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ABSTRACT 

 

 

 

 

 This study investigates the application of artificial neural network in model 

development for lactic acid production.  The current measurement of lactic acid 

concentrations is conducted offline, resulting in time delay in obtaining the results, 

not to mention that current analysis method is expensive and in need of specially 

trained personnel.  In view of this, two model of artificial neural network; multilayer 

perceptron (MLP) and radial basis function (RBF) network, have been employed.  

For the development of MLP model, normalization method, the size of input layer, 

size of hidden layer and activation function have been varied.  Effects of input 

combinations on the MLP performance have also been investigated.  For RBF model 

development, effects of the tolerance (MSE), radius (σ) value, the number of input 

variables and input combinations on the RBF performance have been investigated.  

The results show that the optimum structure of MLP has four input variables 

(biomass concentration, glucose concentration, temperature and reaction time) and a 

transfer function of log sigmoid in the hidden layer and linear in the output layer.  

This model is capable of producing the error index (EI) test of 7.26% and R-value 

test of 0.9909 with seven nodes in the hidden layer.  Also, the RBF model was able 

to obtain EI test of 6.48% and R-value of 0.9926 with a model of three input 

variables (biomass concentration, glucose concentration and reaction time) and a 

radius (σ) equal to 1.5.  The optimum structure of the RBF model was 3-7-1.  Both 

models exhibit comparable and good generalization ability.  However, the RBF 

model out-performed the MLP model with regard to its generalization ability and 

reproducibility but overall both models have displayed satisfying ability in 

estimation of lactic acid concentration for the identified process. 
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ABSTRAK 

 

 

 

 

Penyelidikan ini mengkaji aplikasi rangkaian neural buatan untuk digunakan 

dalam pembangunan model pengeluaran asid laktik.  Ketika ini, proses analisis 

pengiraan untuk mendapatkan kepekatan asid laktik selalunya dilakukan di luar 

talian dan ini menyebabkan masa yang banyak terbuang, serta kaedah analisis yang 

mahal dan memerlukan kakitangan yang terlatih untuk mengendalikan alatan itu.  

Maka dengan itu, dua model neural buatan, rangkaian peseptron berbilang-lapis 

(MLP) dan fungsi asas jejarian (RBF); telah digunakan dalam pembangunan ini.  

Dalam pembangunan MLP, kaedah normalisasi yang berbeza, saiz lapisan input, saiz 

lapisan tersembunyi dan fungsi pengaktifan telah dikaji.  Kesan kombinasi input 

berlainan ke atas prestasi model MLP juga dikaji.  Bagi pembangunan model RBF, 

kesan nilai MSE, nilai radius (σ), bilangan input dan kombinasi input juga turut 

dikaji.  Keputusan kajian menunjukkan model MLP yang optimum ialah model 

dengan struktur empat input (kepekatan biojisim, kepekatan glukosa, suhu dan masa 

reaksi) dan penggunaan fungsi pengaktifan log sigmoid dan linear pada lapisan 

tersembunyi dan lapisan output.  Model ini berkebolehan untuk mencapai nilai indek 

ralat (EI)  sebanyak 7.26% dan nilai-R sebanyak 0.9909 dengan tujuh neuron di 

dalam lapisan tersembunyi.  Di samping itu, model RBF yang mempunyai struktur 

tiga input (kepekatan biojisim, kepekatan glukosa dan masa reaksi) dan nilai radius 

(σ) bersamaan dengan 1.5 memungkinkan model itu untuk mencapai nilai indek ralat 

sebanyak 6.48% dan nilai-R sebanyak 0.9926.  Struktur yang optimum untuk model 

RBF ialah 3-7-1.  Oleh sebab itu, kajian mendapati kedua-dua model mempunyai 

keupayaan penyeluruhan yang bagus.  Walaubagaimanapun, kajian juga mendapati 

model RBF lebih sesuai digunakan kerana keupayaannya yang lebih baik dari model 

MLP dan juga dari segi kadar keupayaannya yang tinggi untuk mendapatkan nilai 

anggaran kepekatan asid laktik untuk proses yang dikenal pasti. 
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CHAPTER I 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Production of lactic acid is conducted either by a chemical synthesis process 

or by carbohydrate fermentation.  The chemical process is done commercially based 

on lactonitrile (Marques et al., 2008, Narayanan et al., 2004,).  The chemical 

synthesis is performed by the hydrolysis of lactonitrile by strong acids.  Base-

catalyzed degradation of sugars, oxidation of propylene glycol, reaction of 

acetaldehyde, carbon monoxide and water at elevated temperature and pressure, 

nitric acid oxidation of propylene and hydrolysis of chloropropionic acid are also 

alternative routes to the chemical synthesis of the lactic acid (Mussatto et al., 2008).  

Unfortunately, this process depends on by-products from other industries and it 

produces a mixture of L (+) and D (-) lactic acid isomers (Nandasana and Kumar, 

2008, Pal et al., 2009).  

 

 

The other route to produce lactic acid is through fermentation.  Fermentation 

of lactic acid is a carbohydrate fermentation whereby sugar is converted by the 

microorganism known as lactic acid bacteria (LAB).  The typical sugar used in the 

fermentation is glucose.  The most common LAB used for lactic acid fermentation is 
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from Lactobacillus strains such as Lactobacillus amylophilus, Lactobacillus 

bulgaricus, Lactobacillus delbreuckii, Lactobacillus leichmanii and Lactobacillus 

plantarum and others from fungal strains such as Aspergillus niger and from 

Rhizopus species (Pal et al., 2009).  Production of lactic acid from the carbohydrate 

fermentation is preferred because it is less expensive compared to the chemical 

synthesis.  This process has the advantage of selectively producing either of the 

single lactic acid enantiomers. 

 

 

Fermentation of lactic acid can be carried out either by free cell fermentation 

or by immobilization.  Immobilization involves entrapping the lactic acid bacteria 

(LAB) in beads under mildly confined conditions.  These LABs are separated from 

their environment by a protective matrix, film or bead ensuring the extension of shelf 

life and also preventing exposure to the surround environment, in other words, the 

beads provide protection coats for these LABs.  

 

 

In fermentation of lactic acid, the desired variable is the lactic acid 

concentration that shows how efficient the fermentation is.  The key parameters of 

the fermentation are the substrate concentration, pH (Wee et al., 2004; Ye et al., 

1996; Altaf et al., 2006; Huang et al., 2005; Marták et al., 2003), temperature 

(Huang et al., 2005; Idris and Suzana 2006) and the biomass concentration. 

 

 

Instead of undergoing tedious analytical method in measuring of lactic acid 

and biomass concentrations, which results in delay of information, there is a need for 

a model to estimate and predict the concentration of lactic acid and biomass.  

Software sensors make use of easily available process knowledge, including a 

secondary process variables or a process model, to estimate primary variables of 

interest (Chatterjee and Saraf, 2004; Araúzo-Bravo et al., 2004; Facco et al., 2009).  

Software sensors are typically developed or designed from mathematical models 

based on growth kinetics or statistical analysis [such as multi-linear regression 

(MLR) or principal component analysis (PCA)], a „black box‟ neural networks or 

combinations of all of these (Kiviharju et al., 2008). 
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Software sensors work by cause and effect; hence the inherent biologic 

relation between measured and unmeasured states can significantly affect the 

predictive accuracy (Chen, 2006).  Software sensors are also known as virtual 

sensors (Dai et al., 2006); which is a software that processes several measurements 

together (Gonzaga et al., 2009) by using the history of the available data (Kadlec et 

al., 2009).  In the process, each variable, also known as a signal, is interacting with 

each other, producing the desired responses by the end of the process.  These kinds 

of interactions are used for calculating or to estimate new quantities that cannot 

otherwise be measured (Gonzaga et al., 2009).  Some attributes of software sensors 

are as follows (Fortuna et al., 2005): 

 

 

1. Software sensors recommend a low cost alternative to expensive 

hardware sensors. 

2. Software sensors are able to work in parallel with hardware sensors 

giving useful information for fault detection tasks. 

3. The sensors can easily be implemented on existing hardware (e.g. 

microcontrollers) and can easily be returned when system parameters 

change. 

4. The sensors overcome the time delays introduced by slow hardware 

sensors (e.g. gas chromatography), allowing real time of data 

estimation thus improving the performance of the control algorithms.  

 

 

Software sensors have been used in many different processes.  Gonzaga et al. 

(2008) constructed a software sensor to provide a reliable real time of polyethylene 

terephthalate (PET) viscosity to be used in controlling polymerization process.  Lee 

et al. (2008) used soft sensors in wastewater treatment plants (WWTPs) to control 

variables in order to monitor the plants‟ status and to support the operation of local 

wastewater systems.  

 

 

In wine stills, software sensors are applied to estimate the distillate ethanol 

concentration on-line, thus enabling predefined ethanol profiles to be tracked 
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throughout a distillation run (Osorio et al., 2008).  Many studies have been 

conducted regarding the applications of software sensor to enhance, improve, 

optimize, monitor, predict, classify, and control (Kadlec et al., 2009) certain process.  

Therefore, the use of software sensors is a reasonable approach in order to make 

good estimations and predictions of product concentration in lactic acid production.  

Accordingly, it is practical to build a software sensor that is applicable to different 

conditions of the fermentation including the unseen data.  Furthermore, software 

sensors that are well trained are capable of giving estimations for unseen data as long 

as the variables have been covered during training phase.  

 

 

 

 

1.2 Problem Statement 

 

 

 Fermentation is a nonlinear, complex process.  The complexity of the process 

includes the interrelation between each of variables.  This process is also known as 

nonlinear process.  Thus, supervision of the fermentation process must maintain 

certain variables within strict limits, since biological systems are highly sensitive to 

abnormal changes in operation conditions (Araúzo-Bravo et al., 2004).  Meanwhile, 

the analysis of the lactic acid concentration in the fermentation is conducted by using 

high pressure liquid chromatography (HPLC) (Hábová et al., 2004; Marták et al., 

2003; Resa et al., 2007; Shibata et al., 2007; Gao et al., 2009; Ding and Tan, 2006).  

These analysis methods are time consuming, tedious, and the apparatus is expensive 

(Rivier, 2000). 

 

 

Traditionally, the optimizations of biology processes are based on 

mathematical models described by a set of differential equations derived from mass 

balances.  There are models of lactic acid fermentation based on the mathematical 

models (Nandasana and Kumar, 2008; Schepers et al., 2000), yet due to the 

physiological complexity of the microorganisms, these models lack robustness and 

accuracy due to the physiological complexity of the microorganisms (Gueguim-Kana 
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et al. 2007).  Fermentation processes are difficult and complex, hence mathematical 

models find it difficult to represent the interrelations in the process itself.  Moreover, 

the mathematical models are built with such complexes that they produce difficulties 

in estimation. 

 

Most of the biology processes involve a nonlinear activity and this is the 

limitation to the classical modeling technique to describe the evolution of 

microorganisms (Esnoz et al., 2006).  Considering these problems, using the artificial 

intelligence approach in estimating lactic acid concentration seems reasonable, since 

this approach requires less time for development and it has the capability of 

simulating nonlinear processes.  Thus, artificial intelligence tools such as neural 

networks provide a new and better approach (Gueguim-Kana et al., 2007). 

 

 

Experimental work for lactic acid production using cheap substrates can be 

found widely in literature.  However, the modeling process using artificial 

intelligence (AI) has not been extensively explored.  Nandasana and Kumar (2008) 

had developed mathematical modeling for lactic acid production from cheap 

substrate.  The model was developed for the fermentation of cane sugar molasses for 

lactic acid production by Enterococcus faecalis RKY1.  The model takes into 

account the substrate limitation and inhibition, growth- and non-growth associated 

lactic acid production and cell death rate and highly dependent on pH value. 

 

 

Schepers et al. (2000) have developed a simple descriptive neural network 

model for Lactobacillus helveticus growth in pH controlled batch cultures, but the 

developed model was lacking in robustness and generalization.  Acuña et al. (1998) 

have also performed work on the modeling of lactic acid production.  They have 

developed two models, static modeling and dynamic modeling, which estimate the 

cell concentration of lactic acid fermentation.  Though it was found out that, this 

model is able to give good estimates, but it was specifically modeled to estimate the 

cell number of fermentation.   
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1.3 Objective 

 

 

Lactic acid is one of the foremost raw materials that have applications in 

many end-products, especially in foods.  Therefore, an easy and rapid method of 

measurement should be employed as a way of maneuvering a productive 

fermentation.  The general aim of this study can therefore be phrased as the desire to 

develop data based models to estimate the lactic acid concentration in lactic acid 

production as one of the analytical method in fermentation. 

 

 

The objectives of this research are as follows: 

 

1. To develop software sensor model to predict the lactic acid 

concentration from available process measurements (glucose 

concentration, biomass concentration, initial pH, temperature and 

reaction time) using Artificial Neural Network. 

2. To evaluate a suitable scaling or normalization method for the data 

under consideration. 

3. To design an optimum structure or model of the Multilayer Perceptron 

(MLP) and Radial Basis Function (RBF). 

4. To compare both Multilayer Perceptron and Radial Basis Function 

neural network models in terms of their predictive performances on 

lactic acid concentrations. 

 

 

Although this study‟s approach is similar to Acuña et al. (1998), the system 

employed is different.  Acuña et al. (1998) studied the growth of Lactobacillus 

bacteria, while in this study; the focus is on the formation product by Lactobacillus 

delbrueckii in an immobilization system.  The developed models are of a great 

importance due to its capability to predict lactic acid concentration under varying 

operating conditions. 
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1.4 Scope of Study 

 

 

 In order to achieve those objectives, simulation work was conducted based on 

the following limitations. 

 

i. This study is limited to the fermentation of lactic acid with pineapple waste as 

the substrate.  In this work, data were obtained from work done by Idris and 

Suzana (2006). 

 

ii. In the first stage of software sensor development, all raw data used underwent 

pre-processing.  Three different normalization methods were used in order to 

scale the data to the same units and range.  

 

iii. Multilayer Perceptron (MLP) models were developed under varying 

conditions.  The learning algorithm used in this study was Levenberg 

Marquardt (LM) training algorithm.  The MLP structures were optimized in 

regards to the performance goal, input number, input variables, the size of 

hidden nodes and the combinations of transfer function. 

 

iv. Then, Radial Basis Function (RBF) based models were developed and 

optimized.  RBF model was considered because of its performance, which is 

fast and has linear learning.  The input layers were varied in terms of input 

numbers and the combination of variables used in input layer.  Other features 

being varied were the radius and MSE value. 

 

v. The predictive performances of each model were evaluated based on mean 

square error (MSE), error index (EI), regression analysis, graphical plot and 

residual plot. 

 

vi. Finally, the performances of the best predictive ability between MLP and 

RBF structures were compared, and the one that had the better generalization 

and predictive ability was employed as the software sensor in the lactic acid 

production. 
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1.5 Thesis Outline 

 

 

 The outline of the thesis is arranged as follows.  The literature review is 

presented in the Chapter 2 and it includes the review of lactic acid production and 

software sensors.  This chapter also includes reviews on current applications of 

Multilayer Perceptron and Radial Basis Function, and the chapter ends by discussing 

the factors that affect the performances of a neural network models. 

 

 

 In Chapter 3, an explanation and overview of the fermentation process is 

presented extensively.  This is followed by step-by-step development of the artificial 

neural network model covering both of MLP and RBF.  The chapter gives a detailed, 

stage-by-stage description of each model development, including data normalization, 

input variables selection, training and testing. 

 

 

 The findings of the MLP and RBF model are discussed in Chapter 4.  The 

effects of the normalization method, input number on MLP and RBF performances 

are presented.  In this chapter, the effects of the normalization method, hidden nodes, 

model structure size and transfer function of MLP performances are discussed.  

Meanwhile for RBF, findings of the effects of tolerance goal (MSE), radius and goal 

value are also included in this chapter.  These two models are compared at the end of 

the chapter.  Lastly, in Chapter 5, general conclusions are drawn from this research 

and some recommendations for future work are suggested. 
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