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ABSTRACT 
 
 
 
 

The exploration of alternative solvents for supercritical fluid extraction (SFE) 
technology has been attributed to the high capital investment due to higher pressure 
required by using supercritical carbon dioxide (SC-CO2) as a solvent. One of the 
potential alternative solvent is the sub-critical R134a, which can be operated at lower 
pressure than SC-CO2. This research investigate the use of dense gas approach, 
density based approach and solubility parameter to predict the solubility model of 
palm oil extraction from palm fruit using sub-critical R134a in SFE systems. Firstly, 
the dense gas approach involves the estimation of pure component vapour pressures, 
critical properties and binary interaction was implemented. This is followed by the 
development of thermodynamic model by using the equation of states (EOS) which 
are Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) combined with four 
mixing rules that includes excess Gibbs energy model. The density-based as the 
second approach requires the information of density, pressure and temperature. The 
performance of seven density based models were analysed in this research. Lastly, 
the solvent and solute solubility parameters were calculated using regular solution 
theory. Solvent specific coefficient for R134a was then determined using 
experimental data published. The proposed solvent specific coefficient for R134a is 
11.8138 and this coefficient can be used for universal calculation of solubility which 
involves R134a as a solvent. Based on comparison of all correlation method, dense 
gas approach using the combination of PR EOS and Solute-Solute Interaction (SSI) 
mixing rule shows the lowest Average Absolute Relative Deviation (AARD), 0.08% 
compared to other methods. Due to complex calculation involved, T-P model 
regressed by Design Expert software is suggested as the best method to model the 
solubility behaviour of palm oil extraction from palm fruit using sub-critical R134a 
in the SFE systems. 
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ABSTRAK 
 
 
 
 

Penerokaan pelarut alternatif dalam teknologi pengekstrakan bendalir lampau 
genting (SFE) adalah disebabkan oleh pelaburan modal yang tinggi berpunca 
daripada penggunaan tekanan tinggi yang diperlukan oleh pelarut lampau genting 
karbon dioksida (SC-CO2). Salah satu pelarut alternatif yang berpotensi adalah 
pelarut separa lampau genting R134a di mana ia boleh beroperasi pada tekanan yang 
lebih rendah daripada SC-CO2. Penyelidikan ini mengkaji penggunaan pendekatan 
gas tumpat, pendekatan berdasarkan ketumpatan dan parameter keterlarutan bagi 
meramalkan model keterlarutan pengestrakan minyak kelapa sawit daripada buah 
sawit dengan menggunakan pelarut separa lampau genting R134a dalam sistem SFE. 
Pertama, pendekatan gas tumpat melibatkan anggaran tekanan wap komponen tulen, 
ciri-ciri kritikal dan parameter interaksi telah dilaksanakan. Prosedur ini diikuti oleh 
perkembangan model termodinamik dengan menggunakan persamaan keadaan 
(EOS); Peng-Robinson (PR) dan Soave-Redlich-Kwong (SRK) yang digabungkan 
dengan empat kaedah campuran termasuk model tenaga Gibbs lebihan. Teknik 
berdasarkan ketumpatan adalah pendekatan kedua yang memerlukan maklumat 
mengenai ketumpatan, tekanan dan suhu. Tujuh prestasi pendekatan berdasarkan 
ketumpatan telah dianalisa di dalam penyelidikan ini. Akhir sekali, parameter 
keterlarutan pelarut dan bahan larut dikira menggunakan teori penyelesaian tetap. 
Kemudian, pekali pelarut khusus bagi R134a diperolehi daripada data-data 
eksperimen. Pekali spesifik bagi pelarut yang dicadangkan adalah 11.8138 dan pekali 
ini boleh digunakan untuk semua pengiraan keterlarutan yang melibatkan pelarut 
R134a. Berdasarkan perbandingan semua kaedah korelasi, pendekatan gas tumpat 
yang menggabungkan persamaan PR EOS dan Interaksi Antara Bahan Larut (SSI) 
menunjukkan Purata Sisihan Relatif Mutlak (AARD) paling rendah, 0.08% 
berbanding dengan kaedah yang lain. Oleh kerana ia melibatkan pengiraan yang 
kompleks, model T-P yang didapati dari perisian ‘Design Expert’ dicadangkan 
sebagai kaedah terbaik bagi memodelkan perilaku keterlarutan pengestrakan minyak 
kelapa sawit daripada buah sawit dengan menggunakan pelarut separa lampau 
genting R134a dalam sistem SFE. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Global Outlook on World Oil and Fats Industry 

 

 

The world top five major fats and oils production in the year 2009 include 

palm oil and palm kernel oil, soybean oil, animal fats, sunflower oil and rapeseed oil 

as shown in Figure 1.1. As reported in the 1980’s, palm oil has become the second 

most sought after vegetable oil, with soybean oil as the first. Increasingly since the 

past 20 years, palm oil has become the world’s most important production of oils and 

fats, which forms about 30% of the world’s production. The use of palm oil in the 

culinary world dated back over 5,000 years ago and it is presently consumed in more 

than 130 countries globally (MPOC, 2010). 
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Figure 1.1: World’s oils and fats production in 2009 (MPOC, 2010) 

 

 

Oil palm has been reported as the top yielding vegetable oil, producing 10 

times more oil per hectare a year as compared to other oilseed products in the 

market. Table 1.1 shows a comparison of oil productions between the major oil 

yields of the world. As listed in Table 1.1, oil palm is grown on only 4.21% of the 

world’s agricultural land but produces 31.84% of global oil and fats. In comparison, 

in order to produce the same output, a soybean farm would need to cultivate up to 10 

times more farming area (MPOB, 2008). Thus, palm oil is the best answer to the 

growing demand of the world’s increasing population while simultaneously serves as 

an option for optimized agricultural land usage. 

 

 

Table 1.1: Oil productivity of major oil crops (MPOB, 2008) 

Oil crops 

Oil 

production

(million 

tonnes) 

% of total 

production

Average oil 

yield 

(tonnes/ha/year)

Planted 

area 

(milllion 

ha) 

% of 

total 

area 

Soybean 33.58 31.69 0.36 92.10 42.24 

Sunflower 9.66 9.12 0.42 22.90 10.50 

Rapeseed 16.21 15.30 0.59 27.30 12.52 

Oil palm 33.73 31.84 3.68 9.17 4.21 
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1.1.1 World Palm Oil Industry 

 

 

Over the last 20 years, palm oil demand has climbed exponentially due to its 

diverse usage in food, assorted merchandises as well as new preferred material for 

biofuel. However, about 80% of the world’s palm oil production is intended to be 

used in the food industry. This is because the oil has excellent properties, making it 

the perfect candidate in cooking and frying. A steady increase in the world 

population has led to an increase in the demand for palm oil as a significant source of 

edible oils and fats. 

 

 

At present, South-East Asia, particularly Malaysia and Indonesia, dominates 

the world’s palm oil production. Figure 1.2 shows the market share in 2008, with the 

biggest palm oil producers which are Malaysia, Indonesia, Nigeria, Colombia and 

Thailand. The leading palm oil producer is Indonesia (46%), followed by Malaysia 

(41%). Currently, both countries are accountable for 87% of the world’s oil palm 

production (MPOB, 2008). 

 

 

46%

41%

3% 2% 2%
6%

Indonesia 
Malaysia
Thailand
Colombia
Nigeria
Others

 
Figure 1.2: Market share of top 5 palm oil producers for 2008 (MPOB, 2008) 
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1.1.2 National Palm Oil Industry  

 

 

There are 4.3 million hectares of palm oil plantations in Malaysia. This 

relatively small area produces about 41% of the world’s palm oil production as well 

as contributing 12% to the world’s oils and fats. The Malaysian palm oil production 

was observed to demonstrate an impressive performance from 1995 to 2010 (Figure 

1.3). The country’s production of crude palm oil (CPO) had increased from 7.5 

million tonnes in 1995 to 18.3 million tonnes by 2010. Being one of the major palm 

oil producers and exporters, including its by-products, Malaysia plays a significant 

role in satisfying the growing demand for oils and fats across the world (MPOC, 

2010). 

 

 

 
Figure 1.3: Malaysian palm oil production from1995 to 2010 (MPOC, 2010) 
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1.2 Development of Supercritical Fluid Extraction Technology 

 

 

According to Tailor (1996), the discovery of critical point in a substance was 

first documented by Baron Cagniard de la Tour in 1822, while experimenting with 

his barrel. He observed critical temperature by listening to the gaps in the sound that 

a rolling flint ball made in sealed cannon that was filled with liquids at varying 

temperatures. He noticed that above the critical temperature, the distinction between 

the liquid and its gas phase disappears and the densities of the two phases become 

equal, leading to a single supercritical fluid (SCF) phase. About 27 years later, 

Hannay and Hogarth revealed the solvating power of supercritical fluids for solids. 

They established the fact that an increase in pressure will cause solutes to dissolve 

and that a decrease in pressure causes it to precipitate. The discovery of this behavior 

becomes fundamental to understanding the supercritical fluids extraction (SFE) 

technology. 

 

 

SFE is a modern, safe and an environmentally friendly alternative among 

other available separation techniques; it can be used either to reduce or remove 

flammable and hazardous organic solvents (El-Aty et al., 2008). Over the recent 

years, there has been rapid development of SFE for the extraction of edible oil and 

natural products. SFE technology has been established to be efficient in the oil 

processing field (Fornari et al., 2008). Many of SFE applications have focused on the 

extraction of edible oil such as soybean (Lee et al., 1991), canola (Temelli, 1992), 

sunflower (Salgın et al., 2005), palm kernel (Hassan et al., 2000) and olive (Fornari 

et al., 2008) using supercritical carbon dioxide (SC-CO2) to recover valuable minor 

components such as tocopherols and β-carotene.  

 

 

SC-CO2 is the most frequently used extraction agent due to its non-toxic 

property, it is chemically inert, has a low operating temperature and ease of solute-

solvent separation as well as having high selectivity (El-Aty, 2008). SFE using 

carbon dioxide can be performed at a low temperature and it is a relatively pollution 

free operation. Its high selectivity permits the removal of free fatty acid (FFA) from 
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the oil with minimum loss of neutral oil triglycerides and unsaponifiable matters 

(tocopherols, sterols and vitamins). Thus, when this technique is applied, the 

deacidification process can be carried out without significant loss in yield or the 

nutritional properties (Vazquez et al., 2009). 

 

 

 

 

1.3 Problem Background 

 

 

The application of SFE in various chemical processes has been researched 

extensively during the past thirty years. However, the commercialization of this 

technology is still inadequate. This is because of the high capital investment 

associated with plant start-up and intense operation due to the higher pressure as 

compared to conventional separation. SFE applications thus far are only focused on 

applying SC-CO2 as a solvent in any separation processes. A satisfactory extraction 

or fractionation process using carbon dioxide as a solvent would require high 

pressure of up to 500 bar. Such a high pressure operation can contribute to high 

capital and operating cost. 

 

 

SC-CO2 (its polarity is effectively similar to hexane) is an exceptional solvent 

for non-polar solutes. However, its polarity is often too low for an efficient 

extraction. This could be due to the lack of sufficient solubility in the solutes. In 

order to rectify these problems, modifiers have been used to boost the SC-CO2’s 

ability to solvate polar organic compounds. The added of modifiers will also increase 

the cost of production (El-Aty, 2008). The discovery of a new or an alternative 

solvent having the same advantages as that of carbon dioxide is consequently 

essential in order to capitalize on the power of SFE technology over traditional 

technique. Sub-critical R134a is a possible option as it requires lower pressure 

compared to SC-CO2. It has also been found to have comparable solvent properties 

to carbon dioxide in addition to being able to extract polar solutes at low temperature 

and pressure (Simoes and Catchpole, 2002).  
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The current status of research on the use of SFE technology has been focused 

on experiments using R134a as an alternative solvent in lab-scale environment 

(Najwa et al., 2008). In this work, a solubility model of palm oil extraction from 

palm fruit using sub-critical R134a is developed to apply for further design and 

operation of palm oil processes. The transformation of experimental solubility data 

into mathematical model could can be applied to predict the solubility at the 

operating condition (pressure and temperature) after measuring a minimum number 

of experimental data, which could accelerate the development of a sub-critical fluid 

process. 

 

 

 

 

1.4 Problem Statement 

 

 

Given a data set of temperature (T), pressure (P) and density (ρ), it is desired 

to develop a solubility model of palm oil extraction from palm fruit using sub-critical 

R134a solvent to ultimately achieve a simpler and efficient extraction processes.  

 

 

 

 

1.5 Research Objectives 

 

 

The research objectives are: 

 

i. To develop solubility model of palm oil extraction from palm fruit using sub-

critical R134a based on three different approaches; dense gas approach, 

density based approach and solubility parameter approach. 

ii. To determine the best solubility model for palm oil solubility behavior 

prediction. 

iii. To establish the solvent specific coefficient for sub-critical R134a. 
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1.6 Scope of Work 

 

 

The key steps to be accomplished to achieve the objectives of this study 

consist of: 

 

i. Estimation of the physical properties for the palm mesocarp fruit (solid 

phase) using prediction method. 

ii. Correlation of palm oil solubility behavior based on dense gas approach using 

equation of state (EOS). 

iii. Correlation of the palm oil solubility behavior based on density based 

approach. 

iv. Correlation of the palm oil solubility behavior based on solubility parameter 

approach using regular solution theory and development of solvent specific 

coefficient for R134a. 

v. Data validation of the three correlation approaches with other R134a 

application. 

vi. Comparison of the best correlation approach for palm oil solubility behavior 

prediction. 

vii. Comparison of solubility model between SC-CO2 and sub-critical R134a. 

 

 

 

 

1.7 Research Contribution  

 

 

There are four key specific contributions predicted to emerge from this work 

which include: 

 

i. The enhancement of the palm mesocarp fruit (solid phase) property database 

that is crucial for use in dense gas approach. 
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ii. The establishment of a thermodynamic model (dense gas approach) capable 

of demonstrating equilibrium solubility data for extraction of palm oil from 

palm fruit using sub-critical R134a system. 

iii. The empirical model on the solubility behavior of palm oil extraction from 

palm fruit using sub-critical R134a provides a significant impetus for further 

SFE studies specific in sub-critical area. 

iv. The introduction of solvent specific coefficient on the solubility parameter 

approach is envisioned to be a simpler method for further prediction of solute 

solubility in sub-critical R134a as an economical alternative solvent  
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