PERFORMANCE ANALYSIS OF RADIO OVER FIBER BASED

ON IEEE 802.11a

SITI IDANI AZURIATI BINTI ABDUL AZIZ

UNIVERSITI TEKNOLOGI MALAYSIA

PERFORMANCE ANALYSIS OF RADIO OVER FIBER BASED

ON IEEE 802.11a

SITI IDANI AZURIATI BINTI ABDUL AZIZ

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical – Electronics & Telecommunications)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > APRIL 2011

To my beloved husband

ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many people, researchers, academicians, and practitioners. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my main thesis supervisor, Assoc Professor Dr. Razali Ngah, for encouragement, guidance, critics and friendship. I am also very thankful to a Phd student, Teguh Prakoso for his guidance, advices and motivation. Without their continued support and interest, this thesis would not have been the same as presented here.

I am also indebted to my husband, Mohd Saiful Mahdzir for funding my Master study. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to all my family members.

ABSTRACT

In future wireless communication system, the essential for increased capacity per unit area leads to higher operating frequencies and smaller radio cells. To reduce the system installation and maintenance cost of such system, it is very important to make the Remote Access Point (RAP) or Base Station (BS) as simple as possible. This may be achieved by consolidating signal processing functions at central station (CS). This is the reason why Radio over Fiber (RoF) is introduced. RoF technology entails the use of optical fiber transmission link to distribute Radio frequency (RF) signals from a CS to BS. The purpose of this project is to analyze the performance of a RoF system based on IEEE 802.11a standard by experiment. The idea of employing IEEE 802.11a standard is due to several advantages: the low cost of equipment, its operation in the unlicensed spectrum and its higher data rates. However, original IEEE 802.11a standard is designed for service range of less than 1km. So, it cannot provide a high speed link for long distance. Fortunately, this problem is more on the Medium Access Control (MAC) layer only. By modifying the parameter in the MAC layer, it is possible to overcome the problem. A RoF system design is proposed in this project by using one of the modified protocols. The results show that the performance of the proposed system is excellent for more than 5km of service range. Previous study has been shown that the standard IEEE 802.11a MAC protocol working procedure is feasible for point to point links of up to 2.7 km only when IEEE 802.11a technology is used. Combining the results, it is concluded that a RoF system based on IEEE 802.11a with higher speed and longer distance is achievable.

ABSTRAK

Dalam sistem komunikasi tanpa wayar masa hadapan, keperluan untuk menambahkan kapasiti per unit kawasan membawa kepada frekuensi operasi yang lebih tinggi dan sel radio yang lebih kecil. Untuk mengurangkan kos pemasangan dan penyelenggaraan sistem, adalah penting untuk stesen tapak (BS) menjadi seringkas yang boleh. Ini dapat dicapai dengan menjalankan semua fungsi pemprosesan isyarat di stesen pusat (CS). Oleh sebab inilah, radio atas gentian (RoF) diperkenalkan. Teknologi RoF melibatkan penggunaan talian penghantaran gentian optik untuk menyebarkan isyarat frekuensi radio (RF) dari CS ke BS. Projek ini bertujuan untuk menganalisa perlaksanaan system RoF berdasarkan piawai IEEE 802.11a secara eksperimen. Idea menggunakan piawaian IEEE 802.11a adalah kerana beberapa kelebihan: kos peralatan yang rendah, beroperasi pada spektrum tanpa lesen dan kadar penghantaran data yang lebih tinggi. Walau bagaimanapun, pada mulanya piawaian IEEE 802.11a direkabentuk untuk jarak operasi kurang dari 1km. Oleh itu, ia tidak boleh melakukan penghantaran untuk jarak yang jauh. Tetapi, masalah ini hanyalah pada lapisan kawalan akses media (MAC). Dengan mengubah parameter dalam lapisan MAC, masalah ini mungkin boleh diatasi. Satu rekabentuk sistem RoF dicadangkan dalam projek ini dengan menggunakan salah satu protokol yang telah diubahsuai. Keputusan menunjukkan perlaksanaan sistem yang dicadangkan adalah cemerlang sehingga melebihi jarak 5km. Kajian sebelum ini telah menunjukkan prosedur kerja IEEE 802.11a boleh melakukan penghantaran isyarat titik ke titik sehingga 2.7km. Bila semua keputusan diambilkira, dapatlah disimpulkan bahawa sistem RoF menggunakan IEEE 802.11a dengan kelajuan yang lebih tinggi dan jarak yang lebih jauh dapat dicapai.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF ABBREVIATIONS	xiv
	LIST OF SYMBOLS	xvi
	LIST OF APPENDICES	xvii

INTRODUCTION	1
1.1 Project Background	1
1.2 Problem Statement	2
1.3 Objective	4
1.4 Scopes	4
1.5 Project Report outline	4

1

2	RADIO OVER FIBER TECHNOLOGY	6
	2.1 Introduction	6
	2.2 Radio over Fiber	6
	2.3 Benefits of RoF Technology	8

	2.3.1	Low Attenuation Loss	9
	2.3.2	Large Bandwidth	9
	2.3.3	Immunity to Radio Frequency interference	10
	2.3.4	Easy Installation and Maintenance	10
2.4	Limita	ation in RoF technology	10
2.5	Appli	cations of RoF Technology	11
2.6	Optica	al Transmission Link	12
	2.6.1	Optical Fiber	12
	2.6.2	Optical Transmitters	13
	2.6.3	Optical Receivers	13
2.7	RoF A	Analog optical Links	14
	2.7.1	Basic Radio Signal Generation Methods	15
	2.7.2	RoF Link Configurations	16

3	IEF	CE 802.11 WLAN STANDARDS	20
	3.1	Introduction	20
	3.2	WLAN Standards	21
		3.2.1 IEEE 802.11-1997 (802.11 Legacies)	22
		3.2.2 IEEE 802.11a	23
		3.2.3 IEEE 802.11b	24
		3.2.4 IEEE 802.11g	24
		3.2.5 IEEE 802.11-2007	25
	3.3	RoF Based WLAN Requirement	25
	3.4	The Advantages of Using IEEE 802.11 standard	27
	3.5	Feasibility of Applying RoF into WLAN	28
	3.6	IEEE 802.11 Radio Design	29
	3.7	IEEE 802.11 MAC Protocol	30
		3.7.1 The PCF Protocol	31
		3.7.2 The DCF Protocol	32
	3.8	Current and Past Researches	34
		3.8.1 Analysis of IEEE 802.11 RoF Home Network	34
		3.8.2 Propagation delay Influence in IEEE 802.11	35

3.8.3	A High Gain Photonic Antenna for High Speed	36
3.8.4	Performance Impairments in SMF RoF System	37

4	RES	SEARCH METHODOLOGY	38
	4.1	Introduction	38
	4.2	Methodology	38
	4.3	Proposed System	39
		4.3.1 Nstreme2 Protocol	40
	4.4	Components of Radio over Fiber for Experiments	41
		4.4.1 Routerboard	41
		4.4.2 WLAN Cards	42
		4.4.3 PSI-1601 Microwave Photonic Links	45
		4.4.4 Fiber Farm	47
		4.4.5 Antenna	48
		4.4.6 Connectors	50
			50

5	RES	SULTS AND ANALYSIS	51
	5.1	Introduction	51
	5.2	Mikrotik Routerboard Set-up	51
		5.2.1 Point-to-point Links Connection	52
		5.2.2 Nstreme2 Application	55
	5.3	Experiments	59
		5.3.1 Experiment 1: Testing the Equipments used	59
		5.3.1.1 Experiment 1(a): Power and frequency	59
		5.3.1.2 Experiment 2(b): Power from PSI-1601	60
		5.3.2 Experiment2: Performance Analysis of Nstreme2	63
		5.3.3 Experiment3: Performance Analysis of RoF Link	69

6 CC	ONCLUSION AND FUTURE WORK	75
6.1	Conclusion	75
6.2	Future Work	76
REFERENCES		78
Appendices A-E		81-86

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	Evolution of WLAN standards	21
3.2	802.11 networks standards	22
3.3	Main Parameters of the OFDM	27
4.1	RB433 Specifications	42
4.2	R52 Specifications	44
4.3	WLM54AG 6B-SuperAG Specifications	45
4.4	Specification of PS-1601 Microwave Photonic Links	46
4.5	Technical specifications for fiber farm	48
4.6	Technical specifications for panel antenna	49
5.1	Experimental Result for 100m distance (P16 to P04)	67
5.2	Experimental Result for 1km distance (P16 to Institut	
	Ibnu Sina)	67
5.3	Experimental Result for Experiment 3	68

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Components of a narrowband wireless access network	3
2.1	The concept of radio over fiber system	8
2.2	Optical transmission link	12
2.3	Intensity-modulation direct-detection (IMDD) analogue	
	optical link.	16
2.4	Representative RoF link configurations (a) EOM, RF	
	modulated signal (b) EOM, IF modulated signal (d) direct	
	modulation	19
3.1	Timing diagram of a IEEE 802.11 successful	
	transmission	29
3.2	The PCF of the 802.11 MAC protocol	31
3.3	The DCF of the 802.11 MAC protocol	32
4.1	Flowchart of the experiment process	39
4.2	Proposed system for broadband internet backhaul link	
	based on WLAN and RoF technology	40
4.3	Mikrotik routerboard	42
4.4	R52 wireless card used in one station	43
4.5	WLM54AG 6B-SuperAG	43
4.6	PSI-1601 Microwave photonic links	46
4.7	Fiber farm	47
4.8	Panel antenna	49
4.9	SMA connector, FC/APC cable and power splitter	50
5.1	Links connection	52

5.2	Access point configuration result	53
5.3	IP address for access point	53
5.4	Station (client) configuration result	54
5.5	IP address for station (client)	54
5.6	Ping from access point to station	55
5.7	Nstreme2 link connection	55
5.8	First WLAN card, second WLAN card and Nstreme2	
	interface setting	56
5.9	Enabling Nstreme2	56
5.10	Assigning IP address and creating the bridge	57
5.11	First WLAN card, second WLAN card and Nstreme2	
	interface setting	57
5.12	Enabling Nstreme2	58
5.13	Assigning IP address and creating the bridge	58
5.14	Experimental setup for testing the radio card	60
5.15	Experimental setup for testing the RoF link	61
5.16	Experiment 2 (b)	61
5.17	Result from portable spectrum analyzer	62
5.18	Spectrum analyzer with lower noise level	62
5.19	Experimental setup for Nstreme2	63
5.20	Experimental setup for point to point (P2P)	63
5.21	Communication from P04 to P16	64
5.22	Station at Institut Ibnu Sina	64
5.23	Station at P16	65
5.24	Communication between P16 to Institut Ibnu Sina	65
5.25	Planned experimental setup for experiment 3	69
5.26	Actual experimental setup for experiment 3	70
5.27	Different lengths of fiber used in experiment 3	70
5.28	Fiber farm used to demonstrate the fiber length	71
5.29	Graph speed versus fiber length	73

LIST OF ABBREVIATIONS

RAP	-	Remote Access Point
BS	-	Base Station
CS	-	Central Station
RS	-	Remote Station
RoF	-	Radio over Fiber
MU	-	Mobile Unit
WTU	-	Wireless Terminal Unit
BB	-	Base Band
IF	-	Intermediate Frequency
RF	-	Radio Frequency
DCF	-	Distributed Coordination Function
MAC	-	Medium Access Control
2G	-	Second Generation
3G	-	Third generation
CDMA	-	Code Division Multiple Access
GPRS	-	General Packet Radio Service

WLAN	-	Wireless Local Area Network
SMF	-	Single Mode Fiber
EMI	-	Electromagnetic Interference
NF	-	Noise Figure
DR	-	Dynamic Range
RIN	-	Relative Intensity Noise
OFDM	-	Orthogonal Frequency Division Multiplexing
BER	-	Bit Error Rate
AM	-	Amplitude Modulation
FM	-	Frequency Modulation
PM	-	Phase Modulation
ASK	-	Amplitude Shift Keying
FSK	-	Frequency Shift Keying
PSK	-	Phase Shift Keying
OOK	-	On-off Keying
BB	-	Baseband
PD	-	Photodiode
IMDD	-	Intensity Modulation Direct Detection
PSTN	-	Public Switched Telephone Network
LD	-	Laser Diode
EOM	-	External Optical Modulator
MH	-	Mobile Host
SDRAM	-	Synchronous Dynamic Random Access Memory
DDR	-	Double Data Rate
CPU	-	Central Processing Unit

LIST OF SYMBOLS

km	-	Kilometer
μs	-	Microsecond
nm	-	Nanometer
mm	-	Milimeter
G	-	Giga
Н	-	Hertz
Т	-	Tera
dB/km	-	Decibels per Kilometer

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A	Nstreme2 Group Settings	81
В	Experiment 2 (P16 to P04) details result	82
С	Experiment 2 (P16 to Ibnu Sina) details	83
	result	84
D	Experiment 3 details result	85
E	Data sheets	86

CHAPTER 1

INTRODUCTION

1.1 Project Background

In cellular networks, the current trends now are to reduce cell size to accommodate more users and to operate in the microwave/millimeter wave frequency bands to avoid spectral congestion in lower frequency bands. This requires a large number of base stations (BS) to cover a service area. The base station also must be cost effective to make it success in market. This requirement has led to the development of system where functions such as signal routing or processing, handover and frequency allocation are carried out at a central control station (CS), rather than at the BS. An interesting way for connecting a CS with BSs in such a radio network is through an optical fiber network, since fiber has low loss, immunity to EMI and broad bandwidth. The radio signals from CS are transmitted over optical fiber and will be radiated by remote antennas. The cost is reduced since the BS or Remote Station (RS) needs to perform only simple functions, and it is in small size. Besides that, the resources provided by the CS can be shared among many antenna BSs. This technique of modulating the radio frequency (RF) subcarrier onto an optical carrier for distribution over a fiber network is known as radio over fiber (RoF) technology [1].

Interest in RoF network has been gaining increasing popularity for RF distribution networks. This project examines the link transmission quality and performance characteristics of RoF between the CS and RS by experiment. The signal used in this project is 5GHz signal compliant to IEEE 802.11a standard. Signal strength, speed and throughput of the experimental link are presented as a performance indicator to show the effectiveness of RoF signal distribution. A proposed system of RoF based on IEEE 802.11a is used for this purpose.

1.2 Problem Statement

Figure 1.1 illustrates the configuration of narrowband wireless access systems (e.g. GSM). The central office handles call processing and switching, while the Base Stations (BS) act as the radio interfaces for the Mobile Units (MU) or Wireless Terminal Units (WTU). The BSs may be linked to the central station (CS) through either analogue microwave links or digital fiber optic links. Once the baseband signals are received at the BS, they are processed and modulated onto the appropriate carrier. The radius covered by the signal from the BS is the cell radius.

All the MU/WTU within the cell, share the radio frequency spectrum. In general, low carrier frequencies offer low bandwidth. Low-frequency RF signals allow for larger cells, due to the longer reach of the radio waves. The larger cells enable high mobility, but lead to poor spectrum efficiency, since the spectrum is shared by all MUs/WTUs operating within the cell. Therefore, for broadband wireless communication systems to offer the needed high capacity, it appears inevitable to increase the carrier frequencies and to reduce cell sizes [2].

The need for increased capacity per unit area leads to higher operating frequencies (above 6GHz) and smaller radio cells. To reduce the system installation and maintenance costs of such system, it is imperative to make the remote access point (RAP) as simple as possible. This may be achieved by consolidating signal

processing functions at a centralized headend or central station. Because of this, RoF technology is introduced and IEEE 802.11a is a very attractive standard due to several advantages.

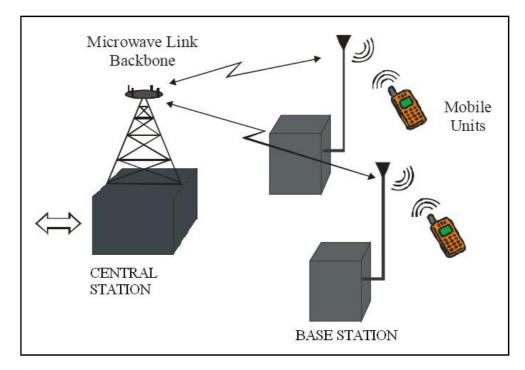


Figure 1.1: Components of a narrowband wireless access network [8]

However, in RoF systems, the longer the fiber length the higher the delay imposed to the system. For example, using 1km of fiber introduces approximately 5µs of delay to each packet that passes through. This extra propagation delay poses a challenge to the system design since this delay exceeds the 1µs propagation delay boundary defined in the IEEE 802.11 standard where only wireless propagation is assumed [6]. As a result, the performance of the distributed coordination function (DCF) of the medium access control (MAC) layer may degrade significantly or even break down entirely. It is noted that network fails long before physical layer limitations due to the timeout values defined within the MAC protocol.

1.3 Objective

The objective of this project is to analyze the performance of RoF system by experiment. A proposed system of RoF is used for this purpose. The performance parameter such as signal strength, speed and throughput is measured by experiment. The measurement of the performance parameter is analyzed.

1.4 Scopes

In order to achieve the objective of this project, there are following scopes will be covered:

- (i) To study and understand the concept of RoF system.
- (ii) This project will focus on set up and analyze the performance of RoF system.
- (iii) The equipments that will be used for the experiment are recognized.
- (iv) The analysis will be carried out by experiment.

1.5 **Project Report Outline**

The project report consists of six chapters which include Introduction; RoF Technology; IEEE 802.11 WLAN Protocol; Research Methodology; Results and Analysis, and finally Conclusion and Future Works.

For Chapter Two, RoF technology, will explain about the introduction of RoF, its advantage, its application and its optical transmission link.

In Chapter Three, IEEE 802.11 WLAN standards will cover about the characteristics of IEEE 802.11 standards, the IEEE 802.11 MAC protocol and the feasibility of applying RoF into WLAN standard. Besides that, this chapter also shows brief explanation about current and past researches regarding the issue on this project.

Chapter Four is explained about the research methodology. While Chapter Five shows the result and analysis of this project. And lastly, the conclusion and future work are stated in Chapter Six.

REFERENCES

- K. Lee, "*Radio over Fiber for Beyond 3G*," 2005 IEEE International Topical Meeting on Microwave Photonics, 2005, pp. 9-10
- M. J. Cryan, M. Dragas, J. Kung, V. Jain, F. Fornetti, T. Houle, R. Varazza, and M. Hill, "A 2.4-GHz wireless-over-fiber transceiver using photonic active integrated antennas (PhAIAs)," Microwave and Optical Technology Letters, vol. 48, pp. 233-237, 2006
- T. Prakoso, R.Ngah, T. A. Rahman, Z. Ghassembloy, "A High Gain Active Photonic Antenna for high speed Backhaul Link: A System Analysis", 17th International Conference on Telecommunications (ICT2010), 4-7 April 2010, Doha Qatar.
- A. Cerquira, D.C Valente e Silva. "Performance Analysis of a Radio over Fiber System based on IEEE 802.15.4 standard in a real optical network", Mikrowave and Optical Technology Letters, Vol. 51, August 2009.
- M.L. Yee, A. N. Oma, M. Sauer, "Performance Analysis of IEEE 802.16e WIMAX Radio over Fiber Distributed Antenna System", Microwave Symposium Digest, 2009. MTT'09. IEEE MTT-S International
- B. K Sabet, M. Mjeku, N. J Gomes, "Performance Impairments is Single Mode Radio over Fiber Systems Due to MAC Constraints", Journal of Lightwave Technology, Vol. 26, Issue 15, pp. 2540-2548, 2008
- B. K Hong, "Radio over Fiber based Network Architecture", Master Thesis, Berlin 2003.
- 8. N. O Anthony, "*Radio over Fiber Technology for Broadband Wireless Communication System*", PhD thesis, Zambia, 2005.
- 9. D. Novak, "Fiber Optics in Wireless Applications", OFC 2004 Short Course 217, 2004.
- D. Wake, "Radio over Fiber Systems for Mobile Applications in Radio over Fiber Technologies for Mobile Communications Networks", H. Al-Raweshidy, and S. Komaki, ed. (Artech House, Inc, USA, 2002).

- 11. A. Powell, "Radio over Fiber Technology: Current Applications and Future Potential in Mobile Networks – Advantages and Challenges for a Powerful Technology in Radio over Fiber Technologies for Mobile Communications Networks", H. Al-Raweshidy, and S. Komaki, ed. (Artech House, Inc, USA, 2002).
- 12. LAN / MAN Standard Committee, "DRAFT Supplement to the IEEE P802.11a/D7.0 Standard", IEEE Standards Department, USA, 1999.
- E. I. Ackerman and C. H. Cox, "*RF Fiber-Optic Link Performance*", IEEE Microwave, pp. 50.58, Dec. 2001.
- 14. H. Al-Raweshidy and S. Komaki, editors, "*Radio over Fiber Technologies* for Mobile Communications Networks", Norwood: Artech House, 2002.
- W. David, N. Anthony, J.G. Nathan, "Radio over fiber Link Design for Next Generation Wireless Systems", Journal of Lightwave Technology, vol. 28, issue 16, pp. 2456-2464, 2010.
- 16. S.P. Chul, Y.K. Yeo, L.C. Ong, "Demonstration of the GbE Service in the Converged Radio over Fiber/Optical Networks", Journal of Lightwave Technology, Vol. 28, Issue 16, pp. 2307-2314,2010.
- W. Xu, Z. Xiaoping, Z. Hanyi, "BER Performance Analysis of Radio over Fiber System with Different Modulation Schemes", Optical Transmission Systems, Switching, and Subsystems VII. Edited by Chiaroni, Dominique. Proceedings of the SPIE, Volume 7632, pp. 76321V-76321V-6 ,2009.
- 18. B. L. Dang and I. Niemegeers, "Analysis of IEEE 802.11 in Radio over Fiber Home Networks," Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary: IEEE Computer Society, 2005.
- 19. K.K. Leung, M. V. Clark, B. McNair, Z. Kostic, L. J. Cimini, and J. H Winters, "Outdoor IEEE 802.11 Cellular Networks: Radio and MAC Design and Their Performance," IEEE Transactions on Vehicular Technology, vol.56, pp.2673-2684, September 2007.
- 20. E. Lopez-Aguilera, J. Casademont, and J. Cotrina, "Propagation delay influence in IEEE 802.11 outdoor networks," Journal Wireless Networks, Volume 16 Issue 4, May 2010
- L. Kleinrock, *Queueing Systems*, Vol. 2: Computer Applications, Hoboken, NJ: Wiley, 1976, p.398.

22. IEEE 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. (2007 revision). IEEE-SA. 12 June 2007.