PERCEPTION OF TRIANGULATED STRUCTURE SYSTEM IN HIGH-RISE BUILDING DESIGN

ABOLGHASEM BASSIR

A thesis submitted in fulfilment of the requirements for the award of the Master of Architecture

Faculty of Built Environment Universiti Teknologi Malaysia

SEPTEMBER 2012

To my beloved wife and my lovely children for their sincere help and companion during my studies

ACKNOWLEDGEMENT

I would like to thank my supervisor Prof. Dr. Mohd Hamdan Bin Haji Ahmad for his valuable suggestions, guidance and consistent support throughout this thesis. My thanks are also due to the members of staff of Architecture Department, and Faculty of Built Environment, Universiti Teknologi Malaysia, who contributed to my research.

ABSTRACT

Design of a high-rise building, like any architectural design, is a complex multidisciplinary process with the objective to discover, detail and construct a system to fulfil a given set of performance requirements. In the past decade, significant developments in architectural expression, and increasing demand for lighter and taller buildings resulted in a systematic evolution of structural systems. developments in the steel industry contributed to the structural efficiency of these new framing concepts. The main design criteria for tall buildings are governed by the lateral stiffness in order to resist wind and earthquake forces. Many countries in the world are exposed to destructive forces of nature like tsunamis, earthquakes and Considering these factors, construction which can deal with natural tornados. disasters is needed for the new generation of structure and Architecture. Although structural engineers have come up with solutions for these criteria, still the numbers of massive concrete structures are the limit for architects to design more efficient space in plan and forms. This research presents a different description of huge triangle frame as a mega structural system for optimal structural design. This structure system provides capability to design a more diverse high rise in terms of shape and forms. The highlighted advantages and disadvantages of this structure system, is compared to the other routine structural systems. Therefore four different buildings are chosen to be compared in terms of criteria involved in high rise design. The efficiency of the comparison of this structural system is the main concern of this research. While this study focuses on high rise buildings, the proposed structural system for the conceptual design is directly applicable to any type of architectural design and objective related criteria.

ABSTRAK

Rekabentuk bangunan tinggi seperti mana rekabentuk senibina yang lain, adalah satu proses pelbagai disiplin yang kompleks dengan objektif untuk menemui, memperinci dan membina satu sistem untuk memenuhi satu set keperluan prestasi yang dikehendaki. Pada dekad yang lalu, perkembangan yang ketara dalam ungkapan senibina, dan permintaan yang semakin meningkat bagi bangunan yang ringan dan tinggi mengakibatkan satu evolusi yang sistematik dalam sistem struktur. Perkembangan dalam industri keluli menyumbang kepada kecekapan struktur berkonsepkan kerangka baru. Kriteria rekabentuk utama bagi bangunan tinggi ditentukan oleh kekukuhan sisi untuk menahan daya angin dan gempa bumi. Banyak negara di dunia terdedah kepada bencana alam semulajadi seperti Tsunami, gempa bumi dan tornado. Mengambil kira faktor-faktor ini, pembinaan struktur yang boleh menangani bencana alam adalah diperlukan untuk generasi senibina dan struktur yang baru. Walaupun jurutera struktur telah menemui penyelesaian untuk kriteria ini, namun bilangan struktur konkrit besar adalah takat bagi arkitek untuk mereka bentuk ruang yang lebih cekap dalam pelan dan bentuk. Penyelidikan ini membentangkan huraian perbezaan bingkai segitiga besar sebagai satu sistem struktur mega untuk rekabentuk struktur yang optimum. Sistem struktur ini menyediakan keupayaan rekabentuk untuk bangunan tinggi yang pelbagai dari segi bentuk dan rupa bentuk. Kelebihan dan keburukan yang diketengahkan dalam sistem struktur ini telah dibandingkan dengan sistem rutin struktur lain. Oleh itu, empat bangunan yang berlainan dipilih untuk dibandingkan dari segi kriteria yang terlibat dalam rekabentuk bangunan tinggi. Perbandingan kecekapan sistem struktur ini adalah menjadi tujuan utama kajian ini. Walaupun kajian ini memberi tumpuan kepada bangunan tinggi, cadangan sistem struktur untuk konsep rekabentuk secara langsung boleh digunapakai dalam apa-apa reka bentuk senibina dan objektif kriteria yang berkaitan.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xiv
	LIST OFAPPENDICES	XX
1	INTRODUCTION	1
	1.1 Problem Statement of Topic	1
	1.2 History and Development	1
	1.3 Space Triangle Frame Structure	2
	1.4 High Rise Buildings and Mega Structure	2
	1.5 Research Questions	2
	1.6 Research Aim	3
	1.7 Research Objectives	3
	1.8 Scope of the Research	3
	1.9 Research Methodology in Brief	4
	1.10 Organization of Thesis	4
2	LITERATURE REVIEW	5
	2.1 History of High Rise Building	5

2.2	Histori	cal Background of the Structure of High-rise	
	Buildin	ngs	7
2.3	Deman	ds on High-rise Structures	11
	2.3.1	General	11
	2.3.2	Vertical Loads	11
	2.3.3	Horizontal Loads	12
	2.3.4	Unexpected Deflections	12
	2.3.5	Wind Loads	12
	2.3.6	Earthquake Loads	13
2.4	The Ba	asic Materials: Steel and Concrete and their	
	Combi	nations	14
	2.4.1	General	14
	2.4.2	Steel Reinforced Concrete	15
		2.4.2.1 Normal-strength Concrete	15
	2.4.3	High-strength Concrete	16
	2.4.4	Lightweight Concrete	16
	2.4.5	Combined Systems	17
2.5	System	ns of Reinforcement	18
	2.5.1	General	18
	2.5.2	Fundamental Principles of Reinforcement	20
	2.5.3	Rigid Frames	21
	2.5.4	Braced Frames	23
	2.5.5	Simple Diagonal Bracing (Alternative a)	24
	2.5.6	X-bracing (Alternative b)	24
	2.5.7	K-bracing (Alternative c)	25
	2.5.8	Shear Walls, Coupled Walls and Cores	26
	2.5.9	Tube Structures	31
	2.5.10	Exterior Concrete Tubes	33
	2.5.11	Steel Rigid Frame Tubes	34
	2.5.12	Braced Frame Tubes	35
	2.5.13	Bundled Tube Structures	38
	2.5.14	Core-outrigger Structures	39
2.6	Load-b	pearing Systems for Floors	44

	2.6.1	General	44
	2.6.2 I	Flat-slab Floors in Reinforced Concrete	45
	2.6.3 I	Floors with Reinforced Concrete Joists	45
	2.6.4 I	Floors with Reinforced Concrete Suspender	
	ł	peams	47
	2.6.5	Composite Floors	47
	2.6.6	Space Frames for Floor Systems	50
	2.6.7 I	Pre-stressed Concrete Slabs	51
	2.6.8 I	Flat-slab Floors with Displacement Bodies	52
	2.7 Walls a	nd Columns	52
	2.8 Prospec	ets	56
3	RESEARCI	H DESIGN AND METHODOLOGY	59
	3.1 Introduct	tion	59
	3.2 The Meth	nodological Approach	59
	3.3 Methodo	logy Adopted in the Research	60
	3.4 Research	Techniques	61
	3.4.1	Field Observation Technique	61
	3.4.2	Questionnaire Technique	62
	3.4.3	Focused Interview Technique	63
	3.5 Data Col	llection Procedure	63
	3.5.1	Questionnaire Design	63
	3.6 Survey F	Procedure	64
	3.7 Data Pro	cessing	65
	3.8 Review		65
4	CASE STU	DIES	67
	4.1 Introduc	etion	67
	4.2 Trump In	nternational Centre	79
	4.3 Aon Cen	tre	80
	4.4 John Hai	ncock Centre	81

5	PERCEPTION OF MEGA SP	ACE TRIANGLE	
	FRAME STRUCTURE IN HIGH R	ISE DESIGN 8	3 5
	5.1 Introduction	8	35
	5.2 Personal Particular of Respondent	8	35
	5.3 Physical Qualities That Promote	Mega Space Frame	
	from Respondent Perspective	8	88
	5.3.1 Form and shape of High	h-rise 8	88
	5.3.2 Simplify and Creativity	in Terms of Design	
	a Floor Plan	9	2
	5.3.3 More Option to Design	volume in High-rise 9)5
	5.4 Preference to Choosing Mega Spa	ace Frame in Term of	
	Structural System Benefit and It	s Influence to High-	
	rise Design	9	6
	5.4.1 Architect and Civil Er	ngineers Background	
	of Mega Space Frame	9	7
	5.4.2 Ability for Prefabrication	on 10	00
	5.4.3 Stability	10	02
	5.4.4 Diversity in Form and S	Shape 10	04
	5.4.5 Well Maintained, Safe	and Secure 10	05
	5.5 Preference of Using Mega Spa-	ce Frame Structural	
	System in Terms of Construction	of High-rise 10	06
	5.6 Interview Summary	10	09
	5.6.1 Prof. Dr. Mahmood Golabchi	i 10	09
	5.6.2 Prof. Dr. Ali Kaveh	1:	10
6	DISCUSSION AND CONCLUSION		13
	6.1 Introduction		13
	6.2 Implications		16
	6.3 Further study & Recommendations	11	16
REFERENC	ES	13	17
APPENDIX		119-	-130

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Traffic loads in offices	12
2.2	Comparison of various building materials	15
3.1	Sample size required for various sampling at 95%	
	confidence level	65
5.1	Status of responder * Gender	86
5.2	Educational back ground	86
5.3	Professional experience	86
5.4	What is your main concern in design process?	87
5.5	How much is the structure system important to you in 1st	
	stage design?	87
5.6	Have you ever heard about mega space frame structures	
	before?	88
5.7	This system is able to make harmony between form and	
	environment	89
5.8	Has more efficiency in order of form in High-rise	90
5.9	This system is able to make harmony between form and	
	Technology	91
5.10	Has more efficiency in terms of form in floor plans	92
5.11	Create innovation and creativity in Architecture	93
5.12	I would prefer to use this system to simplify floor plans	
	design	94
5.13	I would prefer to use this system to have unlimited space	95
5.14	I feel free to design any shape and volume for building	96
5.15	More popular than the other systems	97
5.16	Well-known by structural engineers	98
5.17	Well-known by the architects	99
5.18	Has Innovation and creativity in structure	100

5.19	Has ability for prefabrication	101
5.20	More stable in high-rise structure	103
5.21	More stable against Wind load and earth quake	103
5.22	Has ability to use different joints and connections	103
5.23	More efficient system in terms of form in high-rise	
	structure	104
5.24	A lot more diversity in form and shape	104
5.25	Very well maintained and managed	105
5.26	Safe and secure	106
5.27	This system is one of the best structural system for what I	
	like to design	106
5.28	Ability for use in high-rise construction	107
5.29	No other structure system can compare with this system in	
	terms of construction method	108
5.30	Increase construction speed and reduce processing time	108
5.31	Reduce construction cost	108
5.32	Has more efficiency in construction Items	109
5.33	The questions and the responses from Prof, Dr. Mahmood	
	Golabchi & Prof,Dr .Ali Kaveh-1 (G: Dr M.Golabchi and	
	K : Dr. A. Kaveh)	110
5.34	The questions and the responses from Prof, Dr. Mahmood	
	Golabchi & Prof,Dr .Ali Kaveh-2	111
5.35	The questions and the responses from Prof, Dr. Mahmood	
	Golabchi & Prof,Dr .Ali Kaveh-3	112

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Behaviour of high-rise structure under lateral loading	6
2.2	Connection detail, interior columns of the Fair Building,	
	Chicago,1892, architect.: William Le Baron Jeney	8
2.3	a) Monadnock Building, Chicago and b) Section	
	through base of the Monadnock Building.	9
2.4	Columns as various steel composites : a) concrete in	
	filled steel sections, b) steel sections partially encased in	
	concrete and c) steel sections fully encased concrete	
	(Golabchi, 2008)	18
2.5	Breakdown of costs for vertical and horizontal load	
	removal	19
2.6	Unstable and stable arrangements of structural stiffening	
	elements	20
2.7	Influence of core positioning on horizontal loading	20
2.8	Bending and shear drift of walls and frames with	
	equivalent system (El _{equ} -equivalent bending rigidity,	
	GA _{equ} - equivalent shear rigidity)	21
2.9	Different arrangements of frame bracing, with and	
	without openings	23
2.10	Different forms of diagonal branching	24
2.11	Braced frame of the Empire State Building	27
2.12	Interaction of shear walls and frames, coupled by non-	
	rigid connections (Golabchi, 2010)	28

2.13	Rigid beam coupling of two shear walls and stresses in	
	the beams M_1, M_2 - reverse bending moments, N-normal	
	forces in columns	28
2.14	View and ground plan of the Main tower, Frankfurt,	
	architects: Schweger + Partner, structure:	
	Burggraft, Weichinger + Partner, and Forster +	
	Sennewald	30
2.15	View and ground plan, a design for the new Zurich	
	Versicherung high-rise, Frankfurt, architects: Christoph	
	Mackler, Structure: Bollinger+Grohmann	30
2.16	Distribution of normal stress in box grider, without (left)	
	and with (right) shear-lag effect	32
2.17	a) Messeturm Frankfurt, ground plan b) Moment	
	distribution in interior and perforated façade of the	
	Messeturm	34
2.18	John Hancock Centre, Chicago, architect: SOM/ Fazlur	
	Khan	36
2.19	a) and b) View of bracing system of the Citicorp Centre,	
	New York, architectures: The Stubbins Associates and	
	Emery Roth & Sons, c) Oscillation damper in Citicorp	
	Centre	37
2.20	a) Sears Tower, Chicago, architects: SOM/Bruce	
	Graham and Fazlur Khan, b) isometric view, structure of	
	Sears Tower, Chicago	39
2.21	Action of outrigger structures: a) Core-outrigger system	
	without loading, b) deformation without influence of	
	outrigger, c) deformation with reverse rotation caused	
	by outrigger	40
2.22	Outrigger on the 5 th story (machine floor) of the Main	
	tower, Frankfurt	41
2.23	Ground plan PETRONAS Tower, interior core and	
	mega columns, Kuala Lumpur, architects	42

2.24	View, section and ground plan Jin Mao Building,	
	Shanghai, architects: SOM	43
2.25	Ground plan and isometric view Millennium Tower,	
	Frankfurt, architects: AS & P, structure:	
	Bollinger+Grohmann	44
2.26	Thermo active flat-slab flooring in reinforced concrete,	
	Deutsche Post AG, Bonn, architects: Murphy/John,	
	Chicago	46
2.27	Floor site cast concrete with griders	46
2.28	Floor with suspender beams	47
2.29	Composite floor with steel griders	48
2.30	Composite floor constructing with bearing trapezoid	
	decking and concrete topping	49
2.31	Complex composite floor construction in the Commerce	
	bank high-rise, Frankfurt	49
2.32	Haunched floor with space for installations. View and	
	section, preliminary design for Wasthafen tower,	
	Frankfurth	50
2.33	prestressing element without composite in a flat-slab	
	floor	51
2.34	Flat-slab floor without displacement bodies	
	(Bubbledeck System)	52
2.35	Diagonal reinforcement cross, new Post Tower, Bonn,	
	architects: Murphy/Jahn, Chicago	53
2.36	Steel Composite walls, Commerzbank Frankfurt,	
	architects: Foster and Partners, London	54
2.37	(a-c) Reduction of column cross section and	
	compressive reinforcement by increasing the grade of	
	concrete	55
2.38	Steel composite columns with interior steel core,	
	Westhafen Tower, Frankfurt	56

xvi

2.39	Millennium Tower, project in Tokyo Bay, architects:	
	Foster and partners, London, Obayashi Corporation,	
	Tokyo, model: detail and view	58
4.1	Examples of triangular structures and compositions that	
	can be found in the nature	68
4.2	Triangles can create a triangular pyramid that is simple	
	but at the same time ultimately stable structure	69
4.3	Triangles can be seen in old and modern structures in	
	the world	69
4.4	Combinations of different pyramids frame structures	69
4.5	Some of Application of space frames	70
4.6	Geometric different pattern frames structure	70
4.7	Some of triangle frame structure in different scales	71
4.8	Space Frame Structures were made by currently	
	available materials	72
4.9	Some old and modern places in normal cube shapes	73
4.10	Five Pyramids structures in one Cube	73
4.11	Two triangles/pyramids	74
4.12	Innovation in structure design	74
4.13	Few different concepts of designing	75
4.14	Mega Space Frame Bending design sample,UN	75
4.15	Application of composite materials	76
4.16	Space framed edge of the pyramid	76
4.17	Approximate area of each floor equals 950 square	
	meters. Floors are connected through 16 lifts and two	
	staircases located at the central axis structure	77
4.18	Mega Space Frame structure for high rise architecture	78
4.19	Mega Space Frame structure for high rise architecture	79
4.20	Trump International Centre	80
4.21	Aon centre	81
4.22	John Hancock Centre	83
4.23	Some notable tall structures around the world	84
5.1	Harmony between form, environment and technology	89

5.2	Efficiency in order of form in high-rise building	90
5.3	Harmony between form and technology	91
5.4	Efficiency in terms of form in floor plans	92
5.5	Create innovation and creativity in Architecture	93
5.6	Using this system to simplify floor plans design	94
5.7	Using this system to have unlimited space	95
5.8	Feeling free to design any shape and volume for	
	building	96
5.9	More popular than the other systems	98
5.10	Well-known by structural engineers	99
5.11	Well-known by the architects	100
5.12	Innovation and creativity in structure	101
5.13	Ability for prefabrication	102
5.14	A lot more diversity in form and shape	105
5.15	This system is one of the best structural system for what	
	I like to design	107

LIST OF APPENDICES

APPENDIX.	TITLE	PAGE
A	QUESTIONNAIRES	119
В	RESUME OF INTERVIEWEE	129

CHAPTER 1

INTRODUCTION

1.1 Problem Statement of Topic

Nowadays architecture is designed in simple shapes, cube form and geometrical volume. This is caused by structure system in a building, we must follow structure to achieve design forms. This is a time for the rejuvenation of architectural forms, shapes and space. In some countries there is earthquake problem, which need a structural system that can give better resistance against earthquake and ensure a stable building.

By using space triangle frame as a mega structure system we can delete column in our architecture and by combination of this space frame modules we can design fractal forms and shape. There are three main factors that are studied during this research. These are as follows:

1.2 History and Development

There has been considerable research over the last few years on structure, also there are some researches about basic structure, and how it works. How human beings found the usage of structure, and how engineers make buildings with grid structure. The conclusions of these independent surveys carried out in the building industries studied how the best combinations of using structure system criteria may be evolved. The needs of the users (as opposed to the designers, buildings, or

managers) of a building are paramount. In many organizations, the wages cost forms a significant part of the total costs. To achieve real `value for money for its owners, and optimum conditions for its users, attention must be paid to user experience.

1.3 Space Triangle Frame Structure

This is one of the important structure system (space frames) on which regulations are based, as well as developing understanding of these research areas, the module should enable the architect to develop or adapt tests for novel situations, and for purposes of monitoring and evaluation of building effectiveness.

1.4 High Rise Buildings and Mega Structure

In this research the high-rise building and usage of mega structure issues relevant to the building industry will be covered. The patterns of changing structure system in the production of materials and equipment as well as materials. Building form, mass, internal layout and orientation all characterize how a building will react to airflow, heat, loads, and earthquake.

1.5 Research Questions

The key research questions are:

- i) How did space triangle frame structure system, help to build stable building, without huge size of column, large amount of steels and heavy structure?
- ii) What difference does it make by using space triangle frame as a mega structure in high-rise form and shape?

1.6 Research Aim

The aim of this research is to identify appropriateness of triangle space frame as a mega structure in high-rise structure system and the ability of changing form and shape.

1.7 Research Objectives

- i) To establish the importance of space frame in mega structures.
- ii) To create innovation in architectural space through space triangle frame development in mega structure.
- iii) To establish perception of new approach for architecture using space frame.

1.8 Scope of the Research

It has been claimed that `structure' is always divided into two categories that is physical and efficient which relates physical safety to the design aspect, an architecture where the efficient aspect of the perception of mega structure mention associates to the architecture. It is agreeable to his claim as refer to both dictionaries; it suggested space frame as having both qualities.

This definition leads to the understanding of the space triangle frame design that could promotes physically - which could be accessed by the way architect design a building, as well as efficiency in that design (Fazlur Khan, 2006). Although architectural designer such as planner and architects practiced established theories. Related to this in the design of mega structure especially for the high rise, is however, in the end, the architects who will determine the success of the design.

This research will only focused on the space frame as a mega structure because this method is the efficient way for designing high rise buildings. This space frame form distinguished itself from other types via its size, form, efficient, function the other buildings that are known. This research also examines the influence of space frame as a mega structure in high-rise architecture and while the architect used to design by other structural methods.

1.9 Research Methodology in Brief

- Studies on theories and hypotheses, books and published essays on the matter and extract shared and contradicted ideas and taking advantage of different comments.
- ii) Field study involving questionnaires and interview.
- iii) Case study
- iv) Examining into known objective standards for those elements that constitute a Space triangle frame development in mega structure to create innovation in architectural space.

1.10 Organization of thesis

The first chapter discusses the introduction of thesis and research work. Chapter two discusses various literature reviewed that make up the background of this research. The following chapter three presents the methodology adopted for this research. Chapter four presents the case studies of mega structures, while chapter five discusses the analysis of findings of this research. Chapter six presents the conclusion.

REFERENCES

- Bryman (1995). Implications of case study research in information system.
- Croome, D.C. (2004a). Sustainable architecture, Intelligent Buildings. *Design Management and Operation*. 349-409.
- Croome, D.C. (2004b). Building environment, architecture and people, Intelligent Buildings. *Design Management and Operation*.53-114.
- De Vaus (1996). Survey in social research.
- Elghali, L., Clift, R., Begg, K. G., McLaren, S. (2008). Decision support methodology for complex contexts. *Proceedings of the ICE-Engineering Sustainability*.61.22-47.
- Gabriel, J.F. (2002). Space frames and classical architecture. *Space Structures*. 5. 657-674.
- Golabchi, M. (2004). Architects + Engineers = Structures. University of Tehran Press.
- Golabchi, M. (2007). Information Technology (IT) In Construction Management University of Tehran Press.
- Golabchi, M. (2008a). How Buildings Work. University of Tehran Press.
- Golabchi, M. (2008b). Space Grid Structures. University of Tehran Press.
- Golabchi, M. (2008c). Understanding Structures. University of Tehran Press.
- Golabchi, M. (2009a). Application of Computer Aided Learning in Architectural Technology. London International Conference on Education (LICE-2009). London. UK.
- Golabchi, M. (2009b) Future Systems, The Story of Tomorrow, University of Tehran Press.
- Golabchi, M. (2009c). Structure in Architecture. University of Tehran Press.
- Golabchi, M. (2010a). Seismic Design for Architects. University of Tehran Press.
- Golabchi, M. (2010b). Structure as Architecture. University of Tehran Press.
- Golabchi, M (2010c). New Architectural Technologies. University of Tehran Press.

Interview with Prof Dr Mahmood Golabchi. University of Tehran, Iran

Interview with Prof Dr Ali Kaveh.Iran University of Science & Technology (IUST)

Kaveh, A. (1990). Space structures and their planar drawings, ZAMM.70 .225- 228.

Kaveh, A. (1993). Plastic Analysis and Design of Frames. IUST Press.

Kaveh, A. (1994a). Constants of Frames, Yazd University Press.

Kaveh, A. (1994b) Constants of Frames. Yazd University Press.

Kaveh, A. (2003). Finite Element Methods. IUST Press.

Kaveh, A. and Servati, H. (2006a). Neural Networks for the Analysis and Design of Space Structures. *Building and Housing Research Centre*.12-13.

Kaveh, A. and Servati, H. (2006b). Neural Networks for the Analysis and Design of Space Structures. *Building and Housing Research Centre*. 88-90.

Kaveh, A. and Sharafi, P. (2007). Ant Colony Optimization, Basic Principles. *Building and Housing Research Centre*.35-39.

Kaveh, A. (2008). Structural Analysis.

Kumar, R.(1999). Research Methodology. *A Step-By-Step Guide for Beginners*. 75-98.

Lewis, W. J. (2008). Computational form-finding methods for fabric structures. Engineering and Computational Mechanics.161.139-195.

McBurney (1998). Research methods.UCL London.

McGarty (1968). Research and Development Report Future Research. ICE Proceedings.39.477-495

Neil J. Salkind, Exploring Research, 2008.

Okamura, H., Ozawa, K. Ouchi, M. (2000). Structural Concrete. 1.3-25

Overend, M., Parke, G.A.R. (2002). Glass space structure, Space Structures 5. 529-548.

Space Structures 5, Hardbound ISBN: 978-0-7277-3173-9, 2002. 56-64.

Sassi, P. (2004). Designing buildings to close the material resource loop, Proceedings of the ICE. *Engineering Sustainability*. 157.163.171.

Taylor, R. S., Wright, P. J. F. (1996). Information discussion. How can research help construction methods? ICE Proceedings. 34.707-711.

Zimring and Maran (1987). Active living by design. NY. Wiley.