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ABSTRACT 

 

 

 

 

Levulinic acid is a sugar-derived building block that can be produced from 

biomass feedstock as an alternative to the petrochemical resources. The purpose of 

this study was to investigate the performance of HY zeolite supported chromium 

catalysts in producing levulinic acid from glucose, cellulose and lignocellulosic 

biomass before it was further optimized using response surface methodology (RSM). 

The catalysts comprising of different weight ratios of CrCl3 and HY zeolite (1:1, 1:2 

and 2:1) were synthesized using wetness impregnation method. Characterization of 

the catalysts using XRD, BET, FT-IR, TGA, NH3-TPD and FT-IR of adsorbed 

pyridine demonstrated the catalytic reaction of the catalysts was predominantly 

influenced by type (Lewis acid), amount and strength of acid sites, surface area, 

hierarchical porous structures and shape selectivity of the catalysts. Experimental 

results showed that the CrC3/HY–1:1 catalyst exhibited the highest catalytic 

performance with 62% levulinic acid yield at reaction temperature, 160 ºC and 

reaction time, 180 min. Optimization of levulinic acid was conducted using the 

potential CrC3/HY–1:1 catalyst and ionic liquid, [EMIM][Cl] was introduced as a 

solvent for the cellulose conversion to levulinic acid. At optimum process conditions, 

55.2%, 46.0%, 15.5% and 15.0% of levulinic acid yields were produced from 

glucose, cellulose, empty fruit bunch (EFB) and kenaf. Meanwhile, in the presence 

of ionic liquid under the same process conditions, 20.0% and 17.0% of levulinic acid 

yields were produced from EFB and kenaf. In addition, the compositions of EFB and 

kenaf were determined to compute the highest theoretical levulinic acid yields in the 

samples feedstock and the efficiencies of the catalytic process. This study 

demonstrated that the combination of the proposed catalyst with ionic liquid has 

potential to be applied in biomass conversion to levulinic acid under adequate 

process conditions. 
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ABSTRAK 

 

 

 

 

Asid levulinik adalah blok binaan daripada gula yang boleh dihasilkan 

daripada biojisim sebagai satu alternatif kepada sumber petrokimia.  Tujuan kajian 

ini adalah untuk menyiasat prestasi pemangkin zeolit HY disokong oleh kromium 

dalam menghasilkan asid levulinik daripada glukosa, selulosa dan lignoselulosa 

sebelum ia dioptimumkan menggunakan kaedah gerak balas permukaan (RSM). 

Pemangkin dengan nisbah berat CrCl3 dan zeolit HY yang berbeza (1:1, 1:2 dan 2:1) 

telah disintesis menggunakan kaedah impregnasi basah.  Pencirian pemangkin 

menggunakan XRD, BET, FT-IR, TGA, NH3-TPD dan FT-IR piridin terjerap 

menunjukkan tindakbalas oleh pemangkin dalam menghasilkan asid levulinik telah 

dipengaruhi oleh jenis asid (Lewis asid), jumlah kekuatan asid, luas permukaan 

pemangkin, struktur hirarki liang dan sifat pemilihan bentuk oleh pemangkin.  

Ujikaji menunjukkan pemangkin CrC3/HY–1:1 telah menghasilkan asid levulinik 

tertinggi dengan hasil sebanyak 62%  pada suhu tindak balas, 160 ºC dan masa 

tindak balas, 180 min.  Pengoptimuman hasil asid levulinik telah diuji menggunakan 

pemangkin yang berpotensi, CrC3/HY–1:1 dan cecair ionik, [EMIM][Cl] telah 

diperkenalkan sebagai pelarut dalam penukaran selulosa kepada asid levulinik.  Pada 

keadaan proses optimum, 55.2%, 46.0%, 15.5% dan 15.0% asid levulinik telah 

dihasilkan daripada glukosa, selulosa, tandan kosong (EFB) dan kenaf.  Sementara 

itu, 20.0% dan 17.0% asid levulinik telah dihasilkan daripada EFB dan kenaf dalam 

keadaan proses yang sama dengan kehadiran cecair ionik.  Disamping itu, komposisi 

EFB dan kenaf telah ditentukan untuk mengira penghasilan asid levulinik tertinggi 

secara teori daripada sampel biojisim dan menguji kecekapan proses pemangkin. 

Kajian ini menunjukkan bahawa kombinasi pemangkin yang disarankan dengan 

cecair ionik mempunyai potensi untuk diaplikasikan dalam penukaran biojisim 

kepada asid levulinik di bawah keadaan proses yang mencukupi. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Increasing of petroleum oil prices forces the chemical industry to find 

alternative raw materials for the basic chemicals production (Fang and Hanna, 2002). 

Biomass is the only renewable resource of fixed carbon, which is essential for the 

production of conventional hydrocarbon liquid transportation fuel and petrochemical 

products (Girisuta, 2007).  Biomass resources are more preferable compared to 

others since the biomass feedstocks do not compete with the food chain (Rackemann 

and Doherty, 2011).  A graphical representation of the top 30 building blocks derived 

from biomass feedstock (Figure 1.1) shows the potential of biomass for bio-based 

chemicals production as a replacement to the petrochemical resources.  Among the 

screened building blocks, levulinic acid was the top twelve and it was ranked based 

on these criteria; suitability for the biorefinery, the value of the building block and its 

derivatives, the technical complexity of each part in the pathway transformation and 

the potential of the building blocks to produce groups with similar derivatives 

(Werpy and Petersen, 2004).  Therefore, a lot of researches and technologies are 

carried out nowadays to identify the potential of integrating biomass feedstocks into 

biofuel and bio-based chemical products. 
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Figure 1.1  Potential bio-based derived products from biomass feedstocks (Werpy and Petersen, 2004)
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Levulinic acid is a short chain fatty acid having a ketone carbonyl group and 

a carboxylic acid group which makes this compound a versatile building block for 

various bulk chemicals (Hongzhang et al., 2011).  Levulinic acid was identified as 

one of the top 30 and amongst the top, it was the top twelve sugar-derived building 

blocks that can be produced from biomass as screened by National Renewable 

Energy Laboratory (Werpy and Petersen, 2004).  It has been produced since 1870 

and appeared to be an important basic chemical material with numerous potential 

uses (Figure 1.2).  Levulinic acid can be used as textile dyes, antifreeze, animal feed, 

coating material, solvent, food flavoring agent, pharmaceutical compound and resin 

(Chang et al., 2009).  Recently, thermal de-oxygenation process is developed for 

converting levulinic acid to energy dense (low oxygen to carbon ratio) cyclic and 

aromatic products (Rackemann and Doherty, 2011).  These products were produced 

for easily upgrading to the hydrocarbon fuels. 

 

 

 
Figure 1.2  Levulinic acid as a platform chemical for various potential uses of 

products (Rackemann and Doherty, 2011) 
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Lignocellulosic biomass such as empty fruit bunch (EFB) and kenaf are 

renewable, non-edible, cheap and widely abundant biomass resources.  Based on the 

research findings regarding to their technical and commercial potential, EFB and 

kenaf have a potential in Malaysia‘s industrial crop (Abdul Khalil et al., 2010; Goh 

et al., 2010c).  To enhance the potential of EFB and kenaf for producing chemical 

products, a new industrial uses of them need to be developed.  The hydrolysis of EFB 

and kenaf to produce levulinic acid can be a good alternative method for these 

plentiful and readily available biomass feedstocks in Malaysia.  Empty fruit bunch 

and kenaf plants have complex structures.  They consist of cellulose and 

hemicellulose polymers that are bound together by lignin.  Both cellulose and 

hemicellulose structures involve in EFB and kenaf conversion to produce levulinic 

acid as depicted in Figure 1.3.  The presence of insoluble humin (carbonaceous 

residue), one of the side products in the reaction process might increase the 

complexity of the reaction network (Peng et al., 2010; Fang and Hanna, 2002). 

 

 

 
Figure 1.3  Simplified reaction scheme for the conversion of the biomass to  

levulinic acid (Fang and Hanna, 2002) 

 

 

A number of approaches have been reported for levulinic acid production. 

Acid-catalyzed dehydration and hydrolysis of biomass and carbohydrates with acid 

were widely used in levulinic acid production (Girisuta, 2007).  Formic acid and 
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other byproducts also formed in this reaction (Chang et al., 2007).  Other approaches 

have also been applied such as hydrolysis of acetyl succinate ester, the acid 

hydrolysis of furfuryl alcohol, the oxidation of ketones, Pd-catalyzed carbonylation 

of ketones and by the alkylation of nitroalkanes (Bozell et al., 2000).  However, all 

these approaches require expensive feedstock and frequently formed large amounts 

of side products.  The first commercial-scale plant for the levulinic acid production 

from lignocellulosic biomass was built in Caserta, Italy through a process developed 

by Biofine Renewables Corporation (Girisuta et al., 2008).  The Biofine process uses 

acid hydrolysis of tobacco bagasse for levulinic acid production in two reactor 

systems to minimize the side products (Hayes et al., 2008). 

 

 

A new pathway for biomass conversion to value-added products in a single 

process under mild conditions can be developed by catalytic hydrolysis in ionic 

liquid (Wang et al., 2011a; Lee et al., 2011).  Ionic liquids are versatile green solvent 

where they can act as solvents, catalysts and they can be utilized in very different 

ways; homogenous, multiphase and heterogeneous for biomass transformations or in 

organo-catalysis (Olivier-Bourbigou et al., 2010).  Lately, most of the researchers are 

trying to build up the potential of ionic liquids as a reaction medium by combining 

with solid acid, metal halide or salts and mineral acid in biomass hydrolysis and 

dehydration processes to produce 5-hydroxymethylfurfural, HMF (Su et al., 2009; 

Hu et al., 2009; Li et al., 2009; Zhang and Zhao, 2009).  To date, a few literatures 

have been reported the potential use of these treatment methods for producing 

levulinic acid.  Thus, this study intends to employ the combination of low cost 

sources of levulinic acid with this new technology wherein it can open up a new 

route opportunity for levulinic acid production.  
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1.2 Problem Statement 

 

 

The developments of sustainable and clean technologies that can replace the 

depleting of fossil fuels can be achieved by utilizing the renewable feedstock through 

tremendously researches (Alonso et al., 2010).  Lignocellulosic biomass feedstocks 

have seen to be the most suitable feedstock for an alternative to the petrochemical 

sources existing nowadays.  The fractions of biomass can be converted into chemical 

products such as levulinic acid (Pike and Hertwig, 2008).  In the petrochemical 

industry, levulinic acid can be produced from maleic anhydride and hydrolysis of 

furfuryl alcohol.  These conversion routes are more complex than the acid hydrolysis 

of biomass and relatively higher market prices of levulinic acid (Rackemann and 

Doherty, 2011). 

 

 

Traditionally, homogenous acid hydrolysis was used in the lab and industry 

scales in producing levulinic acid.  Raw materials used for the levulinic acid 

production included simple sugars, starch, and cellulosic materials (Fang and Hanna, 

2002).  Extensive studies have been conducted by Chang et al. (2009), Girisuta 

(2007), Chang et al. (2007) and Girisuta et al. (2006) teams.  They have reported the 

details about experimental and kinetic studies on the homogeneous acid-catalyzed 

hydrolysis of water hyacinth and wheat straw for levulinic acid production. 

Basically, production of levulinic acid requires high temperature (150–250 °C) and 

concentrated mineral acid.  In terms of safety and environmental issues, this 

hydrolysis process is risky and hazardous.  According to Chang et al. (2006), 

although high levulinic acid yield can be attained at low reaction temperature by 

applying diluted acid at a longer reaction time, the corrosion to equipment and the 

difficulty of acid recovery for further use caused this method inefficient to be 

implemented in industry.  As an alternative, heterogeneous acid catalysts have been 

promoted since these catalysts can overcome the problems occurred in homogeneous  

acid catalysts (Hongzhang et al., 2011). 
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Heterogeneous acid catalysts are feasible alternatives to homogenous acid 

catalysts and possibly will offer an environmental advantage due to their selective, 

recycle and regenerate abilities properties and easy to handle.  These can reduce 

equipment corrosion problems and relatively low cost required if the catalyst can be 

easily separated and recycled.  Due to their advantages compared to homogenous 

acid catalysts, a lot of studies have been conducted on the synthesis of levulinic acid 

using multiple solid acid catalysts and feedstock (Rackemann and Doherty, 2011). 

Low levulinic acid yields were produced in prolong reaction times as reported by 

Jow et al. (1987), Lourvanij and Rorrer (1993) and Zeng et al. (2010) Thus, further 

studies were conducted by Peng et al. (2010) and Hongzhang et al. (2011) by 

employing metal chlorides and solid superacid.  They found that these methods have 

enhanced levulinic acid yields in shorter reaction times but higher reaction 

temperatures (200 °C) were required.  Therefore, further studies are still necessary to 

comprehend the catalytic activities in the formation of levulinic acid by discovering 

more reactive catalysts.  Exploration of heterogeneous acid catalysts through 

catalytic performance testing and physico-chemical properties is useful to enhance 

the levulinic acid yield and selectivity. 

 

 

In present study, transition metal–modified HY zeolite is rarely utilized in 

biomass processing especially in levulinic acid production.  HY zeolite supported 

transition metal catalysts have been used widely in the chemical processes especially 

for the synthesis of high quality fuel (Xiao and Mao, 1995).  The catalysts were 

prepared by constituting the mixture of two or more components and the intention 

was to catalyze more than one reaction at once (Flores and Silva, 2008).  Presently, 

HY zeolite (Brönsted type acid site) and CrCl3 (Lewis type acid site) showed high 

catalytic reactivity on glucose and cellulose conversion towards fructose production 

and simultaneously dehydrated to HMF before further rehydrated to levulinic acid 

and formic acid (Tan et al., 2011; Peng et al., 2010; Pidko et al., 2010; Lourvanij and 

Rorrer, 1993).  In addition, very low HMF yield was reported over zeolite and 

chromium catalysts alone in the reaction systems (Zhang and Zhao, 2009).  The low 

levulinic acid yield could also be expected in these reaction systems since HMF is 

the intermediate compound before levulinic acid is formed.  Therefore, modification 

of HY zeolite by introducing the CrCl3 is expected to improve the catalytic properties 
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and possibly enhance the levulinic acid yield and selectivity from glucose, cellulose 

and lignocellulosic biomass.  

 

 

Moreover, the modified HY zeolite with CrCl3 catalyst assisted with ionic 

liquid allows the subsequent conversion of feedstock to levulinic acid in high yield 

and selectivity.  Ionic liquid can act as solvent and catalyst for dissolving cellulose 

structures by disrupting the hydrogen bonds between the molecules (Zhang and 

Chan, 2010; Zhang and Zhao, 2009).  The development of the catalytic activity in 

ionic liquid requires choosing the right catalyst and ionic liquid as different catalyst 

and ionic liquid will react with the different purpose.  Thus, these limitations and 

challenges depend on the development of catalyst for the hydrolysis and dehydration 

processes of biomass feedstock to produce levulinic acid.  The precision of catalyst 

would contribute to a sustainable and cost-effective process through greater 

utilization of the biomass feedstock.  Besides, the catalyst can improve the 

conversion and enhance the levulinic acid yield and selectivity.  

 

 

 

 

1.3 Research Objectives 

 

 

The objectives of the research are: 

 

i. To synthesize, characterize and screen CrC3/HY catalysts at different weight 

ratios for glucose conversion to levulinic acid.  

 

ii. To optimize levulinic acid yield from glucose using potential catalyst. 

 

iii. To optimize levulinic acid yield from cellulose using potential catalyst in an 

ionic liquid. 
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iv. To utilize lignocellulosic biomass for levulinic acid production at optimum 

conditions. 

 

 

 

 

1.4 Scopes of Research 

 

 

The generalized scopes involved in this research are:  

 

i. Synthesis of catalysts with different weight ratios of CrCl3 and HY zeolite; 

1:1, 1:2 and 2:1 via wetness impregnation method. 

 

ii. Characterizations of catalysts using x-ray diffraction (XRD), nitrogen 

adsorption Brunauer Emmett-Teller (BET), thermal gravimetric analyses 

(TGA), temperature programmed desorption ammonia (NH3-TPD), Fourier 

transform infrared spectroscopy (FTIR) and infrared spectroscopy of 

adsorbed pyridine (IR-Pyr). 

 

iii. Model compounds of glucose and cellulose were utilized for the catalysts 

testing, screening and optimization process. 

 

iv. Catalysts testing and screening for glucose conversion to levulinic acid. 

 

v. Optimization process for glucose conversion to levulinic acid by using the 

potential catalyst. 

 

vi. Optimization process for cellulose conversion to levulinic acid by using the 

potential catalyst in an ionic liquid. 

 

vii. Determination of lignocellulosic biomass, EFB and kenaf compositions using 

a thermal gravimetric analyzer (TGA) and Laboratory analytical procedures 

(LAP). 
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viii. Utilization of EFB) and kenaf for levulinic acid production at optimum 

process conditions. 

 

 

 

 

1.5 Thesis Outline 

 

 

This thesis commences with an introduction to this research in Chapter 1. 

This chapter describes the research background, recent problems, objectives, scopes 

and significance of this research.  The literatures in Chapter 2 review in detailed the 

previous researches related to the conversion of biomass and its constitution into 

valuable bio-based chemical products using various methods as well as researches 

concerned in this area.  Chapter 3 elaborates the experimental procedures such as 

catalyst preparation, characterization, testing methods and the analytical procedures 

involved to evaluate the efficiency of the method in this study.  The main parts of 

this research are Chapter 4 and 5 whereby Chapter 4 explains in detail the results and 

discussions for the characterizations and catalytic activities of the catalysts while 

Chapter 5 concerns the optimization processes and utilization of lignocellulosic 

biomass.  Finally, Chapter 6 concludes the findings and significance of this study. 

Recommendations for the future works are also suggested in assurance the positive 

outlook of this research area.  

 

 

 

 

1.6 Research Significance 

 

 

This research has developed catalysts with different weight ratios of metal 

halide (CrCl3) and HY zeolite.  The catalysts have facilitated the steps of 

dehydration, isomerization and rehydration processes into one pot catalytic reaction. 



11 
 

The presence of ionic liquid could dissolve and cleave the glycosidic bonds in the 

cellulose structure into simple structure, glucose before further catalyzed into 

levulinic acid via potential catalyst.  These methods were also tested to EFB and 

kenaf.  The results revealed the potential of this study to be implemented in biomass 

conversion to levulinic acid under adequate process conditions. 
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