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ABSTRACT 
 
 
 
 

Malaysian crude natural gas categorized as a sour gas due to the 

contamination of CO2 other gases. Therefore in this research, manganese oxide doped 

noble metal oxides suppor ted on alumina were prepared for methanation reaction to 

convert CO2 to CH4. All prepared Ru/Mn-Al2O3(10:90, 20:80, 25:75, 30:70, 35:75 

and 40:60) catalysts were calcined at 400ºC, and 1000ºC and Pd/Mn-Al2O3(10:90 and 

30:70) catalysts were only calcined at 400ºC for 5 hours separately in screening 

process.Ru/Mn(25:75)-Al2O3 catalyst then being calcined at 700°C, 800°C, 900°C 

and 1100°C for optimization parameter. In-house-built micro reactor with Fourier 

Transform Infra Red, (FTIR) detector and Gas Chromatography, (GC) were used to 

study the catalytic activity. It was found that the catalyst with Ru/Mn(25:75)-Al2O3 

calcined at 1000oC showed 60.21% conversion of CO2 and 57.84% formation of CH4 

at reaction temperature 200oC. When using two series furnace reactors, 

Ru/Mn(25:75)-Al2O3 catalyst calcined at 1000oC achieved 95.12% CO2 conversion 

and 53.10% CH4 formation at reaction temperature 100°C. The same catalyst with 

coating more than one coat reducing the catalytic reaction compared with single coat. 

The catalyst finally reached 100% CO2 conversion with 100% CH4 formation after 

through the 3rd testing using 100°C of reaction temperature. In pretreatment testing, 

the catalyst managed to get 100% CO2 conversion with 100% CH4 formation at first 

test at reaction temperature 100°C. For adding compressed gas (O2) testing, the 

catalyst shows 100% of CO2 conversion with 100% CH4 formation with only 6% of 

compressed gas loading at reactiontemperature 100°C. Using 1% of H2S, reduce the 

potential of the catalyst compared with using 0.5% of H2S feed.  FESEM illustrated 

the catalyst surface is covered with small and dispersed particles with undefined 

shape. The X-Ray Diffraction (XRD) analysis revealed that the catalyst is crystalline. 

Nitrogen Gas Adsorption (NA) analysis showed that both fresh and spent catalysts 

are of mesoporous material with Type IV isotherm and type H3 hysteresis loop.  
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ABSTRAK 
 
 
 
 

Gas asli Malaysia tergolong sebagai gas masam disebabkan kewujudan gas 

karbon dioksida (CO2) dan gas beracun yang lain. Dalam penyelidikan ini, mangan 

oksida campuran logam noble oksida berpenyokong alumina dihasilkan untuk proses 

methanasi bagi  menukarkan CO2 kepada CH4. Kesemua pemangkin Ru/Mn-

Al2O3(10:90, 20:80, 25:75, 30:70, 35:75 dan 40:60) dikalsinkan pada suhu 400ºC dan 

1000ºC manakala pemangkin Pd/Mn-Al2O3(10:90 dan 30:70) dikalsinkan hanya pada 

suhu 400ºC selama 5 jam setiap satu pada proses pemilihan. Pemangkin 

Ru/Mn(25:75)-Al2O3 pula kemudian dikalsinkan pada suhu 700°C, 800°C, 900°C dan 

1100°C untuk proses pengoptimuman. FTIR dan GC digunakan untuk mengkajia 

ktiviti pemangkin. Ru/Mn(25:75)-Al2O3 kalsin pada 1000oC menunjukkan peratus 

penukaran CO2 sebanyak 60.21% dan pembentukan CH4 sebanyak 57.84% pada suhu 

penyelidikan 200ºC. Bila menggunakan dua siri reactor pada relau, pemangkin yang 

sama menghasilkan 95.12% penukaran CO2 dan  53.10% pembentukan CH4 pada 

suhu penyelidikan 100ºC. Pemangkin yang sama menunjukkan penurunan dalam 

reaksi apabila dilaputi lebih pada satu lapisan. Pemangkin tersebut juga mencapai 

100% penukaran CO2 dan 100% pembentukan CH4 apabila melalui tiga kali ujian. 

Dalam proses rawatan, pemangkin memperolehi 100% penukaran CO2 dan 100% 

pembentukan CH4 pada ujian yang pertama pada suhu reaksi 100C. Untuk kemasukan 

gas mampat, (O2) pemangkin menunjukkan 100% penukaran CO2 dan 100% 

pembentukan CH4 dengan hanya 6% kemasukan gas mampat pada suhu reaksi 

100°C. Dengan menggunakan 1% jumlah H2S pada system, ia mengurangkan potensi 

pemangkin berbanding apabila menggunakan 0.5% jumlah H2S. FESEM 

menunjukkan permukaan pemangkin diselaputi dengan zarah-zarah halus dengan 

bentuk yang pelbagai. XRD analisis pula menunjukkan pemangkin adalah dalam 

bentuk kristal. NA pula menunjukkan pemangkin yang baru dan yang telah digunakan 

masing-masing adalah mempunyai cirri bahan mesoporous danType IV Isotherm juga 

H3 lengkokkan histerisis. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 

1.1       Natural Gas 
 
 

Natural gas can be normally described as the deep-seated or “fossil” gasses 

which are usually produced by the anaerobic decay of non–fossil organic material. 

This highly flammable and combustible gas is a homogenous liquid with low density 

and viscosity (Cury, 1981). The primary component of natural gas is methane (CH4) 

which depends on the heat, more likely formed in high temperature. It also contains 

heavier gaseous hydrocarbons such as ethane (C2H6), propane (C3H8) and butane 

(C4H10). Besides that it also contains other toxic and acidic gaseous impurities like 

CO2, N2 and H2S. Natural Gas considered as an environmental friendly clean fuel 

that offer important environmental benefits when compared to other fossil fuels. 

Natural gas requires minimal processing before use therefore natural gas is 

establishing world wide as the safest, cleanest and most application of all energy 

resource (Kidnay and Parish, 2006). 

 
 
Natural gas that been found in oil fields contain both phases either dissolved 

or isolated crude. When this methane-rich gas is produced by the anaerobic decay of 

natural process, it is called biogas. The source of this biogas is at swamps, marshes 

and landfills. The process of organic mater is compressed under the earth at very 

high pressure for a long time is the natural converting organic matter to fossil
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fuels. The higher temperature is exposed to the organic matter, more gas will be 

created. Deeper ground level usually contains natural gas having high pure methane.  

 
 

Malaysia’s oil productions normally located at offshore and near Peninsular 

Malaysia. There is also major production site in Sabah and Sarawak where all of this 

ranked Malaysia at the 14th largest gas reserves and 27th largest crude oil reserves in 

the world. Current oil reserves are estimated at approximately 3 billion barrels with a 

declining tendency, due to the lack of major new oil discoveries in the last years. 

Petronas is the state oil and gas company and followed by other company such as 

Sabah shell Petroleum Company and Sweden’s Ludin Oil (T.G. Chuah et al., 2006). 

 
 
In Malaysia, the total natural gas reserves are three times larger than its oil 

reserves. It shows that Malaysia has a potential to develop more profit based on its 

total proven natural gas reserves of 2400 billion cubic metres. In year 2010, Malaysia 

recorded approximately 15% of total natural gas exportsand was estimated to held 83 

trillion cubic metres of proven natural gas reserved as mentioned by EUMCCI 

(2011). About 60% of its marketed gas production is consumed domestically, three 

quarters (45%) of which is used for generating electricity. Malaysia is also the 

region’s second largest LNG exporter, accounting for 14% of total world trade in 

LNG in 2002. Malaysia’s reserves are mainly in eastern Malaysia, which is Sarawak 

and Sabah (59%) and the rest are at the offshore east coast of peninsular Malaysia. 

The largest gas field is in Miri, Sarawak, followed by Kota Kinabalu, Sabah. 
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Figure 1.1: Selected Southeast Asia proven natural gas reserves taken from      

                   EUMCCI, 2011 

 
 

The country is seeking ways to increase its production of natural gas. 

Approximately 38% of Malaysia’s reserves are under PetronasCarigaliSdn. Bhd. 

Malaysia also has offshore fields in the South China Sea, which are being developed 

by ExxonMobil (William, 2006). It is expected that total investment requirements in 

the gas sector will reach $3.1 trillion, of which exploration and development will 

account for 55%, or $1.7 trillion. Even though Malaysia succeeds in production of 

natural gas, it seems that the natural gas still consists more of the impurities such as 

sour gas, flue gas than any other country. This problem will absolutely lower the 

price of natural gas that Malaysia has produce but it also cause trouble distributing 

them. 

 
 

Natural gas as one of the three main energy sources has many advantages 

such as combustible, abundant resource, lower price, high energy efficiency and 

gives a great deal of power upon consumption (Tiratsoo, 1979). In the chemical 

industry natural gas is becoming analternative feedstock to crude oil whose supplies 

might run out in the present century(Borko and Guczi, 2006). Table 1.1 shows the 

chemical composition of Malaysian crude natural gas, analyzed by using Gas 

Chromatography-Mass Spectroscopy (GC-MS). The primary component of natural 

gas is methane (CH4), the shortest and lightest hydrocarbon molecule.However, the 

gas often contains the other light alkanes and a variety of inorganic compounds that 

0 20 40 60 80 100 120
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been called wet natural gas. It contains at most 20 to 30% of carbon dioxide (CO2), 

hydrogen sulfide (H2S), helium (He) and hydrogen (H2).  

 
Table 1.1: Chemical composition of Malaysian natural gas, source from  
  Wan Azelee et al., (2008) 
 

Gases Composition (%) 

CH4 47.9 

C2H6 5.9 

C3H8 3.2 

CO2 23.5 

H2S 5.4 

Others (CO, O2, N2) 24.1 
 

 Malaysian crude natural gas is categorized as a sour gas due to the 

contamination of H2S.The hydrogen sulfide in natural gas has several possible 

sources. One is the decomposition of amino acids which contain the thiol functional 

group, -SH.  The anaerobic decay of sulfur-containing proteins or their thermal 

decomposition at mild conditions could liberate the sulfur as H2S.Similar to the H2S 

gas, CO2 in the presence of water may enhance the production of carbonic acid 

which leads to the acid rain phenomena.  

 
 
 The development of technology that can increase the production and quality 

of Malaysian natural gas is not only the main thing, but it also came along with 

developing a green technology that meets the needs of society in ways that it can 

continue indefinitely into the future without damaging or depleting natural resources. 

With its rapid industrialization, Malaysia is becoming more and more dependent on 

conventional energy supplies such as fossil fuels. The escalating consumption of 

energy over the years that heavily relied on fossil fuels had resultant significant 

increment of greenhouse gas emissions (mainly carbon dioxide) from the sector 

(Rawshan and Joy, 2010). As the level of carbon dioxide increases the warming of 

the earth’s surface will also increase (Schneider, 1989). 
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Iron-sponge process is the oldest and also the most limited known for 

removal of sulfur compounds.  It is a dry process consisting of iron oxide (Fe2O3) 

impregnated on wood chips or shavings.  It is usually used on small gas volumes 

with low H2S contents.  A vessel can operate 30 to 60 days either without any 

regeneration or with the partial generation that can be affected with air passage 

through the vessel.  The vessel must be recharged with new iron-sponge material 

when gas sweetening is no longer possible.  This process is selective toward H2S 

only. Although this process seems to be less expensive,the operation and disposal of 

the spent sponge are difficult to handle. Hydrogen sulfide can also be removed by 

stripping.  However, a toxic waste stream is created.  

 
 
Alkanolamine process is commonly being used in the industry because it is a 

continuous operation liquid process using absorption for the acid gas removal with 

subsequent heat addition to strip the acid gas components from the absorbent 

solution (Herzog, H et al., 2009). The primary disadvantages of this process are this 

process is not selective and absorbs total acid gas components. The absorbing 

alkanolamine solution (weak base) chemically reacts with the H2S or CO2 (weak 

acid) to give a water soluble salt.  Similarly, a significant amount of waste was 

formed with the absorption. 

 
 

Among those techniques, membrane technique are selected to be the most 

practical technique for H2S and CO2 removal because of this process has advantage 

in term of compactness, not having moving parts and being noise free. Currently, the 

only commercially viable membranes used for H2S and CO2 removal are polymer 

based, for example, cellulose acetate, polyimides, polyamides, polysulphone, 

polycarbonates, and polyetherimide.  However, this technique incurs high cost and 

low selectivity towards toxic gas separation (Houet al., 2003). At present, the 

treatment of removing CO2 from the crude natural gas at Gas Refinery Plant was 

achieved using membrane technique.  Meanwhile, the H2S gas was removed using 

the catalyst known as Puraspec. Puraspec processes are based on fixed beds of 

catalysts and chemical absorbents which remove traces of contaminants from 

hydrocarbon gases and liquids.  In particular the processes remove. Both of the above 

methods of treatment are very expensive and need stringent maintenance.  As such, 
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an alternative, viable and reliable cost effective method is crucial in running the 

production at cost effective mode.   

 
 

In addition, hydrogen sulfide in the crud natural gas can be reduced to 

elemental sulfur by the Claus process (Smith, W. J et al., 2007).  H2S is partially 

burned to create a mixture of H2S and sulfur dioxide (SO2). The H2S and SO2 then 

react in the presence of a catalyst to form sulfur and water.  Sulfates formation is an 

undesired side reaction of Claus catalyst.  However, when the proper metal is used, 

the spinel compound reacts to form sulfates that are unstable enough to react with 

H2S and other compounds to form elemental sulfur. Thus, sulfates do not inhibit 

catalyst performance.  Then the sulfur produced can be sold commercially.  There are 

problem arises when significant amounts of hydrocarbons reduce the catalyst 

efficiency.  Hydrocarbons reduce to form graphite, which contaminates the sulfur. 

 
 
Equation 1.1 shows the desulfurization reaction which is an endothermic 

process while Equation 1.2 shows the stoichiometric conditions for CO2/ H2 

conversion to methane. 

 
 
H2S (g)  + ½ O2(g)→    S (s) + H2O (l)                                    (1.1) 

CO2(g) + 4H2(g)→     CH4(g) +  2H2O (l)                        (1.2) 

 
 
Besides that, co-generation of heat is also possible because the methanation 

of CO2 is an exothermic reaction, with ∆H = -165 kJ/mol.  Removal of H2S is an 

oxidation reaction, while removal of CO2 is a reduction reaction. Enthalpies of the 

reduction and oxidation reactions play an important role.  CO2 in this case can act as 

an oxidizing agent to oxidize the oxidation reaction.  

 
 H2S (g) + CO2(g) → SO2(g) + 2CO (g) + H2 (g)                                                             (1.3) 

  

The CO produced in the previous step can be converted to CH4 in the presence of H2.  

  

CO (g) + 3H2(g) → CH4(g) + H2O (l)                         (1.4) 

CO2(g) + 4H2(g) → CH4 (g) + 2H2O (l)                         (1.5) 
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Moreover, the removal of sour gases via chemical conversion techniques 

using catalyst becomes the most promising technique.  Methanation has received 

attention from a viewpoint of environmental protection because the emission of CO2 

in the atmosphere brings about global warming by the greenhouse effect and these 

harmful gases can simultaneously be converted to useful methane gas (Hayakawa et 

al., 1999).  This process can increase the purity of the natural gas without wasting the 

undesired components but fully used them to produce high concentration of methane. 

However, this reaction is an eight electron process involving thermodynamics.  It is 

difficult to achieve this reaction under mild conditions due to kinetic barriers.  These 

conditions are inconvenient in a laboratory because they required specialized 

equipment, and the rate of the reaction is difficult to control.  Therefore, the 

development of catalysts to lower the activation energy of this reaction is needed. 

 
 
Catalytic activity is defined as the rate at which a chemical reaction reaches 

the equilibrium. From the industrial point of view, activity is also defined as the 

amount of reactant transformed into product per unit of time and unit of reactor 

volume. Meanwhile, the selectivity of a catalyst is defined as the rate of reactant 

conversion into the desired products. Selectivity usually depends on reaction 

parameters such as temperature, pressure, reactants composition and also on the 

catalyst nature.  Therefore, the main effect of a catalyst is to provide an alternative 

reaction path that permits to decrease the activation energies of the different reaction 

steps, reaching therefore the equilibrium in an easier and faster way.  On the other 

hand, the catalyst should be high selectivity towards yielding of CH4 and minimizes 

the possibility of side reactions.  Equation 1.6 shows an undesired side reaction in 

this study. 

 

CO2(g) + H2(g) → CO (g) + H2O (l)                         (1.6) 

 
 

Finally, present catalyst systems do not give high percentage of conversion 

due to instability of the catalysts at high temperature and the highly exothermic 

reaction of methanation reaction.  Therefore, a new catalysts system must be studied 

in order to see what material can give the highest percentage conversion of CO2to 

methane from the methanationreaction. Since the catalytic process for methanation 
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reaction offer the best way to remove CO2 in the natural gas, therefore the researcher 

decided to carry an extensive study to develop a new effective catalyst was 

conducted using transition metal oxide based on manganese with modifying the 

dopants using noble metal such as paladium and ruhtenium whichcan give high 

conversion percentage of carbon dioxide to methane at low temperature. 

 
 
 
 

1.3 Problem Statement 
 
 
CO2 removal is required because CO2 will form a complex, CO2·CO2, which 

is quite corrosive in the presence of water. For gas being sent to cryogenic plants, 

removal of CO2 may be necessary to prevent solidification of the CO2 (Sanjay, 

1987). Moreover, according to United Nations Development Report (2007), 

Malaysia ranked as the 26th largest greenhouse gases emitters with the population 

over 27 million people. This showed that removing CO2 gases from natural gas is 

very important for maintaining a green environment. 

 
 
In the presence of water, CO2 and H2S gases will react and lead to severe 

internal corrosion attack on the metallic piping and processing vessels. Moreover, 

carbon dioxide will reduce the heating value of a natural gas stream and wastes 

pipeline capacity. Carbon dioxide alsomay enhance the formation of carbonic acid 

when it reacts with the vapour. In addition, H2S gases should be removed from the 

natural gas since it has an unpleasant smell, cause catalyst poisoning in refinery 

vessels and necessitates that many other expensive precautionary measures be taken. 

Thus it will add cost to the industry. 

 
 
In addition, low temperature in natural gas process is very important because 

high temperature will require expensive construction materials for reactors therefore, 

methanation technology provide low reaction temperature. Even though others 

technologies have existing, there are still problems and limitation regarding to the 

technologies itself as discussed in Section 1.2. Thus, CO2/H2methanation technology 

is seen as the potential answer to all problems. 
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Many researchers chose to use Ni-based alumina supported system which is 

the traditional catalyst for methanation. One of the reason is because Ni are cheap 

and was proven to be able in producing high CO2 conversion however, there are 

some point Ni are poor that is producing high CO2 conversion at possible low 

reaction temperature and reproducibility properties. This is agreed by Wan Azelee 

(2011) in her researched using Pd/Ru/Ni (2:8:90)/Al2O3 catalyst calcined at 400oC. 

After undergo 4th test of reproducibility testing, Pd/Ru/Ni (2:8:90)/Al2O3 catalyst 

calcined at 400oC have 26.17% CO2 conversion compared to fresh catalyst which 

was 43.60% at reaction temperature 200°C. Therefore, a new catalysts that have 

potential to convert CO2 to CH4 need to be found and it leed us to chose manganese 

as a n alternative based catalyst. 

 
 
Several metals, including ruthenium are known to be active in 

CO2/H2methanation reaction however there are gap in findings in using ruthenium as 

dopant coupled with manganese as based catalyst. Ruthenium is believed to be 

known even more active in CO2/H2methanation reaction than other noble metals but 

is also considerable more expensive. By pairing with manganese and used as dopant 

material, small amount is only needed thus, create a good catalyst. 

 
 
 
 
1.4 Significant of Study 
 
 

In this research, the potential catalyst that can be used to remove which 

present in wet natural gas consisting of approximately 23% CO2 was developed 

based on manganese oxide doped with noble metal. This catalyst offers very 

promising techniques for natural gas purification since unwanted CO2 gas is being 

converted to the product, CH4 thus will enhance the methane production.  

 
 
The removal of acid gases (CO2, H2S and other sulfur components) from 

natural gas is often referred to as gas sweetening process. There are many acid gas 

treating processes available for removal of CO2 natural gas. Besides, it may be 

necessary to avoid the corrosion and clogging to the delivery pipeline. This 
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purification method will certainly improve the quality and quantity of Malaysian 

natural gas and increase the market price of our natural gas that will benefit to our 

country. The utmost important, the potential catalyst will contribute to the growth of 

the national economy and create green and sustainable environment. 

 
 
The catalyst is easily prepared, environmental friendly and reusable. All the 

ingredients in the fabrication of the catalyst are easily available, cheap and stable. 

The beauty of the catalyst is safer to handle because it can be used at low reaction 

temperature.It requires minimum modification to the already existing system and 

offers cost effective operating system. 

 
 
 
 

1.4.1 Mechanism of Reaction Process 
 
 
 The researcher believe that in many cases of reaction process, it involves a 

Langmuir-Hinshelwood (LH) mechanism. This is because the most common surface 

reaction mechanism is one in which both reactants are adsorbed on the surface where 

they collide and form products. Adsorption, desorption and surface diffusion plays 

essential role in LH mechanism. It might be expected that the reaction rate should 

depend on surface coverage of both species.   

 
 
 Equation (1.7) shows the Langmuir-Hinshelwood equation which can be 

applied in any cases of surface reaction. 

 

AG             A* and  BG            B*              ( Equation 1.7 ) 
 
A* + B*            C* 
 
C*            CG                           
 
 * Adsorbed molecules 
 

According to the equation (1.7) both compound are adsorbed without 

dissociation at different free sites on the catalyst surface. This is then followed by 

actual surface reaction between both activated species to produce the product, 
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adsorbed on the surface. Then the product is desorbed from the surface. In such a 

way, LH process assume that molecule from a fluid phase is in contact with a solid 

catalyst surface. The fluid phase will combine chemically with the solid surface. It 

will combine chemically with surface and reaction subsequently proceeds between 

chemisorbed molecule followed by desorption of the products. 

 
 
 
 
1.4.2 Mechanism of Methanation 
 
 

Mechanism of methanation reaction has been studied a long time ago. A lot 

of researcher agreed that in methanation process involve LH mechanism to support 

the reaction process between active species and surface catalyst. 

 
For the simplest possible reaction, methanation process can be describe as follows 
 
  CO2  +  S               CO2(ads)                                                             ( 1.8 ) 
 
  H2  +  S              H2(ads)                                             ( 1.9 ) 
 
  CO2(ads)  +  H2(ads)             CH4(ads)  +  H2O(ads)                               ( 2.0 ) 
 
  CH4(ads)             CH4(desorp)  +  S                                                     ( 2.1 ) 
 
  H2O(ads)             H2O(desorp)  + S                                                      ( 2.2 ) 
 
                       *S = Catalyst 

 

According to Equation 1.8, carbon dioxide is reacting with the catalyst 

surface, (S) by chemisorptions and creates an active species that adsorbed onto 

catalyst surface. This is followed by hydrogen compound that also react with catalyst 

surface by chemisorptions and adsorbed onto catalyst surface as an active species.  

Both active species than react each other to produce products that is methane and 

water. Finally, (Equation 2.2) both products the researchers dissociated from the 

catalyst surface. 
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1.5 Research Objectives 
 
 

The ultimate goal of this research is to synthesize a potential novel catalyst 

that is able to catalyze the reactions of CO2 methanation at low temperature possible 

with as many conversions possible.  

 
 

The objectives of the research are: 

 
1. To synthesize potential manganese based catalyst doped with paladium and 

ruthenium for the methanation reaction. 

2. To test the catalytic performance of the prepared catalysts towards 

methanation reaction. 

3. To characterize the physical properties of the potential catalyst using various 

techniques for further understanding of the properties of the prepared catalyst. 

4. To create a catalyst that can be regenerated. 

 
 
 
1.6 Scope of Research 
 
 

In this research, the series catalyst based on manganeseoxide doped noble 

metal from selected noble metals such as palladium and ruthenium that was prepared 

using impregnation method and also modification sol-gel method will be used for the 

synthesizing of manganese oxide based catalyst. Micro-reactor was used to prepare 

the catalysts activity by simulation natural gas and was monitored by FTIR and 

GC.The simulation is done by mixing the hydrogen gas and carbon dioxide for 

methanation process while desulphurization process is done by using hydrogen 

sulphide. 

 
 
 Then the potential catalyst was characterized using instruments such as       

X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope – Energy 

Dispersive X-ray Analysis (FESEM - EDX), Nitrogen Adsorption Analysis (NA), 

Fourier Transform Infrared Spectroscopy (FTIR) 
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