OPTIMIZATION OF CARBOXYMETHYLCELLULASE AND POLYOSES PRODUCTION FROM OIL PALM EMPTY FRUIT BUNCH FERMENTATION BY

Trichoderma virens

NURRAZEAN HAIREEN BT MOHD TUMPANG

Universiti Teknologi Malaysia

OPTIMIZATION OF CARBOXYMETYHLCELLULASE AND POLYOSES PRODUCTION FROM OIL PALM EMPTY FRUIT BUNCH FERMENTATION BY *Trichoderma virens*

NURRAZEAN HAIREEN BTE MOHD TUMPANG

A thesis submitted in fulfillment of the requirements for the award of the degree of Masters of Science (Biosciences)

> Faculty of Biosciences and Bioengineering Universiti Teknologi Malaysia

> > NOVEMBER 2012

Specially dedicated to My Beloved Mother; Punniah Ahmad, My Siblings; Mohd Ridhwan Hanif, Mohd Saufi Shahril, Mohd Khairul Annuar, Nur Asila Ashikin, Nur Amirah Idayu, all my family and fellow friends.

AKNOWLEDGMENTS

All praises to Allah The Almighty for guidance, blessing and strength to complete this project successfully.

I wish to express my sincere gratitude and respect to my supervisor Assoc. Prof. Dr. Madihah Md Salleh, for her ideas, patience, encouragement, guidance and advices throughout my Master Project. I am thankful for her willingness to take the time to make suggestions and help me achieve my goals.

Thanks are expressed to my supervision group members and my dear friends; Atiqah, Aina, Shankar, K.husza, Anisah, K.Rahmah, Fawwaz, Ang and Ummirul for your pleasant collaboration, helps, advices, motivation and technical support throughout the project period. Thank you for being there for me.

I also like to convey my sincere appreciation to all laboratory assistants and technicians for their helped, skilled, expertise and flexible technical assistance.

Of course, it would have not been possible if isn't for my great family. I would like to express my heartfelt gratitude to my beloved mother (Punniah Ahmad), my siblings, sporting aunties and uncles who given me enormous support, love and understanding in all my life throughout these period. Last but not least, I am pleasure to thank those who had given their support, help and advices to me directly or indirectly in completing my project and thesis. Thank you all. Only ALLAH S.W.T. will return all the kindness.

ABSTRACT

Optimization of CMCase and polyoses production by Trichoderma virens via batch culture fermentation of pretreated oil palm empty fruit bunch (OPEFB) was carried out using statistical software of Design Expert ® version 6.0.4. The General Factorial Design was applied to study the influence of nitrogen sources towards CMCase production. Combination of peptone and ammonium sulphate with C:N 39.2 mM significantly increased CMCase activities, specific activity and total polyoses production. Mixture of peptone and ammonium sulphate was further utilized for screening of significant factors for CMCase production using 2-Level Factorial Design. The significant factors that influenced CMCase production were temperature, pH, fermentation time, concentration of substrate and Tween 80. These significant factors were used for optimization process using central composite design (CCD). The optimal conditions which stimulate the highest CMCase production and its specific activity were 7 days fermentation, 0.4% (v/v) of Tween 80 concentration, 0.1% (w/v) OPEFB concentration, 25°C and initial pH at 5.56. Under those optimum conditions, CMCase production was 0.39 U/mL and specific activity at 0.24 U/mg, indicated the improvement of 1.9 fold as compared to that of non optimized condition. The polyoses production increased for 2.5 fold in comparison with that of non optimized conditions. Various types of polyoses were produced such as cellobiose, maltose, glucose, xylose, galactose, arabinose and mannose.

ABSTRAK

Pengoptimuman penghasilan CMCase dan polioses oleh Trichoderma virens melalui fermentasi kultur sesekelompok menggunakan serabut tandan kelapa sawit kosong (TKSK) telah dijalankan menggunakan perisian statistik Design Expert 6.0.4. Rekabentuk faktorial umum, telah digunakan untuk mengkaji kesan sumber nitrogen terhadap penghasilan CMCase. Kajian mendapati kombinasi pepton dan ammonium sulfat menunjukkan kesan signifikan terhadap penghasilan CMCase, aktiviti spesifik dan jumlah polioses tertinggi. Kombinasi pepton dan ammonium sulfat digunakan untuk penyaringan faktor signifikan bagi penghasilan CMCase menggunakan rekabentuk faktorial tahap 2. Faktor yang mempengaruhi penghasilan CMCase secara signifikan ialah suhu, pH, masa fermentasi, kepekatan TKSK dan Tween 80. Faktor-faktor signifikan ini telah digunakan dalam proses pengoptimuman menggunakan rekabentuk komposit berpusat. Keadaan optima yang menghasilkan CMCase dan aktiviti spesifik tertinggi adalah pada hari ke 7 fermentasi, 0.4 % (i/i) Tween 80, 0.1% (j/i) TKSK, 25°C dan pada pH 5.56. Penghasilan CMCase pada keadaan optima ialah 0.39 U/mL dan aktiviti spesifik 0.24 U/mg yang menunjukkan peningkatan sebanyak 1.9 kali ganda berbanding dengan keadaan sebelum pengoptimuman. Penghasilan polioses pula menunjukkan peningktan 2.5 kali ganda berbanding dengan keadaan sebelum pengoptimuman. Jenis-jenis polioses yang dihasilkan antaranya sellobiosa, maltosa, glukosa, xilosa, galaktosa, arabinosa dan mannosa.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xii
	LIST OF FIGURES	xiv
	LIST OF ABBREVIATIONS	XV
	LIST OF APPENDICES	
1	GENERAL INTRODUCTION	1
	1.1 Research Background	1
	1.2 Problem of Statement	3
	1.2 Objective of The Research	5
2	LITERATURE RIVIEW	6
	2.1 Oil Palm Empty Fruit Bunch (OPEFB) as Lignocellulosic	6
	Biomass	
	2.1.1 Cellulose	10
	2.1.2 Hemicellulose	11
	2.1.3 Lignin	12

2.2 Pretreatment of Lignocellulosic Materials	15
2.3 Hydrolysis of Lignocellulosic Material	18
2.4 Cellulose Hydrolysis Mechanism	20
2.4.1 Cellulase and Mechanism of Reaction	20
2.4.2 Cellulase Production Microorganisms	23
2.4.3 Important Factors in Cellulase Production on	25
Enzymatic Hydrolysis	
2.4.3.1 Substrate Concentration	26
2.4.3.2 Nitrogen Sources	28
2.4.3.3 Surfactants	29
2.4.3.4 pH, Temperature and Time Fermentation	29
2.4.4 Application of Cellulase	30
2.5 Statistical Design Method for Cellulase and Polyoses	33
Production of Degradation Pretreated OPEFB by	
Trichoderma virens	
2.6 Concluding Remarks	36
GENERAL MATERIALS AND METHODS	38
3.1 Microorganisms	38
3.2 Harvesting Spores	38
3.3 Media	39
3.3.1 Medium for Fungal Cultivation	39
3.3.2 Medium Composition of Mandel Medium	39
3.4 Pretreatment of OPEFB	41
3.5 Determination of Cellulose, Hemicellulose and Ligin	41
Content	
3.6 Design of Experiment for Optimization of	43
Carboxymethylcellulase and polyoses Production	
3.7 Analytical Method	46
5.7 Analytical Method	

3

	3.7.2 Determination of Protein	46
	3.7.3 Determination of enzymes Activity	46
	3.7.3.1 CMCase Assay	47
	3.7.3.2 FPase Assay	47
	3.7.3.3 β -glucosidase	48
	3.7.3 Determination of Polyoses	48
4	INFLUENCE OF NITROGEN SOURCES ON	49
	CARBOXYMETHYLCELLULASE AND POLYOSES	
	PRODUCTION PRODUCED BY Trichoderna virens	
	DURING FERMENTATION OF OPEFB USING	
	GENERAL FACTORIAL DESIGN	
	4.1 Intoduction	49
	4.2 Materials and Methods	50
	4.2.1 Experimental procedure for Production CMCase	50
	4.2.2 General Factorial Design	51
	4.3 Results and Discussions	53
	4.3.1 Effects of Pretreatment on OPEFB composition	53
	4.3.2 Effects of Nitrogen Sources on CMCase production	54
	using General Factorial Design	
	4.3.3 Influence of nitrogen sources on polyoses	59
	production	
	4.4 Conclusions	62

SCREENING OF SIGNIFICANT FACTORS	63
INFLUENCING CARBOXYMETHYLCELLULASE	
AND POLYOSES PRODUCTION BY Trichoderma virens	
DURING FERMENTATION OF PRETREATED OPEFB	
USING 2-LEVEL FACTORIAL DESIGN	
5.1 Introduction	63
5.2 Materials and Methods	65
5.2.1 Experimental Procedure For CMCase Production	65
Medium	
5.2.2 Analytical Analysis	65
5.2.3 2-Level Factorial Design	66
5.2.4 Statistical Analysis	73
5.3 Results and Discussion	73
5.3.1 Screening the Factors Influencing the Production of	73
CMCase using 2-Level Factorial Design	
5.3.2 Cellulase production with Optimum Process	80
Conditions	
5.3.3 Profile polyoses during fermentation of pretreated	82
OPEFB	
5.4 Conclusions	84
OPTIMIZATION OF CARBOXYMETHYLCELLULASE	85
AND POLYOSES PRODUCTION BY Trichoderma virens	
TOWARDS FERMENTATION OF PRETREATED	
OPEFB USING CENTRAL COMPOSITE DESIGN	
(CCD)	
6.1 Introduction	85
6.2 Materials and Methods	86
6.2.1 Cellulase Production Medium	86
6.2.2 Sampling and Analysis	87
6.2.3 Central Composite Design (CCD)	87
	 SCREENING OF SIGNIFICANT FACTORS INFLUENCING CARBOXYMETHYLCELLULASE AND POLYOSES PRODUCTION BY <i>Trichoderma virens</i> DURING FERMENTATION OF PRETREATED OPEFB USING 2-LEVEL FACTORIAL DESIGN 5.1 Introduction 5.2 Materials and Methods 5.2.1 Experimental Procedure For CMCase Production Medium 5.2.2 Analytical Analysis 5.2.3 2-Level Factorial Design 5.2.4 Statistical Analysis 5.3 Results and Discussion 5.3.1 Screening the Factors Influencing the Production of CMCase using 2-Level Factorial Design 5.3.2 Cellulase production with Optimum Process Conditions 5.3.3 Profile polyoses during fermentation of pretreated OPEFB 5.4 Conclusions 5.4 Conclusions OPTIMIZATION OF CARBOXYMETHYLCELLULASE AND POLYOSES PRODUCTION BY <i>Trichoderma virens</i> TOWARDS FERMENTATION OF PRETREATED OPEFB USING CENTRAL COMPOSITE DESIGN (CCD) 6.1 Introduction 6.2.1 Cellulase Production Medium 6.2.2 Sampling and Analysis 6.2.3 Central Composite Design (CCD)

	6.2.4 Model Fitting and Statstical Analysis	89
	6.3 Results and Discussions	94
	6.3.1 Central Composite Design (CCD)	94
	6.3.1.1 Model Development	94
	6.3.1.2 Pertubation Plots	98
	6.3.1.3 Response Surface Plots	99
	6.3.2 Cellulase Production With Optimum Process	101
	Conditions	
	6.3.3 Profile Polyoses During Degradation of Pretreated	103
	OPEFB	
	6.4 Conclusions	106
7	CONCLUSIONS AND SUGGESTIONS	107
	7.1 Conclusions	107
	7.2 Suggestions	109
	REFERENCES	110
	Appendices A – H	120-138

LIST OF TABLES

TABLE NO	TITLE	PAGE
2.1	Nutrient content of OPEFB	7
2.2	Composition of OPEFB	7
2.3	Lignocellulose contents of common agricultural residues and	8
	wastes	
2.4	Pretreatment methods of lignocellulosic biomass	17
2.5	Comparison between dilute-acid and enzymatic hydrolyses	19
2.6	Enzymes in cellulose degradation and reaction	21
2.7	Representative cellulase-producing microorganisms	23
2.8	Characteristics of lignobiomass-degrading enzymes by fungi	24
	and bacteria	
2.9	Substrate concentration of various types of lignocellulosic in	27
	enzymatic hydrolysis	
2.10	Various type of nitrogen sources on cellulase production	28
2.11	Optimum condition on cellulase production by different	30
	microorganisms	
2.12	Industrial applications of cellulases	31
2.13	The statistical methods for optimization on cellulase	35
	production	
3.1	Composition of Mandel medium	40
3.2	Trace Elements	40
4.1	The nitrogen content (mM) and nitrogen concentration (g/L)	52
	for each nitrogen sources	

4.2	Content cellulose, hemicellulose, lignin and extractives in	53
	OPEFB before and after pretreatment	
4.3	Experimental design and results of General Factorial Design	56
4.4	Comparison data with previous study	57
4.5	Content cellulose, hemicelluloses, lignin and extractives in	59
	OPEFB after fermentation process	
4.6	The profile production of polyoses degradation of pretreated	61
	OPEFB by Trichoderma virens	
5.1	Actual factors and their levels	67
5.2	Experimental design and results of 2-Level Factorial Design	68
5.3	Estimated regression coefficients of significant factors	76
	(coded units) and their effects on CMCase activity	
5.4	Estimated regression coefficients of significant factors	77
	(coded units) and their effects on specific activity	
5.5	The profile production of polyoses degradation of pretreated	82
	OPEFB by Trichoderma virens	
6.1	Actual factors and their levels	89
6.2	Experimental design and results of Central Composite	90
	Design (CCD)	
6.3	Analysis of variance (ANOVA) for quadratic model for	96
	CMCase activity	
6.4	Analysis of variance (ANOVA) for quadratic model for	97
	specific activity	
6.5	The profile production of polyoses degradation of pretreated	105
	OPEFB by Trichoderma virens	

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
2.1	A schematic structure of lignocellulose materials	9
2.2	The structure and the inter- and intra- chain hydrogen	11
	bonding pattern in cellulose I	
2.3	Schematic structure of corn fiber heteroxylan	12
2.4	Schematic structure of spruce lignin, showing the common	14
	functional group	
2.5	Schematic of goals pretreatment on lignocellulosic	16
2.6	Schematic presentation of hydrolysis of cellulose to glucose	22
	by cellulolytic enzmes	
3.1	Flow Chart of Experimental Design	45
4.1	Interaction graph for the effect of nitrogen sources on	58
	cellulase production.	
4.2	The profile of polyoses production of degradation of	62
	pretreated OPEFB by Trichoderma virens	
5.1	Half-normal plots of estimate effects	74
5.3	Predicted optimum levels of six independent variables	81
6.1	Pertubation plot of the two responses	98
6.2	Response surface plots of combined effects of temperature,	100
	initial pH, concentration of OPEFB and concentration of	
	Tween 80 towards pretreated OPEFB by Trichoderma virens	
6.3	Suggested optimum levels of five factors of variables on	102
	CMCase activity and specific activity	

LIST OF ABBREVIATIONS

°C	Degree Celsius
OPEFB	Oil Palm Empty Fruit Bunch
PDA	Potato Dextrose Agar
DNS	Dinitrosalicyclic Acid
CMCase	Carboxymethyl Cellulase
FPase	Filter Paper Culture enzyme
HNO ₃	Nitric Acid
$(NH_4)_2SO_4$	Ammonium Sulphate
H_2SO_4	Sulphuric Acid
NaOH	Sodium Hydroxide
pNPG	pNPG p-nitrophenyl β -D-glucoside
HPLC	High Performance Liquid
	Chromatography
RSM	Response Surface Methodology
CCD	Central Composite Design
ANOVA	Analysis of Variance
OFAT	One Factor At One Time
mM	Milimolar

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Spore count using Haemocytometer	120
В	Protein determination using Lowry Method	123
С	Dinitrosaliscylic acid reagent (DNS)	125
D	CMCase activity using DNS Method	126
E	FPase activity using DNS Method	129
F	β -glucosidase activity method	132
G	HPLC Analysis	135
Н	Conversion Factors	138

CHAPTER 1

GENERAL INTRODUCTION

1.1 Research Background

Oil palm empty fruit bunch (OPEFB) is main by-product produce from palm oil mills. In Malaysia, about 15 millions tones of OPEFB were generated annually, and it is believed that this will continuously increase in proportion to the world demand of edible oils (Simarani *et al.*, 2009; Baharuddin *et al.*, 2009). Now, some researchers believe that the dependency of fossil fuel and the environment pollution can be reduced by using the biocatalyst cellulase which derived from the cellulolytic organisms to convert the high content of cellulosic biomass such as OPEFB to the fermentable sugars which can be used to generate other useful products (Lynd *et al.*, 2004).

OPEFB as lignocellulose biomass is a renewable biomass and low-cost raw materials for the production of high valuable products such as biofuels, biofertilizers, animal feeds and other biochemical products (Howard *et al.*, 2003; Tengerdy and Szakacs, 2003). According to Aziz *et al.*, (2002), OPEFB contains cellulose, hemicellulose and lignin and also other compound such as protein, lipid and ash. All of

the components, lignin is the most recalcitrant to degradation compared to cellulose and hemicellulose. It is because of its highly ordered crystalline structure which composed of several types of aromatic alcohols that preventing penetration of solutions and enzymes (Howard *et al.*, 2003; Juhász *et al.*, 2005). Thus, pretreatment of lignocellulosic materials is necessary to modify the intact structure in order to enhance the enzymatic degradation by removing lignin barrier (Zhou *et al.*, 2009; Lin *et al.*, 2010).

Bioconversion of lignocellulosic biomass to other valuable products is catalyzed by a group of enzymes called cellulase. There are three categories of cellulase enzymes to convert cellulose into soluble sugars, which subsequently fermented to biofuels, include endoglucanase (EC 3.2.1.4), cellobiohydrolase (EC 3.2.1.91) and β -glucosidase (EC 3.2.1.21). All three enzymes act synergistically to hydrolyse cellulose by creating new unit available sites for each other removing obstacles and relieving product inhibition (Howard et al., 2003; Juhász et al., 2005; Zhou et al., 2009; Jabasingh and ValliNachiyar, 2010). Many microorganisms are shown to produce cellulase. The ability of certain fungal species like Trichoderma species, to decompose the lignocellulosic biomass into glucose, which in turn can be converted into valuable chemicals, has made cellulases as one of the most important commodity (Krishna et al., 2000; Howard et al., 2003; Zhou et al., 2009). Thus, the production of enzymes cellulase from fungi has been extensively studied (Trichoderma sp. and Aspergillus sp.). Significant stability of Trichoderma virens to produce cellulases for effective degradation of cellulose from waste materials has been extensively reported by Hamedo and Shamy, 2008 as well as Dayana Amira et al., 2011.

There are several factors that influenced cellulase production by microorganisms such as nutritional sources and culture condition (Krishna *et al.*, 2000; Gorret *et al.*, 2004; Juhasz *et al.*, 2005; Alam *et al.*, 2008; Vintila *et al.*, 2010). Recently, different statistical designs for fermentation condition optimization concerning cellulase

production have been reported, which factorial experiments and response surface methodology (RSM) is included. These statistical methods are very useful tool as it provides statistical models which help in understanding the interactions among the parameters that have been optimized. Furthermore, this statistical designs are required to reduce number of experimental trials to evaluate multiple parameters and their interaction, thereby resulting in saving time, glassware, chemicals and man power (Singh *et al.*, 2009; Zhou *et al.*, 2009; Ma *et al.*, 2008).

1.2 Problem of Statement

Although lignocellulosic biomass (OPEFB) is available in large quantities, the main challenge for commercialization is to reduce the major operating costs of biomass conversion processes, mainly related primarily pretreatment and enzymes requirements. Research in pretreatment mostly focused on developing processes that would result in reduced bioconversion time, high cellulase enzyme production, and/or higher polyoses yields. This pretreatment is important to ensure optimum cellulase production because these enzymes depend on the successful pretreatment that have been done. Thus, several physical, chemical and biological treatments are under evaluation. The resulting composition of the treated material is dependent on the source of the biomass and the type of treatment used (Baharuddin *et al.*, 2009; Sun and Cheng, 2002; Champagne and Li, 2009).

Beside, enzyme production cost is the most critical part of producing products from lignocellulosic materials. The final target of the whole research is to produce economically acceptable enzymatic conversion of cellulosic biomass to glucose for fermentation to ethanol or other products. Hydrolysis of these polymers releases a mixture of neutral sugars including glucose, xylose, mannose, galactose, and arabinose. Cost-effective hydrolysis is an important goal in the search for a feasible enzymatic conversion process for lignocellulose materials. Due to the crystalline structure of cellulose, as well as its complex structural organization, lignocelluloses are difficult to break down. Cellulase enzyme has been used for the bioconversion of lignocellulosics to these useful products. Many fungi such as *Aspergillus sp* and *Trichoderma sp* produce enzymes that enable them to break down polysaccharides and proteins into sugars and amino acids that can be assimilated easily (Lynd *et al.*, 2002).

In this research, Trichoderma species, especially Trichoderma virens was used for cellulase production during degradation of pretreated OPEFB. The medium optimization was carried out in shake flask culture. The optimization of fermentation conditions is a major problem in the development of economically feasible bioprocess. The cellulase production can be optimized with the help of statistical methodologies. First, categorical factors (General Factorial Design) are studied to determine the types of nitrogen sources suitable for optimizing fermentation process. Using 2-Level factorial Design method six physical factors or parameters which are concentration of OPEFB, concentration of Tween 80, temperature, inoculum size, pH and time incubation are Then, insignificant ones are eliminated in order to obtain smaller and screened. manageable set of factors. The remaining factors are optimized by Response Surface Methodology (RSM). RSM is a set of statistically design experiments, building models, evaluating the effects of factors and searching for the optimum conditions, has been used successfully in the optimization of bioprocess (Hao et al., 2006; Ma et al., 2008; Alam et al., 2008; Zhou et al., 2009).

1.3 Objectives of the Research

The objectives of this research are:

- To determine the effect of nitrogen source on carboxymethylcellulase production during fermentation of pretreated OPEFB by *Trichoderma virens* using General Factorial Design.
- To screen the significant factors influencing carboxymethylcellulase and polyoses production during fermentation of pretreated OPEFB using 2-Level Factorial Design.
- To optimize of carboxymethlcellulase and polyoses production using Response Surface Methodology (RSM) from fermentation of pretreated OPEFB.

REFERENCES

- Abdul Wahid M. Z. Salleh M., Yusof F., Abdul Karim M. S. and Alam M. Z. (2011). Factors Affecting Endoglucanase Production by *Trichoderma reesei* RUT C-30 from Solid State Fermentation of Oil Palm Empty Fruit Bunches Using Plackett-Burman Design. *African Journal of Biotechnology*, 10(46), 9402-9409.
- Abdul-Wahab S. A. and Abdo J. (2006). Optimization of Multistage Flash Desalination Process by Using a Two-Level Factorial Design. *Applied Thermal Engineering*, 27, 413 - 421.
- Abu Bakar N. K., Abd-Aziz S., Hassan M. A. and Ghazali F. M. (2010). Isolation and Selection of Appropriate Cellulolytic Mixed Microbial Cultures for Cellulases Production from Oil Palm Empty Fruit Bunch. *Biotechnolog*, 9(1), 73-78.
- Ahamed A. and Vermette P. (2009). Effect of Culture Medium Ccomposition on *Trichoderma reesei's* Morphology and Cellulase Production. *Bioresource Technology*. 100, 5979–5987
- Alam, M. Z., Muyibi, S. A. and Wahab, R. (2008). Statistical Optimization of Process Conditions for Cellulase Production by Liquid State Bioconversion of Domestic Wastewater Sludge. *Bioresource Technology*, 99, 4709–4716.
- Alvira P., Tomás-Pejó E., Ballesteros M. and Negro M. J. (2010). Pretreatment Technologies for an Efficient Bioethanol Production Process Based on Enzymatic Hydrolysis: A Review. *Bioresource Technology*, 101, 4851–4861.
- Ang Siow Kuang. Degradation of Pretreated Palm Oil Empty Fruit Bunch For Polyoses Production By T.Virens. Bachelor Thesis. Universiti teknologi Malaysia. 2010.

- Aziz, A. A., Husin, M. and Mokhtar, A. (2002). Preparation of Cellulose from Oil Palm Empty Fruit Bunches via Ethanol Digestion: Effect of Acid and Alkali Catalysts. *Journal of Oil Palm Research*, 14(1), 9-14.
- Azmalisa T., Wan Asma I., Zulkafli H. and Norazwina Z. (2010). Optimization of Glucose Production from Oil Palm Trunk Via Enzymatic Hydrolysis. *The 13th Asia Pacific Confederation of Chemical Engineering Congress*. October 5 - 8, Taipei, 2010.
- Baharuddin, A. S., Wakisaka, M., Shirai, Y., Abd-Aziz, S., Abdul Rahman, N. A and Hasan, M. A. (2009). Co-Composting of Empty Fruit Bunches and Partially Treated Palm Oil Mill Effluents in Pilot Scale. *International Journal Agricultural Research*, 4 (2), 69-78.
- Bezerra M. A., Santelli R. E., Oliveira E. P., Villar L. S. and Escaleira L. A. (2008). Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. *Talanta*, 76, 965–977.
- Bhat M. K. and Bhat S. (1997) Cellulose Degrading Enzymes and Their Potential. Industrial Applications. *Biotechnology Advances*, 15(3), 583 - 620.
- Blasi, C. D., Signorelli, G., Di Russo, C. and Rea, G. (1999). Product Distribution from Pyrolysis of Wood and Agricultural. *Industrial Engineering Chemistry Resources*, 38(6), 2216-2224.
- Bon, E. P. S., Leitão, V. S. F., Silva Jr, J. G. (2003). Methylene Blue and Azure B Oxidation by Horseradish Peroxidase: A Comparative Evaluation of Class II and Class III Peroxidases. *Applied Catalysis Environment*, 42, 213-221.
- Bon, E. P. S., Nascimento, H.J., Macedo, J.M.B. and Silva Jr. J.G (1999). Lignin Peroxidase Isoforms from *Streptomyces viridosporus* T7A: Are They a Monomer Based Structure? *Biotechnology*, 13, 289-293.
- Carrillo F., Lis M. J., Colom X., Lopez-Mesas M. and Valldeperas J. (2005). Effect of Alkali Pretreatment on Cellulase Hydrolysis of Wheat Straw: Kinetic Study. *Process Biochemistry*, 40, 3360–3364.
- Champagne, P. and Li, C. (2009). Enzymatic Hydrolysis of Cellulosic Municipal Wastewater Treatment Process Residuals as Feedstocks for the Recovery of Simple Sugars. *Bioresource Technology*, 100, 5700–5706.

- Chandel A. K., Chan E. S., Rudravaram R., Narasu M. L., Rao V. and Ravindra P. (2007). Economics and Environmental Impact of Bioethanol Production Technologies: An Appraisal. *Biotechnology and Molecular Biology*, 2(1), 14-32.
- Chen M., Zhao J. and Xia L. (2008). Enzymatic Hydrolysis of Maize Straw Polysaccharides for the Production of Reducing Sugars. *Carbohydrate Polymers*, 71, 411–415.
- Dayana Amira. R. Roshanida, A. R., Siti Fatimah Zahrah, M. F., Mohd Anuar, J. and Nazrul Adha, C. M. Bioconversion of Empty Fruit Bunches (EFB) and Palm Oil Mill Effluent (POME) into Compost Using *Trichoderma virens*. *African Journal* of Biotechnology, 10(81), 18775 – 18780.
- Dien B. S., Li X. L., Iten L. B., Jordan D. B., Nicholas N. N., O'Bryan P. J. and Cotta M. A. (2006). Enzymatic Saccharification of Hot-Water Pretreated Corn Fiber for Production of Monosaccharides. *Enzyme and Microbial Technology*, 39, 1137–1144.
- Ferreira S., Duarte A. P., Ribeiro M. H. L., Queiroz J. A. and Domingues F. C. (2009). Response Surface Optimization of Enzymatic Hydrolysis of *Cistus ladanifer* and *Cytisus striatus* for Bioethanol Production. *Biochemical Engineering Journal*, 45, 192–200.
- Festucci-Buselli, R. A. Otoni, W. C. and Joshi, C. P. (2007). Structure, Organization, and Functions of Cellulose Synthase Complexes in Higher Plants. *Brazil Journal Plant Physiology*, 19(1), 1-13.
- Gao J., Weng H., Zhu D., Yuan M., Guan F. and Xi Y. (2008). Production and Characterization of Cellulolytic Enzymes from the Thermoacidophilic Fungal *Aspergillus terreus* M11 under Solid-State Cultivation of Corn Stover. *Bioresource Technology*, 99, 7623–7629.
- Gautam S. P., Bundela P. S., Pandey A. K., Khan J., Awasthi M. K. and Sarsaiya S. (2011). Optimization for the Production of Cellulase Enzyme from Municipal Solid Waste Residue by Two Novel Cellulolytic Fungi. *Biotechnology Research International*, 1 – 8.
- Gomes J., Gomes I., Esterbauer H., Kreiner W. and Steiner W. (1989). Production of Cellulases by A Wild Strain of *Gliocladium virens*: Optimization of The

Fermentation Medium and Partial Characterization of The Enzymes. *Applied Microbiology Biotechnology*, 31, 601-608.

- Gorret, N., Rosli, S. M., Oppenheim, S. F., Willis, L. B., Lessard P. A., Rha, C. and Sinskey, A. J. (2004). Bioreactor Culture of Oil Palm (*Elaeis guineensis*) and Effects of Nitrogen Source, Inoculum Size, and Conditioned Medium on Biomass Production. *Journal of Biotechnology*, 108, 253-263.
- Gosh B.K. (1992). Degradation of Cellulose by Fungal Cellullase. In Microbial Degradation of Natural Products, ed. G. Winkelmann. *Biotechnology*.
- Gottipati R. and Mishra S. (2010). Process Optimization of Adsorption of Cr(VI) on Activated Carbons Prepared from Plant Precursors by a Two-Level Full Factorial Design. *Chemical Engineering Journal*, 160, 99–107.
- Guowei, S. Man, H., Shikai, W. and He, C. (2011). Effect of Some Factors on Production of Cellulase by *Trichoderma reesei HY07*. Procedia Environmental Sciences 8,357 – 361.
- Hamedo, H. A and El Shamy, A. R. (2008). Effect of Essential Oil of *Eucalyptus Rostrata* on the Production of Some Enzymes by *Trichoderma virens* and *Fusarium solani*. Australian Journal of Basic and Applied Sciences, 2(4), 1223-1227.
- Hameed B. H., Tan I. A. W. and Ahmad A. L. (2009). Preparation of Oil Palm Empty Fruit Bunch-Based Activated Carbon for Removal of 2,4,6-trichlorophenol: Optimization Using Response Surface Methodology. *Journal of Hazardous Materials*, 164, 1316–1324.
- Hao, X. C., Yu, X. B and Yan, Z. L. (2006). Optimization of The Medium for The Production of Cellulase by The Mutant *Trichoderma reesei* WX-112 Using Response Surface Methodology. *Journal of Food Technology Biotechnology*, 44(1), 89-94.
- Howard R. L., Abotsi E., Jansen van Rensburg E. L. and Howard S. (2003). Lignocellulose Biotechnology: Issues of Bioconversion and Enzyme production. *African Journal of Biotechnology*, 2(12), 602-619.

- Jabasingh, S. A. and ValliNachiyar, C. (2010). Optimization of Cellulase Production by *Aspergillus nidulans*: Application in The Biosoftening of Cotton Fibers. *Journal of World Microbial Biotechnology*, 1-13.
- Juhasz, T., Szengyel, Z., Reczey, K., Siika-Aho, M. and Viikari, L. (2005). Characterization of Cellulases and Hemicellulases Produced by *Trichoderma reesei* on Various Carbon Sources. *Process Biochemistry*, 40, 3519-3525.
- Karmakar M. and Ray R. R. (2011). Current Trends in Research and Applications of Microbial Cellulases. *Research Journal of Microbiology*, 6(1), 41-53.
- Kovacs K., Megyer L., Szakacs G., Kubicek C. P., Galbe M. and Zacchi G. (2008). *Trichoderma atroviride* Mutants with Enhanced Production of Cellulase and βglucosidase on Pretreated Willow. *Enzyme and Microbial Technology*, 43, 48– 55.
- Krishna, H. S., Rao, K. C. S, Babu, J. S. and Reddy, D. S. (2000). Studies on the Production and Application of Cellulase from *Trichoderma reesei* QM-9414. *Bioprocess Engineering*, 22, 467-470.
- Kuhad R. C., Gupta R. and Singh A. (2011). Review Article: Microbial Cellulases and Their Industrial Application. *Enzyme Research*, 1-10.
- Li Y., Liu Z., Zhao H, Xu Y. and Cui F. (2007). Statistical Optimization of Xylanase Production from New Isolated *Penicillium oxalicum* ZH-30 in Submerged Fermentation. *Biochemical Engineering Journal*, 34, 82–86.
- Lin L., Yan, R., Liu, Y. and Jiang, W. (2010). In-Depth Investigation of Enzymatic Hydrolysis of Biomass Wastes Based on Three Major Components: Cellullose, Hemicellulose and Lignin. *Bioresource Technology*, 101, 8217-8223.
- Liu J. and Yang V. (2007). Cellulase Production by Trichoderma koningii AS3.4262 in Solid-State Fermentation Using Lignocellulosic Waste from the Vinegar Industry. Food Technology Biotechnology 45 (4) 420–425.
- Lowry O. H., Resebrough N. J., Farr A. L. and Randll R. J. (1951) "Protein Measurement with the Folin Phenol Reagent". *Journal of Biological Chemistry*, 93, 265-275.

- Lynd R. L., Weimer P. J., van Zyl W. H. and Pretorius I. S. (2002). Microbial Cellulose Utilization: Fundamentals and Biotechnology. *Microbiology and Molecular Biology Reviews*, 6 (3), 506–577.
- Ma, F. X., Kim, J. J., Kim, S. B., Seo, Y. G., Chang, Y. K., Hong, S. K. and Kim, C. J. (2008). Medium Optimization for Enhanced Production of Rifamycin B by *Amycolatopsis mediterranei* S699: Combining a Full Factorial Design and a Statistical Approach. *Process Biochemistry*, 43, 954–960.
- Maache-Rezzoug Z., Pierre G., Nouviaire A., Maugard A. and Rezzoug S. A. (2011)
 Optimizing Thermomechanical Pretreatment Conditions To Enhance Enzymatic
 Hydrolysis Of Wheat Straw By Response Surface Methodology. *Biomass and Bioenergy*, 35, 3129 3138.
- Macedo J. M. B. (1999). Lignin Peroxidase and Protease Production by Streptomyces viridosporus T7A in the Presence of Calcium Carbonate. Nutritional and Regulatory Sarbon sources. Applied Biochemistry and Biotechnology, 77-79.
- Mandel M. and Weber J. (1969) "The production of Cellulases." *Advances in Chemistry Series.* 95:391-414.
- Martínez, A. T., Speranza M., Ruiz-Dueñas F. J., Ferreira P., Camarero S., Guillén F., Martínez, M. J. Gutiérrez A. and Del Río J. C. (2005). Biodegradation of Lignocellulosics: Microbial, Chemical, and Enzymatic Aspects of the Fungal Attack of Lignin. *International Microbiology*, 8, 195-204.
- Miller GL (1959) Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugars. *Analytical Chemistry*, 31(3), 426-428.
- Mosier N., Hendrickson R., Ho N., Sedlak M. and Ladisch M. R. (2005). Optimization of pH Controlled Liquid Hot Water Pretreatment of Corn Stover. *Bioresource Technology*, 96, 1986–1993.
- Mosier N., Wyman C., Dale B., Elander R., Lee Y. Y., Holtzapple, M. and Ladisch M. (2005). Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass. *Bioresource Technology*, 96, 673–686.
- Muthuvelayudham R. and Viruthagiri T. (2010). Application of Central Composite Design Based Response Surface Methodology in Parameter Optimization and on

Cellulase Production Using Agricultural Waste. *International Journal of Chemical and Biological Engineering*, 3(2), 97 – 104.

- Narasimha G., Sridevi A., Buddolla V., Subhosh C. M. and Rajasekhar R. B. (2006). Nutrient Effects on Production of Cellulolytic Enzymes by Aspergillus niger. African Journal of Biotechnology, 5(5), 472-476.
- Oberoi H. S., Sandhu S. K. and Vadlani P. V. (2011). Statistical Optimization of Hydrolysis Process for Banana Peels Using Celluloytic and Pectinolytic Enzymes. *Food and Bioproducts Processing*, 1-9.
- Palonen H., Role of Lignin In The Enzymatic Hydrolysis of Lignocellulose. Public Examination and Debate. April 16, 2004, University of Technology (Espoo, Finland). VTT Publication. 2004. 1- 80.
- Pérez J., Rubia T., Martinez J. (2002). Biodegradation and Biological Treatments of Cellulose, Hemicellulose, and Lignin: An Overview. *Microbiology*, 5, 53-63.
- Prasertsan S. and Prasetsan P. (1996). Biomass Residues from Palm Oil Mills In Thailand: A Overview On Quantity and Potential Usage. *Biomass and Bioenergy*, 11 (5), 387-395.
- Rabelo S. C., Amezquita Fonseca N. A., Andrade R. R., Maciel Filho R. and Costa A.
 C. (2011). Ethanol Production From Enzymatic Hydrolysis Of Sugarcane
 Bagasse Pretreated With Lime And Alkaline Hydrogen Peroxide. *Biomass and Bioenergy*, 35, 2600-2607.
- Rahman S. H. A., Choudhury J. P., Ahmad A. L. and Kamaruddin A. H. (2006). Optimization Studies on Acid Hydrolysis of Oil Palm Empty Fruit Bunch Fiber for Production of Xylose. *Bioresource Technology*, 1-6.
- Ralph J., Lundquist K., Brunow G., Lu F., Kim H., Schatz P. F., Marita J. M., Hatfield
 R. D., Ralph S. A., Christensen J. H. and Boerjan W. (2004). Lignins: Natural
 Polymers from Oxidative Coupling of 4-Hydroxyphenylpropanoids. *Phytochemistry Reviews*, 3, 29–6.
- Ramirez J., Gutierrez H. and Gschaedler A. (2001). Optimization of Astaxanthin Production by *Phaffia rhodozyma* Through Factorial Design and Response Surface Methodology. *Journal of Biotechnology*, 88, 259–268.

- Rosgaard L., Pedersen S., Cherry J. R., Harris P. and Meyer A. S. (2006). Efficiency of New Fungal Cellulase Systems in Boosting Enzymatic Degradation of Barley Straw Lignocellulose. *Biotechnology Progress*, 22(2), 493-498.
- Saha, B. C. (2003). Hemicellulose Bioconversion. Journal India Microbiology Biotechnology, 30: 279-291.
- Saha, B. C., Iten L. B., Cotta M. A. and Wu Y. V. (2005). Dilute Acid Pretreatment, Enzymatic Saccharification And Fermentation Of Wheat Straw to Ethanol. *Process Biochemistry*, 40, 3693–3700.
- Simarani, K., Hassan, M. A., Abd-Aziz, S., Wakisaka, M., and Shirai, Y. (2009). Effcet of Palm Oil Mill Sterilization Process on the Physicochemical Characteristics and Enzymatic Hydrolysis of Empty Fruit Bunch. Asian Journal of Biotechnology, 1 (2), 57-66.
- Singh, R., Kumar, R., Bishnoi, K. and Bishnoi, N. R. (2009). Optimization of Synergistic Parameters for Thermostable Cellulase Activity of Aspergillus heteromorphus Using Response Surface Methodology. Journal of Biochemical Engineering. 48, 28-35.
- Sukumaran R. K., Singhania R. R. and Pandey A. (2005). Microbial Cellulases Production, Applications and Challenges. *Journal of Scientific and Industrial Research*, 64, 832-844.
- Sun H., Ge X., Hao Z. and Peng M. (2010).Cellulase Production by *Trichoderma* sp. on Apple Pomace under Solid State Fermentation. *African Journal of Biotechnology*, 9(2), 163-166.
- Sun, Y. and Cheng, J. (2002). Hydrolysis of Lignocellulosic Materials for Ethanol Production. *Bioresource Technology*, 83, 1–11.
- Taherzadeh, M. J. and Karimi K. (2007). Enyzme-Based Hydrolysis Processes for Ethanol from Lignicellulosic Materials: A Review. *Bioresources*, 2(4), 707-738.
- Taniguchi M., Suzuki H., Watanabe D., Sakai K., Hoshino K. and Tanaka T. (2005). Evaluation of Pretreatment with *Pleurotus ostreatus* for Enzymatic Hydrolysis of Rice Straw. *Journal of Bioscience and Bioengineering*, 100(6), 637–643.
- Tarley C. R. T., Silveira G., Lopes dos Santos W. N., Matos G. D., Paranhos da Silva E.G., Becerra M. A., Miró M. and Ferreira S. L. C. (2009). Chemometric Tools in

Electroanalytical Chemistry: Methods for Optimization Based On Factorial Design and Response Surface Methodology. *Microchemical Journal*, 92, 58–67.

- Tengerdy, R. P. and Szakacs, G. (2003). Bioconversion of Lignocellulose in Solid Substrate Fermentation. *Journal of Biochemical Engineering*, 13, 169-179.
- Theodore, K. and Panda T. (1995). Application of Response Surface Methodology to Evaluate the Influence of Temperature and Initial pH on the Production of β-1,3-glucanase and Carboxymethylcellulase from *Trichoderma harzianu*. *Enzyme and Microbial Technology*, 17, 1043-1049.
- Umikalsom M. S., Ariff, A. B., Zulkifli, H. S., Tong, C. C. and Hassan M. A. (1997).
 The Treatment of Oil Palm Empty Fruit Bunch Fibre For Subsequent Use As
 Substrate For Cellulase Production By *Chaetomium Globosum* Kunze. *Bioresource Technology*, 62, 1-9.
- Valaskova V., Najd J. S., Bittner B., Cajthaml T., Merhautova V., Hofrichter M. and Baldrian P. (2007). Production Of Lignocellulose-Degrading Enzymes and Degradation of Leaf Litter by Saprotrophic Basidiomycetes Isolated from a *Quercus petraea* Forest. *Soil Biology and Biochemistry*, 39, 2651–2660.
- Vintila, T., Croitotiu, V., Dragomirescu, M. and Nica, M. (2010). The Effects of Bioprocess Parameters on Cellulase Production with *Trichoderma viride* CMIT35. *Animal Science and Biotechnologies*, 43(1), 337-340.
- Vyas, A., Vyas, D. and Vyas, K. M. (2005). Production and Optimization of Cellulases and Pretreated Groundnut Shell by Aspergillus terreus AV 49. *Journal of Scientific and Industrial Research*, 64, 281-286.
- Wen, Z, Liao, W. and Chen, S. (2005). Production of Cellulase by *Trichoderma reesei* From Dairy Manure. *Bioresource Technology*, 96, 491–499.
- Wood, T. M. and Bhat, K. M. (1988) Method for Measuring Cellulase Activities. In Methods in Enzymology. Cellulose and Hemicellulose, eds W. A. Wood and J. A. Kellogg, Vol. 160, pp. 87-112. Academic Press, New York.
- Xu F., Wang J., Chen S., Qin W., Yu Z., Zhao H., Xing X. and Li H. (2011). Strain Improvement for Enhanced Production of Cellulase in *Trichoderma viride*. *Applied Biochemistry and Microbiology*, 47(1), 53–58.

- Yahiaoui I. and Aissani-Benissad F. (2010). Experimental Design For Copper Cementation Process In Fixed Bed Reactor Using Two-Level Factorial Design. *Arabian Journal of Chemistry*, 3, 187–190.
- Yu X. B., Nam J. H., Yun H. S. and Koo Y. M. (1998). Optimization of Cellulase Production in Batch Fermentation by *Trichoderma reesei*. *Biotechnology Bioprocess Engineering*. 3, 44-47.
- Zerbini J.E., Bon E.P.S. (1999). Lignin Peroxidase Production by *Streptomyces viridosporus* T7A: Nitrogen Nutrition Optimization using Glucose as Carbon Source. *Applied Biochemistry and Biotechnology*, 77-79.
- Zhang Y. H. P., Himmel, M. E. and Mielenz J. R. (2006). Outlook for Cellulase Improvement: Screening and Selection Strategies. *Biotechnology Advances*, 24, 452–481.
- Zheng, Y., Pan Z., Zhang, R. (2009). Overview of Biomass Pretreatment for Cellulosic Ethanol Production. International Journal of Agricultural and Biology Engineering, 2(3), 51-68.
- Zhou H., Chen H. and Li Z. (2004). CMCase Activity Assay As A Method For Cellulase Adsorption Analysis. *Enzyme and Microbial Technology*, 35, 455–459.
- Zhou, J., Wang, Y. H., Luo, L. Z, Chu, J., Zhuang, Y. P. and Zhuang, S. L. (2009). Optimization of Cellulose Mixture for Efficient Hydrolysis of Steam-Exploded Corn Strover by Statistically Designed Experiments. *Journal of Bioresource Technology*, 100, 819-825.

APPENDIX A

Spore count using Haemocytometer

Total spore can be easily and rapidly determine using haemocytometer. However, the process can be relatively inaccurate if sample forms clumps or aggregates. Haemocytometer slides have a series of grids etched on it (Scragg, 1991). Samples were introduced beneath the cover slip and the number of spores is measured with the aid of phase contrast microscope. The total number of spores counted under the grid is multiplied by the volume of the grid giving total spore number per ml.

Reagents

- a) 1% (v/v) Tween 80
- b) 70% (w/v) Ethanol

Procedures

- 1. 5 mL of 1% (v/v) Tween 80 added to the 7 days cultured PDA plate. The spores harvested by hockey stick with gently scratch the surface of the agar. The solution collected and transfer to a 50 mL centrifuge tube.
- 2. The centrifuge tube was centrifuged for 20 minutes at 4°C and 4000rpm.
- The supernatant discarded and the pellet resuspended with 20 mL of water. The mixture vortex under minimum speed.
- 4. Next, 1 mL of the mixture was sucked out and mixed with 9 mL of sterilized distilled water. The mixture was vortex under minimum speed.
- 5. 1 mL of mixture from step 4 was sucked out and mixed with 9 mL of sterilized distilled water. The mixture was vortex under minimum speed.

- Draw out 10 μL of mixture from step 5 and inject into the sample introduction point of the hemocytometer. However, the cover glass and lens of microscope must be clean with 70% (w/v) ethanol before performing any injection or counting.
- The injected spores must evenly distribute and must not have any leakage for the injection. The hemocytometer placed on the microscope stage and observe under 400X magnification (40X objective lens).
- 8. The spores only are counted with located on the centre and 4 corners square of the grid (labeled with X).
- 9. The procedure of calculating spores under hemocytometer (step 6 to 8) were repeated for three times and the number of spores would be calculated according the calculation below. Next, the serial dilution would be conducted by using the second equation.
- 10. The diluted spores suspension was transfer to fermentation medium according to the inoculums size (10% (v/v)).

Calculations:

- 1. Each large square gives a volume of 10^{-1} ml. Figure A below shows the haemocytometer grids and calculations.
- 2. Spores/ml = total spores per large squares x dilution factor (df) x 10
- 3. Dilution factor is obtained from spore suspension. For example, if spore is diluted as 1/10, thus the dilution factor is 10.