Conference on
Information Technology: Coding and
Computing. 2004.

Proceedings of the Postgraduate Annual Research Seminar 2006 218

