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ABSTRACT 

 

 

 Trigonometry is of great importance in mathematics as well as in physics, 

engineering, and chemistry.  Astronomy, geography, navigation, study of optics and 

acoustics, oceanography, architecture, calculus, etc. are just several examples where 

trigonometry is significantly practiced.  Historical figures like Pythagoras and Columbus 

used trigonometric tables in their careers.  The birth of software has empowered 

relatively faster trigonometric functions performed by processors.  In real-time 

applications though, such as trajectory calculations in military or space exploration, or 

in biomedical authentication system for fast access or rejection decision, trigonometric 

computation by software is a considerably time-consuming process.  Coordinate 

Rotation Digital Computer (CORDIC) is an algorithm developed for hardware 

implementation as a real-time solution to trigonometric computation.  This report 

presents a design approach to realize the CORDIC algorithm, prototyped as an 

embedded system in an Altera Field Programmable Gate Array (FPGA) development 

board running at 100 MHz clock frequency.  The design flow applies the systematic 

Register Transfer Level (RTL) methodology, partitioning the design into a Datapath 

Unit (DU) for computation tasks, and a Control Unit (CU) for controlling the operation 

flow.  Experimental results show that a high accuracy was obtained, with mean 

computation errors between 0.0014% and 0.0023% with respect to a software 

implementation on the same platform.  The speed up in the execution time is about 89 

times for the computation of cosine and sine functions, and 69 times for the arctangent.  

The work demonstrates the power of the CORDIC algorithm, and presents a 

methodology for an efficient complex hardware design.  
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ABSTRAK 

 

 

 Trigonometri amat penting dalam matematik serta fizik, kejuruteraan dan kimia.  

Astronomi, geografi, navigasi, kajian optik dan akustik, oseanografi, seni bina, kalkulus, 

dan lain-lain hanyalah beberapa contoh di mana trigonometri dipraktikkan dengan 

mendalam.  Tokoh-tokoh sejarah seperti Pythagoras dan Columbus menggunakan jadual 

trigonometri dalam kerjaya mereka.  Kelahiran perisian telah mempercepat pengiraan 

fungsi trigonometri oleh pemproses.  Namun dalam aplikasi masa benar, seperti 

pengiraan trajektori dalam ketenteraan atau penerokaan angkasa lepas, atau dalam 

sistem pengesahan biometrik untuk akses atau penafian yang cepat, pengiraan 

trigonometri oleh perisian adalah suatu proses yang memakan masa terlalu lama.  

Komputer Putaran Koordinat Digital (CORDIC) adalah suatu algoritma dibangunkan 

khusus untuk implementasi perkakasan sebagai penyelesaian kepada pengiraan 

trigonometri dalam masa benar.  Laporan ini membentangkan suatu pendekatan reka 

bentuk dalam merealisasikan algoritma CORDIC, diprototaipkan sebagai sebuah sistem 

terbenam dalam papan pembangunan Field Programmable Gate Array (FPGA) yang 

berfungsi pada frekuensi 100 MHz.  Pendekatan ini menggunakan kaedah sistematik 

Register Transfer Level (RTL) dengan membahagikan reka bentuk kepada sebuah Unit 

Laluan Data (DU) untuk tugasan pengiraan, dan sebuah Unit Kawalan (CU) bagi 

mengawal perjalanan operasi.  Keputusan uji kaji menunjukkan bahawa ketepatan tinggi 

telah diperolehi, dengan min ralat pengiraan antara 0.0014% dan 0.0023% berbanding 

dengan implementasi perisian dalam platform yang sama.  Masa pelaksanaan adalah 

kira-kira 89 kali lebih pantas untuk pengiraan fungsi sinus dan kosinus, dan 69 kali 

untuk lengkuk tangen.  Kerja ini menunjukkan kelebihan algoritma CORDIC, dan 

membentangkan suatu kaedah ke arah reka bentuk perkakasan kompleks yang efisien. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 This project report documents a prototype hardware design of Coordinate 

Rotation Digital Computer (CORDIC) algorithm implemented as part of a System-on-

Chip (SoC) implemented in Field Programmable Gate Array (FPGA).  This chapter 

provides an overview of the design abstraction level and the FPGA technology, 

followed by an introduction to CORDIC, problem statement, project objectives, scope 

of work, project contribution, and finally the thesis organization. 

 

 

1.1 Design Abstraction Level 

 

 In order to handle different complexities in designing and fabricating an 

integrated circuit (IC), one of the techniques that electronic designers adopted is design 

abstraction [1].  A typical design abstraction can be arranged in a decreasing abstraction 

order as illustrated in Table 1.1, i.e. starting from the system or architectural level, 

moving down to the register transfer level (RTL), logic level, circuit level, layout level, 

device level, and finally the technology level.  In a typical semiconductor company, 

each design level is managed by different engineering teams which may be situated at 

different parts of the world.  At each level, the in-charged team models the design with a 
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black box view suitable for the complexity of that particular level, without having to 

worry for the internal details beyond their responsibilities or expertise.  The information 

contained in the model is however adequate for the specialized team at the lower level 

of the design hierarchy.   

 

 One of the criteria which determine the design complexity is the number of gate 

counts.  This project applies the RTL design level.  The first reason is that the 

complexity of the proposed design is expected not to exceed 100,000 gates.  For a larger 

system with a gate count of up to 500,000 gates, the system level would have been 

adopted.  Else if the design is even simpler that it is expected to use 10,000 gates or 

lower, the logic or circuit level could be considered.  Secondly, the RTL level is suitable 

for fast prototyping digital circuits into a Field Programmable Gate Array (FPGA) 

platform prior to transferring to more costly design stages.  When a design has been 

successfully prototyped with relevant analysis carried out, then only it can be assigned 

to the succeeding levels, which are targeted for fabrication in an Application Specific IC 

(ASIC).  As additional information, Table 1.1 also includes the courses offered at 

Masters Level by the body of knowledge, University of Technology Malaysia (UTM) 

under the Faculty of Electrical for each design abstraction level. 
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Table 1.1 : Design Abstraction Level [1] 

Graphical view Level Primitive 

units 

Concerned 

parameters 

Courses 

offered in 

UTM 

 

 

 

 

 

System / 

Architectural 

Level 

Behavioral 

modules 

  

Silicon area 

  

Adv. Computer  

Architecture  

(MEL1183) 

Register 

Transfer  

Level (RTL) 

Functional 

modules 

  

Timing 

  

Adv. Digital  

System Design 

(MEL1173)  

Logic Level Gates, Bits Delays 

(propagation / 

transition) 

Integrated 

Circuit Testing 

(MEL1133) 

Circuit Level 

  

Transistors 

  

Voltage, 

Currents 

Analog CMOS 

Design 

(MEL1193) 

Layout / 

Physical 

Level 

Layout 

layers 

  

Topology, 

Dimensions 

VLSI Circuits 

& Design 

(MEL1163) 

Device Level MOSFET 

models 

Current-

Voltage 

Characteristics 

Nanoelectronic 

Devices 

(MEL1113) 

Technology 

Level 

Process 

models 

Impurity 

Profiles 

 

- 
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1.2  Field Programmable Gate Array (FPGA) 

 

The Field Programmable Gate Array (FPGA) technology was pioneered by 

Xilinx in 1985 [2] as a prototyping platform for ICs.  The function of an FPGA is user-

configurable, i.e. defined by a user’s program rather than the device manufacturer.  An 

FPGA in principle is made up of three major configurable elements which are 

Configurable Logic Blocks (CLBs) or also called as Logic Elements (LEs), 

Input/Output Blocks (IOBs), and interconnections as illustrated in Figure 1.1.  The 

CLBs supply the functional element for constructing a user’s logic.  The interface 

between external package pins and internal signal lines is provided by the IOBs.  The 

programmable interconnection links the CLBs and IOBs into the relevant network.  

Among programmable switching technologies driving an FPGA are SRAM-driven pass 

transistors [2, 3], anti-fuses [4], and EPROM-driven pass transistors [5, 6].  The first 

generation of FPGA implements 4-input Boolean functions and has a single storage 

element [2].  Successive generations enabled wider Boolean functions and incorporated 

additional storage elements, with more powerful and flexible CLBs, as well as improved 

IOBs and interconnections, allowing the FPGA technology to dramatically reduce the 

design turn-around time and manufacturing costs [7].   

 

 

 

 

 

 

 

 

 

Figure 1.1 The architecture of a Field Programmable Gate Array [8] 
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1.3 Coordinate Rotation Digital Computer (CORDIC) 

 

 Trigonometry is one of the fundamental mathematical functions that are 

vigorously taught at high schools.  Students initially learnt to use trigonometry book 

which contains look-up tables for all trigonometric functions.  This method was later 

replaced by scientific calculators which university students and engineers are obligatory 

to own one, be it in the physical form or in the software form.  Most people have no 

knowledge or little appreciation on how these calculators are capable to compute such 

mathematical functions in just a blink of an eye, or to what extent can the accuracy be.  

The underlying secret of this capability may lie in an algorithm named as Coordinate 

Rotation Digital Computer (CORDIC). 

 

 CORDIC is an iterative algorithm involving only additions, subtractions, simple 

bit shifts, and constants look-ups, developed for fast computation of trigonometric 

functions such as cos, sin, and tan
-1

, their hyperbolic counterparts i.e. cosh, sinh, and 

tanh
-1

, as well as elementary operations like square root, division, and multiplication.  

Even though it is an approximation approach, the results of a CORDIC operator do not 

compromise accuracy, with a higher number of iterations provides a higher precision 

with respect to the actual calculation.  The design of a CORDIC module involves 

division by powers of two, which can be exploited in a hardware implementation by 

applying right-hand shift (RHS) operation.  In a compute-intensive application, 

CORDIC is one of the preferred alternatives to compute the previously mentioned 

mathematical functions. 

 

 The CORDIC algorithm is credited to Jack E. Volder in 1959 [9], who worked at 

Convair, an American company which started as an aircraft manufacturer and later 

expanded to produce rockets and space crafts.  Compared to their other products, the 

CORDIC algorithm was just a small contribution but with significant effects in 

application areas such as navigational systems for calculating real-time trajectories; 

biometrics in the image processing module for fingerprint minutiae matching [10]; 
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telecommunications such as in the design of digital down converters [11] and radar 

signal processors [12]; the HP-35 calculator and many other examples [13].  The 

original algorithm was meant for the computation of trigonometric functions, 

multiplication, and division operations.  It was John Walther who has actually 

generalized this algorithm in 1971 [14] for hyperbolic, logarithm, and exponential 

computations [15]. 

 

 

1.4 Problem Statement 

 

 Software solutions adopted by microprocessors to perform trigonometric 

functions are compute intensive, time-consuming and not suitable for direct hardware 

implementation [13].  CORDIC is one of the hardware algorithms developed to solve 

trigonometric, hyperbolic, and linear functions due to its simplicity and speed efficiency 

[16].  Designing a CORDIC module has been set as the purpose of this project. 

 

 

1.5 Objectives 

 

 The project aims to develop a CORDIC software (SW)/hardware (HW) 

coprocessor to be implemented in FPGA technology applying the RTL design 

methodology.  The sub-objectives are: 

 

i. To design and simulate a CORDIC HW core consisting of a Control Unit (CU) 

and a Datapath Unit (DU). 

ii. To design and simulate a system bus interface module for the control and data 

transfer between the Central Processing Unit (CPU) and the CORDIC core. 

iii. To integrate the interface module and the CORDIC core into a top-level module, 

CORDIC coprocessor.  This coprocessor is then implemented in a FPGA. 
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iv. To develop an embedded SW in order to activate the functionality of the 

CORDIC coprocessor.  This SW is then integrated with the coprocessor and 

running in the FPGA. 

v. To compare the performance of the CORDIC coprocessor design with SW 

library functions as well as previous works, in terms of accuracy, execution time, 

and resource utilization. 

 

 

1.6 Scope of Work 

 

The scopes of this thesis are: 

 

i. The CORDIC coprocessor is modeled, synthesized, and simulated in Quartus II 

Version 8.1 Build 163 10/28/2008 SJ Web Edition running on Windows 7 

Operating System (OS), as well as Quartus II Version 9.0 Build 132 02/25/2009 

SJ Full Version running on Linux Ubuntu OS.  The reason for employing two 

different versions is that the former one is for home and initial design usage 

while the latter is for laboratory work purposes of this project. 

ii. Nios II Integrated Design Environment (IDE) Version 9.0 Build 132 2003 is 

utilized for the development of the embedded SW and execution of the CORDIC 

coprocessor design by the Nios II CPU. 

iii. Verilog Hardware Description Language (HDL) is applied for the HW design 

and synthesis, and C High Level Programming Language (HLL) is used to 

program the embedded SW. 

iv. The CORDIC coprocessor is designed to be the first working prototype to 

implement the trigonometric functions of cos (), sin (), and tan
-1 

(y/x) only.  

The implementation of other functions such as cosh (), sinh (), square root, 

etc. are recommended for future work. 

v. This working prototype is executed in Altera Cyclone II EP2C35F672C6 FPGA 

DE2 development board.  The board is equipped with a maximum clock 
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frequency of 50 Mega Hertz (MHz), but with an inclusion of a Phase Locked 

Loop (PLL), the coprocessor design is executed at 100MHz. 

 

 

1.7 Project Contributions 

 

i. A prototype of a trigonometric computer is developed in a FPGA-based 

platform. 

ii. A systematic digital design technique to realize a SW-HW coprocessor in FPGA 

is presented. 

 

 

1.8 Report Organization 

 

 This report is organized into six chapters.  Chapter 1 introduces the preliminary 

information of the project, the problem statement, project objectives, scope of work, and 

project contributions to the body of knowledge. 

 

 Chapter 2 is the background and literature review chapter.  This chapter provides 

an insight to the CORDIC algorithm and reviews some previous related work on its 

implementation in FPGA platform. 

 

 Chapter 3 presents the methodology employed in the project.  It begins with the 

overall project flow and continues with the RTL design flow applied in the CORDIC 

HW development.  The chapter ends with the development flow of the embedded SW. 

 

 Chapter 4 is dedicated for the HW design of the CORDIC coprocessor.  This 

includes the explanation of the involved HW cores and the system bus interface module. 
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 Chapter 5 is the results and discussion chapter.  Snapshots of Nios II console 

window displaying the outputs of trigonometric functions executed are presented in this 

chapter.  The results of the CORDIC coprocessor are compared with C trigonometric 

library functions and a couple of previous works in terms of accuracy, execution time, 

and resource utilization involved. 

 

 Chapter 6 concludes the project outcome and provides recommendations for 

future work to further improve the functional prototype of the CORDIC coprocessor. 
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