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ABSTRACT 
 

 

 

 

Studies on the development of interface between biological molecules and novel 

nanomaterials have attracted research worldwide. Carbon nanotubes (CNTs) have become 

an important matrix for the fabrication of biomaterials due to its unique properties. Surface 

properties of the CNTs and the medium of immobilization are critical in the immobilization 

of enzymes. In this study surface modification of multi-walled carbon nanotubes 

(MWCNTs) for carboxylic moieties attachment was accomplished by acid treatment and 

reaction with potassium permanganate (KMnO4).  The effect of these two oxidants on the 

surface modification of MWCNTs for tyrosinase immobilization was studied. Commercial 

MWCNTs were treated with either concentrated sulfuric acid - nitric acid mixture of ratio 

3:1 or 0.1 M KMnO4 via reflux, stirring and ultrasonication. The resulting surface modified 

MWCNTs were characterized with FT-IR spectrophotometer, XPS, and FESEM. The 

immobilized tyrosinase was tested for leaching assay and its catalytic activity towards 

phenol was analysed. The FTIR spectra of functionalized MWCNTs showed a significance 

peak in the range of 1700 cm-1 to 1729 cm-1 indicating the presence of carboxyl double 

bond, which confirmed the successful functionalization of MWCNTs (FCNTs) by chemical 

oxidation. The carboxylic peak of MWCNTs treated with KMnO4 (FCNTK) showed higher 

intensity as compared to acid-treated MWCNTs (FCNTA). These results are supported with 

the shift of O 1s binding energy at 534.9 eV and shoulder of C 1s at 289.00 eV 

corresponding to carboxylic groups from XPS analysis. The immobilization of tyrosinase 

onto FCNTA is higher than FCNTK with high catalytic activity for phenol degradation. 

Further sorption study showed that FCNTA with immobilized tyrosinase (FCNTA-Ty) has 

higher sorption towards phenol as compared to FCNTA and pristine MWCNTs. The results 

illustrated that FCNTA-Ty, FCNTAs and MWCNTs had relatively well adsorption capacity 

for phenol as described by both Langmuir and Freundlich models. In addition, the 

adsorption kinetics for these CNTs were well fitted with the pseudo-second order model 

with reasonably good correlation coefficient. This study led to possible application of 

bioremediation of phenol in industrial sample by attaching the FCNTA-Ty onto chitosan. 



 

 

 

 

 

 

 

 

ABSTRAK 
 

 
 
 

Kajian berkenaan perkembangan hubungan antara molekul biologi dan bahan nano 

baru telah menarik minat sedunia. Tiubnano karbon (CNTs) menjadi matriks yang penting 

untuk pembuatan bahanbio kerana keunikan sifatnya. Sifat permukaan CNTs dan media 

nyahgerakan adalah kritikal bagi penyahgerakan enzim. Dalam kajian ini pengubahsuaian 

permukaan tiubnano karbon dinding berlapis (MWCNTs) dengan perlekatan kumpulan 

karboksilik dicapai melalui rawatan asid dan tindakbalas kalsium permanganat (KMnO4). 

Kesan dua agen pengoksidaan ini terhadap pengubahsuaian permukaan MWCNTs untuk 

penyahgerakan tirosinase telah dikaji. MWCNTs komersial dirawat sama ada oleh 

campuran asid sulfurik dan asid nitrik pada nisbah 3:1 atau dengan 0.1M KMnO4 melalui 

refluks, pengacauan, dan ultrsonikasi. MWCNTs dengan permukaan diubahsuai yang 

terhasil diuji dengan spektrofotometer FT-IR, XPS, dan FESEM. Tirosinase yang 

dinyahgerak diuji untuk asai penguraian dan aktiviti enzim terhadap fenol juga dianalisa. 

Spektra FTIR MWCNTs berfungsi menunjukkan puncak yang ketara pada julat 1700 cm-1 

hingga 1729 cm-1 menunjukkan kewujudan ikatan berganda karboksil yang membuktikan 

kejayaan pengfungsian MWCNTs (FCNTs) melalui pengoksidaan kimia. Puncak 

karboksilik MWCNTs yang dirawat dengan KMnO4 (FCNTK) menunjukkan kekuatan yang 

lebih tinggi berbanding MWCNTs yang dirawat asid (FCNTA). Keputusan ini disokong 

oleh anjakan tenaga ikatan O 1s pada 534.9 eV dan bahu C 1s pada 289.00 eV berkaitrapat 

dengan asid karboksilik melalui analisa XPS. Penyahgerakan tirosinase pada FCNTA adalah 

lebih tinggi berbanding FCNTK dengan aktiviti mangkin yang tinggi untuk penguraian 

fenol kepada kuinon. Kajian lanjut penyerapan menunjukkan FCNTA dengan tirosinase 

ternyahgerak (FCNTA-Ty) mempunyai serapan terhadap fenol yang lebih tinggi berbanding 

FCNTA dan MWCNTs asal. Keputusan menunjukkan FCNTA-Ty, FCNTAs dan MWCNTs 

mempunyai kapasiti serapan yang agak baik terhadap fenol oleh kedua-dua model Langmuir 

and Freundlich. Tambahan pula, kinetik serapan untuk semua CNTs ini sesuai dengan 

model aturan pseudo-kedua dengan pekali korelasi yang baik. Kajian ini membawa kepada 

kemungkinan aplikasi pembaikpulihbio fenol dalam sampel industri dengan mencantumkan 

FCNTA-Ty dengan kitosan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Research Background 

 

 

Nanotechnology is a strategic breakthrough technology that focused on 

generating, manipulating and fabricating nanomaterials at the scale of a billionth of a 

meter (Ratner et al., 2010). This field of technology is employed into other areas to 

revolutionize them for a better utilization whether in fundamental studies or 

industrial application. Nanotechnology is a bridge to incorporate several diverse 

areas into one by fabricating new materials with new physical, chemical, or 

biological properties. One of the ultimate nanomaterials present today is carbon 

nanotubes (CNTs) which are carbon atoms in form of carbon tubules with hollowed 

centre with various special properties such as thermal conductivity, electrical 

conductivity, and also strength ( Ebbesen, 1997).   

 

CNTs have become the bridge in connecting material science, biotechnology 

and nanotechnology where their application varied from disease diagnosis, 

environmental analysis, to drug delivery (Pagona and Tagmatarchis, 2006).  The 

same goes to both bioremediation and adsorption field, with research devoted to the 

development of surfaced-based bioremediation that enable selective remediation of 

biorecognition reaction. A genuine product that can be used as adsorbent and 

bioremediation will be very desirable.  The selective remediation is achievable by 

using enzymes due to their reaction specificity towards certain substrates and 

produces few side reactions. Meanwhile, the CNTs are known for their adsorption 



 

 

ability for heavy metal, aromatic compounds and dye (Lu and Chiu, 2008; Shen,et 

al., 2009; Zhu et al., 2010).   

 

Bio-adsorbent based on immobilized enzyme on sturdy material are pursued 

and idea on having CNT as support becomes a starting hypothesis with their steady 

characteristic and morphology.  However, the stable chemical structure of CNTs 

make them difficult to form complexes with other elements.  Hence, CNTs have to 

be functionalized before it can be used as a support for any enzyme. 

Functionalization of CNTs can be achieved by attaching groups with chemical 

functionalities such as carboxyl group onto the carbon walls or at the end of the 

tubules. This step is important to ‘activate’ the CNTs and overcome their difficulty 

to dissolve or disperse in solvent.  This difficulty has limited their applications in 

many fields of interest. 

 

The functionalization of CNTs by oxidation process is accomplished either 

by wet chemical methods, photo-oxidation, oxygen plasma, or gas treatment 

(Datsyuk and Kalyva, 2008). The wet chemical methods are usually chosen based on 

economical factor and ease of approach as compared to others. Several techniques 

usually involve in wet chemical methods such ultrasonication, reflux, stirring with 

their own advantages and side-effects. In this study, functionalizing of CNTs will be 

carried out using these techniques and their subsequent effectiveness toward enzyme 

immobilization will be compared. The advantages of using functionalized carbon 

nanotubes (FCNTs) as the support for enzyme immobilization include: 

 

 The high surface area of FCNTs can provide a good immobilization area for 

enzyme loading 

 The surface hydroxyl and carbonyl groups present on FCNTs can be readily 

used for enzyme attachment 

 The chemical inertness of FCNTs can provide a secured environment for 

enzyme especially in severe reaction condition 

 

Immobilization of enzyme or other biological compounds into inorganic 

support is not a new idea and had been applied in various fields for several reasons. 

The reasons are to improve the stability of enzyme in adverse reaction condition or 



 

 

in the presence of organic solvent, to separate the enzyme from its product stream, 

and also to allow repetitive usage of the enzyme. The main challenge in 

immobilization of biological compounds is to integrate them with the support matrix 

at the same time retaining most of their functions. This is because biological 

compounds especially enzymes, have their own special structure with specific 

function and to fully use these in fabricating new multifunctional nanomaterials is a 

great challenge. 

 

Enzyme immobilization on support without damaging both enzyme and 

support will help in manufacturing adsorbent material (Xu et al., 2005).  Technique 

of immobilization would play a major role in protecting both enzyme and support 

during the process. Several techniques have been utilized to produce high 

immobilized enzyme and preserves its activity. The techniques include physical 

adsorption, covalent attachment, entrapment and encapsulation (de Faria et al., 

2007) . Physical adsorption and covalent attachment are two techniques with 

excellent enzyme immobilization with CNTs (Cui, 2008). Physical adsorption is the 

least complicated technique with adsorption occurs on the surface of support. The 

adsorption can be enhanced with hydrogen bonding between surface moieties of the 

support and the nitrogen or amine in enzyme. The covalent attachment of enzyme 

and CNTs only occur if the CNTs are functionalized with surface moieties that can 

promote covalent linkage. In FCNTs cases, usually physical adsorption and covalent 

attachment can occur simultaneously. However, the desirable physical adsorption 

can be promoted through immobilization condition. The other techniques are more 

suitable with polymer or inorganic support with special matrix or for short peptides 

only.  

 

In this research, tyrosinase is chosen as enzyme of interest because of its 

wide applications especially in environmental and industrial field. Tyrosinase will be 

immobilized onto functionalized multi-walled carbon nanotubes to be employed as 

bio-adsorbent. The bio-adsorbent can be used for bioremediation of phenolic waste 

and its adsorption property will allow it to adsorb the waste simultaneously. Thus, it 

may reduce the amount of waste up to twice as much as other adsorbents. In 

addition, the immobilized tyrosinase with better stability in the form of bio-

adsorbent can be used with highly acidic reaction condition. 



 

 

1.2 Problem Statements 

 

 

Functionalization of CNTs has been reported and it differs based on the 

future application purposes. For the purpose of enzyme immobilization, the 

frequently used functionalization is by oxidizing the CNTs through several 

techniques of wet chemical methods. The techniques usually involve are 

ultrasonication, reflux, stirring. However, each technique has its own advantages and 

disadvantages and the best technique of functionalization for tyrosinase 

immobilization is yet to be determined. Ultrasonication can produce high yield of 

FCNTs but at shorter length which is undesirable. Reflux and stirring can produce 

moderate yield of FCNTs and retain most of the CNTs physical properties. Thus, 

these two techniques and the mix technique of reflux and stirring will be studied in 

length to find the best oxidation technique of functionalization of MWCNTs for 

tyrosinase immobilization.  

 

Phenol is a common pollutant found mainly in industrial effluent. The 

effluent has to be treated before it is discharged to avoid harmful consequences in 

overall water ecosystem. Phenol treatment could be achieved via bio-remediation 

and sorption. The remediation and sorption of phenol is accomplished by 

immobilizing tyrosinase onto carbon nanotubes. However, the characteristic of 

sorption by carbon nanotubes immobilized with tyrosinase towards phenol as its 

main analyte is ambivalent. As known by many CNTs also have the ability to adsorb 

elements and this has increased the need to identify whether decreasing amount of 

phenol was caused by CNTs or enzyme activity. In addition, the effect on tyrosinase 

activity after immobilization will be different than free enzyme. Hence, a close 

observation and investigation are required with stated problems as the parameters.  

 
 
 
 
 
 
 
 
 
 
 



 

 

1.3   Objectives of the Research 

 

 

The objectives of the study are: 

 

1. To investigate techniques of functionalization of MWCNTs for 

tyrosinase immobilization and effect on its activity. 

2. To assess sorption characteristic of immobilized tyrosinase towards 

phenol. 

 
 
 
 
1.4 Scope of the Research 

 

 

This research will encompass functionalization technique of MWCNTs, the 

sorption properties of CNTs, the immobilization of tyrosinase on the CNTs, and also 

possible application of tyrosinase immobilized onto FCNTs (CNT-Ty) for phenol 

removal. The functionalization of MWCNTs is via oxidative purification method or 

also acknowledged as carboxylation method. This method introduces carboxylic 

group onto CNTs by either liquid-phase or gas-phase oxidation process. The CNTs 

will be treated with strong oxidative agents such as nitric acid and sulfuric or 

mixture of both and also with potassium permanganate. The oxidation reaction will 

be done through reflux, stirring, and the mix techniques of reflux and stirring. The 

study will focus on investigating the best technique for tyrosinase immobilization. 

Characterization of CNTs on different stages will be executed by using Fourier 

Transform-Infra Red (FT-IR) spectrophotometer, X-ray Photoelectron 

Spectrophotometer (XPS) and Field Emission Scanning Electron Microscope – 

Energy Dispersive X-ray Analyzer (FESEM-EDX). 

 

The sorption study by nanotubes will be limited only to phenol as 

tyrosinase’s analyte or substrate. The sorption of phenol will be analyzed based on 

Langmuir and Freundlich isotherm. The adsorbate will be pristine MWCNTs, 

FCNTs, and CNT-Ty.  The immobilization of tyrosinase will be done via physical 

adsorption onto the CNTs. Effect of parameters such as temperature; pH and 



 

 

incubation time on the adsorption process will be observed. In addition, the study on 

catalytic activity is also significant in this research. The enzymatic activity study 

before and after immobilization of tyrosinase will be analyzed using Ultra-

violet/visible spectrophotometer based on amount of phenol degradation.   

 

The possible application of CNT-Ty for phenol removal will be studied by 

intertwines the CNT-Ty onto chitosan beads. This is important to help in retrieving 

the CNT-Ty during the phenol removal process due to CNT-Ty small size. The 

beads will be immersed in known concentration of phenol solution. The phenol 

sorption will be analyzed to determine the efficiency of CNT-Ty in chitosan beads in 

removing the phenol.  
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