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ABSTRACT 

 

 

 

 

Optimization of CMCase and polyoses production by Trichoderma virens via 

batch culture fermentation of pretreated oil palm empty fruit bunch (OPEFB) was 

carried out using statistical software of Design Expert ® version 6.0.4.  The General 

Factorial Design was applied to study the influence of nitrogen sources towards CMCase 

production. Combination of peptone and ammonium sulphate with C:N 39.2 mM 

significantly increased CMCase activities, specific activity and total polyoses 

production. Mixture of peptone and ammonium sulphate was further utilized for 

screening of significant factors for CMCase production using 2-Level Factorial Design. 

The significant factors that influenced CMCase production were temperature, pH, 

fermentation time, concentration of substrate and Tween 80. These significant factors 

were used for optimization process using central composite design (CCD). The optimal 

conditions which stimulate the highest CMCase production and its specific activity were 

7 days fermentation, 0.4% (v/v) of Tween 80 concentration, 0.1% (w/v) OPEFB 

concentration, 25
o
C and initial pH at 5.56. Under those optimum conditions, CMCase 

production was 0.39 U/mL and specific activity at 0.24 U/mg, indicated the 

improvement of 1.9 fold as compared to that of non optimized condition. The polyoses 

production increased for 2.5 fold in comparison with that of non optimized conditions. 

Various types of polyoses were produced such as cellobiose, maltose, glucose, xylose, 

galactose, arabinose and mannose. 
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ABSTRAK 

 

 

 

 

Pengoptimuman penghasilan CMCase dan polioses oleh Trichoderma virens 

melalui fermentasi kultur sesekelompok menggunakan serabut tandan kelapa sawit 

kosong (TKSK) telah dijalankan menggunakan perisian statistik Design Expert 6.0.4. 

Rekabentuk faktorial umum, telah digunakan untuk mengkaji kesan sumber nitrogen 

terhadap penghasilan CMCase. Kajian mendapati kombinasi pepton dan ammonium 

sulfat menunjukkan kesan signifikan terhadap penghasilan CMCase, aktiviti spesifik dan 

jumlah polioses tertinggi. Kombinasi pepton dan ammonium sulfat digunakan untuk 

penyaringan faktor signifikan bagi penghasilan CMCase menggunakan rekabentuk 

faktorial tahap 2. Faktor yang mempengaruhi penghasilan CMCase secara signifikan 

ialah suhu, pH, masa fermentasi, kepekatan TKSK dan Tween 80. Faktor-faktor 

signifikan ini telah digunakan dalam proses pengoptimuman menggunakan rekabentuk 

komposit berpusat. Keadaan optima yang menghasilkan CMCase dan aktiviti spesifik 

tertinggi adalah  pada hari ke 7 fermentasi, 0.4 % (i/i) Tween 80, 0.1% (j/i) TKSK, 25
o
C 

dan pada pH 5.56. Penghasilan CMCase pada keadaan optima ialah 0.39 U/mL dan 

aktiviti spesifik 0.24 U/mg yang menunjukkan peningkatan sebanyak 1.9 kali ganda 

berbanding dengan keadaan sebelum pengoptimuman. Penghasilan polioses pula 

menunjukkan peningktan 2.5 kali ganda berbanding dengan keadaan sebelum 

pengoptimuman. Jenis-jenis polioses yang dihasilkan antaranya sellobiosa, maltosa, 

glukosa, xilosa, galaktosa, arabinosa dan mannosa.  
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CHAPTER 1 

 

 

 

 

GENERAL INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Oil palm empty fruit bunch (OPEFB) is main by-product produce from palm oil 

mills.  In Malaysia, about 15 millions tones of OPEFB were generated annually, and it is 

believed that this will continuously increase in proportion to the world demand of edible 

oils (Simarani et al., 2009; Baharuddin et al., 2009).  Now, some researchers believe that 

the dependency of fossil fuel and the environment pollution can be reduced by using the 

biocatalyst cellulase which derived from the cellulolytic organisms to convert the high 

content of cellulosic biomass such as OPEFB to the fermentable sugars which can be 

used to generate other useful products (Lynd et al., 2004).  

 

 

OPEFB as lignocellulose biomass is a renewable biomass and low-cost raw 

materials for the production of high valuable products such as biofuels, biofertilizers, 

animal feeds and other biochemical products (Howard et al., 2003; Tengerdy and 

Szakacs, 2003).  According to Aziz et al., (2002), OPEFB contains cellulose, 

hemicellulose and lignin and also other compound such as protein, lipid and ash.  All of 
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the components, lignin is the most recalcitrant to degradation compared to cellulose and 

hemicellulose.  It is because of its highly ordered crystalline structure which composed 

of several types of aromatic alcohols that preventing penetration of solutions and 

enzymes (Howard et al., 2003; Juhász et al., 2005).  Thus, pretreatment of 

lignocellulosic materials is necessary to modify the intact structure in order to enhance 

the enzymatic degradation by removing lignin barrier (Zhou et al., 2009; Lin et al., 

2010).  

 

 

Bioconversion of lignocellulosic biomass to other valuable products is catalyzed 

by a group of enzymes called cellulase.  There are three categories of cellulase enzymes 

to convert cellulose into soluble sugars, which subsequently fermented to biofuels, 

include endoglucanase (EC 3.2.1.4), cellobiohydrolase (EC 3.2.1.91) and β-glucosidase 

(EC 3.2.1.21).  All three enzymes act synergistically to hydrolyse cellulose by creating 

new unit available sites for each other removing obstacles and relieving product 

inhibition (Howard et al., 2003; Juhász et al., 2005; Zhou et al., 2009; Jabasingh and 

ValliNachiyar, 2010).  Many microorganisms are shown to produce cellulase.  The 

ability of certain fungal species like Trichoderma species, to decompose the 

lignocellulosic biomass into glucose, which in turn can be converted into valuable 

chemicals, has made cellulases as one of the most important commodity (Krishna et al., 

2000; Howard et al., 2003; Zhou et al., 2009). Thus, the production of enzymes cellulase 

from fungi has been extensively studied (Trichoderma sp. and Aspergillus sp.). 

Significant stability of Trichoderma virens to produce cellulases for effective 

degradation of cellulose from waste materials has been extensively reported by Hamedo 

and Shamy, 2008 as well as Dayana Amira et al., 2011.  

 

 

There are several factors that influenced cellulase production by microorganisms 

such as nutritional sources and culture condition (Krishna et al., 2000; Gorret et al., 

2004; Juhasz et al., 2005; Alam et al., 2008; Vintila et al., 2010).  Recently, different 

statistical designs for fermentation condition optimization concerning cellulase 



3 

 

production have been reported, which factorial experiments and response surface 

methodology (RSM) is included.   These statistical methods are very useful tool as it 

provides statistical models which help in understanding the interactions among the 

parameters that have been optimized.  Furthermore, this statistical designs are required 

to reduce number of experimental trials to evaluate multiple parameters and their 

interaction, thereby resulting in saving time, glassware, chemicals and man power 

(Singh et al., 2009; Zhou et al., 2009; Ma et al., 2008).  

 

 

 

 

1.2 Problem of Statement 

 

 

Although lignocellulosic biomass (OPEFB) is available in large quantities, the 

main challenge for commercialization is to reduce the major operating costs of biomass 

conversion processes, mainly related primarily pretreatment and enzymes requirements. 

Research in pretreatment mostly focused on developing processes that would result in 

reduced bioconversion time, high cellulase enzyme production, and/or higher polyoses 

yields. This pretreatment is important to ensure optimum cellulase production because 

these enzymes depend on the successful pretreatment that have been done. Thus, several 

physical, chemical and biological treatments are under evaluation. The resulting 

composition of the treated material is dependent on the source of the biomass and the 

type of treatment used (Baharuddin et al., 2009; Sun and Cheng, 2002; Champagne and 

Li, 2009). 

 

 

Beside, enzyme production cost is the most critical part of producing products 

from lignocellulosic materials. The final target of the whole research is to produce 

economically acceptable enzymatic conversion of cellulosic biomass to glucose for 

fermentation to ethanol or other products. Hydrolysis of these polymers releases a 
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mixture of neutral sugars including glucose, xylose, mannose, galactose, and arabinose. 

Cost-effective hydrolysis is an important goal in the search for a feasible enzymatic 

conversion process for lignocellulose materials. Due to the crystalline structure of 

cellulose, as well as its complex structural organization, lignocelluloses are difficult to 

break down. Cellulase enzyme has been used for the bioconversion of lignocellulosics to 

these useful products. Many fungi such as Aspergillus sp and Trichoderma sp produce 

enzymes that enable them to break down polysaccharides and proteins into sugars and 

amino acids that can be assimilated easily (Lynd et al., 2002). 

 

 

In this research, Trichoderma species, especially Trichoderma virens was used 

for cellulase production during degradation of pretreated OPEFB. The medium 

optimization was carried out in shake flask culture.  The optimization of fermentation 

conditions is a major problem in the development of economically feasible bioprocess.  

The cellulase production can be optimized with the help of statistical methodologies.  

First, categorical factors (General Factorial Design) are studied to determine the types of 

nitrogen sources suitable for optimizing fermentation process.  Using 2-Level factorial 

Design method six physical factors or parameters which are concentration of OPEFB, 

concentration of Tween 80, temperature, inoculum size, pH and time incubation are 

screened.  Then, insignificant ones are eliminated in order to obtain smaller and 

manageable set of factors.  The remaining factors are optimized by Response Surface 

Methodology (RSM).  RSM is a set of statistically design experiments, building models, 

evaluating the effects of factors and searching for the optimum conditions, has been used 

successfully in the optimization of bioprocess (Hao et al., 2006; Ma et al., 2008; Alam et 

al., 2008; Zhou et al., 2009). 

 

 

 

 

 

 



5 

 

1.3 Objectives of the Research 

 

 

The objectives of this research are:  

 

1) To determine the effect of nitrogen source on carboxymethylcellulase production 

during fermentation of pretreated OPEFB by Trichoderma virens using General 

Factorial Design. 

 

2) To screen the significant factors influencing carboxymethylcellulase and 

polyoses production during fermentation of pretreated OPEFB using 2-Level 

Factorial Design. 

 

3) To optimize of carboxymethlcellulase and polyoses production using Response 

Surface Methodology (RSM) from fermentation of pretreated OPEFB.    
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APPENDIX A 

 

 

Spore count using Haemocytometer 

 

 

Total spore can be easily and rapidly determine using haemocytometer. 

However, the process can be relatively inaccurate if sample forms clumps or aggregates. 

Haemocytometer slides have a series of grids etched on it (Scragg, 1991). Samples were 

introduced beneath the cover slip and the number of spores is measured with the aid of 

phase contrast microscope. The total number of spores counted under the grid is 

multiplied by the volume of the grid giving total spore number per ml.  

 

Reagents 

 

a) 1% (v/v) Tween 80 

b) 70% (w/v) Ethanol 

 

Procedures 

1. 5 mL of 1% (v/v) Tween 80 added to the 7 days cultured PDA plate. The spores 

harvested by hockey stick with gently scratch the surface of the agar. The solution 

collected and transfer to a 50 mL centrifuge tube.  

2. The centrifuge tube was centrifuged for 20 minutes at 4°C and 4000rpm.  

3. The supernatant discarded and the pellet resuspended with 20 mL of water. The 

mixture vortex under minimum speed.  

4. Next, 1 mL of the mixture was sucked out and mixed with 9 mL of sterilized 

distilled water. The mixture was vortex under minimum speed. 

5. 1 mL of mixture from step 4 was sucked out and mixed with 9 mL of sterilized 

distilled water. The mixture was vortex under minimum speed.  
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6. Draw out 10 μL of mixture from step 5 and inject into the sample introduction point 

of the hemocytometer. However, the cover glass and lens of microscope must be 

clean with 70% (w/v) ethanol before performing any injection or counting. 

7. The injected spores must evenly distribute and must not have any leakage for the 

injection. The hemocytometer placed on the microscope stage and observe under 

400X magnification (40X objective lens).  

8. The spores only are counted with located on the centre and 4 corners square of the 

grid (labeled with X).  

9. The procedure of calculating spores under hemocytometer (step 6 to 8) were 

repeated for three times and the number of spores would be calculated according the 

calculation below. Next, the serial dilution would be conducted by using the second 

equation. 

10. The diluted spores suspension was transfer to fermentation medium according to the 

inoculums size (10% (v/v)). 

 

Calculations:  

  

1. Each large square gives a volume of 10
-4 

ml. Figure A below shows the 

haemocytometer grids and calculations.  

2. Spores/ml = total spores per large squares x dilution factor (df) x 10
4 

 

3. Dilution factor is obtained from spore suspension. For example, if spore is diluted 

as 1/10, thus the dilution factor is 10.  

  

 

 

 

 

 

 

 

 




