
FUNCTIONAL TEST GENERATION USING
MICRO OPERATION FAULT MODEL

ONG HUI YIEN

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Electrical – Computer and Microelectronic System)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

MAY 2011

iii

To my beloved parents, wife and son

iv

ACKNOWLEDGEMENT

This project would not have been successful without the endless support from

many great people. Firstly, I would like to express my highest gratitude to my

project supervisor, Dr. Ooi Chia Yee for her continuous guidance, patience and

support for me throughout the project.

I would also like to take this opportunity to thank my fellow colleagues in

Intel, Jonie Lim and Yoong Yaw for their guidance and knowledge sharing in

SystemVerilog language and VCS tool. With their help, I was able to build the

correct constraint model, generate quality sets of test pattern and this leads to better

analysis in this project. Besides, I would also like to thank my peers, Alice Koh,

Kevin Leong, Wee Soon and Si Long for their help and encouragement.

Lastly and most importantly, thanks to my wife and son who have been very

supportive, patient and encouraging throughout this project.

v

ABSTRACT

As semiconductor technology advances further into nanometer regime,

integrated circuit testing and validation continues to play a very important role to

ensure high quality product. Conventionally, test patterns are generated from a gate

level netlist using test generation tool. However, as the digital design increases in

complexity, the gate level test generation process becomes more complicated and

time consuming. As an extended alternative to this, functional fault model like micro

operation fault model was introduced. However, in order to implement this, proper

automation is necessary while minimizing intensive manual labor. Unfortunately,

currently there is only proprietary version of automation available. In this project, an

automated platform to generate test pattern using micro operation fault model was

built using Perl programming language. The methodology involves conversion of

behavioral model of design under test into extended finite state machine. This is

followed by micro operation fault detection, fault activation and fault propagation

with all the corresponding constraint sequences captured and converted into

constraint model using SystemVerilog, a hardware description language. These

models of fault free and intended faulty circuit were fed into a constraint solver tool,

VCS by Synopsys to generate the test pattern. For verification purpose, these test

patterns were validated by simulating the circuit using Altera Quartus II tool. The

result of this project shows that reasonable fault coverage was achieved using this

methodology.

vi

ABSTRAK

Dalam era pembangunan teknologi nanometer separa pengalir terkini,

pengujian dan pengesahan litar bersepadu masih memainkan peranan yang amat

penting untuk memastikan kualiti produk atau komponen elektronik tetap tinggi.

Secara lazimnya, corak ujian untuk tujuan pengesahan adalah dihasilkan daripada

litar di peringkat get. Akan tetapi, apabila teknologi reka bentuk digital menjadi kian

rumit dan kompleks, proses penjanaan corak ujian turut menjadi semakin rumit dan

memakan masa yang agak lama. Sebagai alternatif untuk menyelesaikan masalah ini,

permodelan kerosakan di peringkat fungsional seperti permodelan kesalahan operasi

mikro telah diperkenalkan. Walau bagaimanapun, automasi adalah penting untuk

pelaksanaan dan memudahkan proses penjanaan corak ujian sambil mengurangkan

kerja manual. Dalam projek ini, pengautomatan untuk menghasilkan corak atau pola

ujian menggunakan konsep permodelan kerosakan operasi mikro telah dilaksanakan

dengan menggunakan bahasa pengaturcaraan Perl. Kaedahnya melibatkan

penukaran model perilaku reka bentuk litar ke extended finite state machine. Ini

diikuti oleh pengesanan dan pengaktifan kerosakan operasi aritmetik, dan

perambatan kerosakan ini ke keluaran primer litar. Jujukan yang didapati daripada

proses ini djadikan model kekangan dengan menggunakan bahasa penggambaran

SystemVerilog. Seterusnya model-model akan diberikan kepada perisian penyelesai

kekangan VCS untuk menjanakan corak ujian. Untuk tujuan pengesahan, corak-

corak ujian ini disahkan oleh simulasi litar menggunakan perisian Altera Quartus II.

Keputusan projek ini menunjukkan liputan kerosakan yang munasabah dapat dicapai

dengan menggunakan metodologi atau kaedah yang dibincangkan.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xii

LIST OF APPENDICES xiii

1 INTRODUCTION 1

1.1 Project Background 1

1.2 Problem Statement 3

1.3 Objectives 3

1.4 Scopes of Study 4

1.5 Organization of the Report 5

2 LITERATURE REVIEW 6

2.1 High Level Test Generation Techniques 6

2.2 Functional Fault Model 8

2.3 Extended Finite State Machine 9

2.4 Fummi’s Fault Model 10

2.5 Chen’s Fault Model 10

viii

3 METHODOLOGY 13

3.1 Project Planning 13

3.2 Methodology for Project Design and Implementation 16

3.2.1 EFSM Modeling of DUT 17

3.2.2 Perl Programming 18

3.2.3 Constraint Sequence Generation 20

3.2.4 Constraint Model Generation 21

3.2.5 SystemVerilog Test Bench 22

3.2.6 Test Pattern Generation and Validation 24

4 DEVELOPMENT OF FUNCTIONAL TEST

GENERATION PLATFORM AND TEST BENCH

DESIGN 26

4.1 Platform Development Overview 27

4.2 Software Design Architecture 28

4.2.1 VHDL Processing and Equivalent EFSM

Modeling 28

4.2.2 Fault Activation, Fault Propagation, and Test

Sequence Generation 35

4.2.3 Constraint Models Generation 37

4.3 SystemVerilog Test Bench Design 39

5 RESULT AND DISCUSSION 44

5.1 Result and Validation 45

5.2 Result Analysis 48

6 CONCLUSION AND RECOMMENDATION 50

6.1 Challenges Encountered and Conclusion 50

6.2 Recommendation for Future Work 52

REFERENCES 54

APPENDIX A 56

ix

LIST OF TABLES

TABLE NO. TITLE PAGE

3.1 Systematic representation of EFSM model 20

4.1 Variable $signal_vector 30

4.2 EFSM model at state RST 31

4.3 Structure of variable $flag_complex 32

4.4 Complete $flag_complex value for DUT b04 33

4.5 Enable function 35

4.6 Update function 35

4.7 Example of constraint model 38

4.8 Fault free and faulty operation 39

5.1 VCS run result on b04 45

5.2 Summary of fault coverage and test generation time for b04

and b14 49

x

LIST OF FIGURES

FIGURE NO. TITLE PAGE

3.1 High-level overview of project implementation and scope 15

3.2 Work break down of design stages in sequence 15

3.3 High-level flowchart of project flow 16

3.4 State transition graph of a simple EFSM 18

3.5 Snippet of VHDL converted into EFSM 19

3.6 Snippet of VHDL converted into EFSM in Perl 20

3.7 Entity of SystemVerilog code 23

3.8 Overview of test pattern generation 24

4.1 Block diagram of DUT b04 26

4.2 High level overview of software design 28

4.3 Flowchart of CM_GEN.pl 29

4.4 Typical VHDL design entity 30

4.5 EFSM model of DUT b04 32

4.6 EFSM model of DUT b04 with fault activation and

propagation 37

4.7 Constraint models of fault free design 39

xi

4.8 Constraint models of faulty design 40

4.9 Detection constraint 41

4.10 Program block 42

4.11 Output of VCS run 43

5.1 Test pattern from VCS run on b04 46

5.2 Simulation waveform of fault free b04 (addition at L6) 47

5.3 Simulation waveforms of faulty b04 (subtraction at L6) 47

5.4 Simulation waveforms of faulty b04 (multiplication at L6) 48

5.5 Simulation waveforms of faulty b04 (division at L6) 48

xii

LIST OF ABBREVIATIONS

ATPG - Automatic Test Pattern Generation

CMOS - Complementary Metal Oxide Semiconductor

CS - Constraint Sequence

DFT - Design For Test

DUT - Design-Under-Test

EDA - Electronic Design Automation

EFSM - Extended Finite State Machine

HDL - Hardware Description Language

HDVL - Hardware Description and Verification Language

IC - Integrated Circuit

ITC’99 - 1999 International Test Conference

LSA - Line-Stuck-At

LSI - Large Scale Integrated

VCS - Verilog Compiler Simulator

VHDL - VHSIC Hardware Description Language

VHSIC - Very-High-Speed Integrated Circuit

VLSI - Very-Large-Scale Integration

OUT - Operation-Under-Test

RTL - Register Transfer Level

SST - Single-State-Transition

xiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A SystemVerilog Test Bench Code for DUT b04 55

CHAPTER 1

INTRODUCTION

1.1 Project Background

Semiconductor technology has been improving rapidly lately and as it

advances further into the nanometer regime, manufacturing processes become more

defect-prone. Integrated circuit (IC) validation and testing play a very important role

in ensuring and maintaining product quality while meeting the constraint of time-to-

market. Ultimately the main goal is to obtain fault model that provides high fault

coverage and requires short time for test generation.

Besides, the ever increasing complexity of digital designs are causing gate-

level sequential test generation to become more time consuming and challenging.

Many studies and researches have been done to achieve faster and better test

sequence generation. Subsequently, there were some attempts to obtain higher fault

coverage within reasonable time. One of them is the design-for-testability (DFT),

such as scan methodology but this technique introduces additional hardware and

causes area overhead.

Alternatively, we can perform test generation process at higher level of

abstraction of the digital design, called functional test generation technique. In this

technique, desired circuit functions are specified using hardware description

languages (HDLs). The HDLs do all this without burdening the designer with the

structural details of the circuit’s implementation.

2

Since HDLs are used to describe hardware at a high-level, by definition, the

language constructs must be related to the actual hardware. This relationship has a

higher degree of abstraction than the relationship between the gate-level

representation of a design and the hardware. The test generation algorithms designed

for the high-level models are usually direct extensions of those for the gate-level

models, in which the functional modules are treated as primitive components and this

allows improvement because fewer components are evaluated during test generation.

The potential performance advantage of the reduced structural complexity makes this

approach more attractive.

Since the conventional single LSA (Line Stuck-At) fault model is no longer

suitable at this abstraction level, functional fault model is introduced to support this

high level test generation platform. Currently, more complete functional fault

models which can represent failure at more syntax of HDL description are Fummi’s

fault model (Fummi et al., 1998) and Chen’s fault model (Chen, 2003). Fummi

introduced a fault model that consists of bit failure and condition failure. Bit failure

covers LSA of each bit of variable, signal or port, while condition failure covers LSA

in each condition which may remove some execution paths in the erroneous HDL

description.

Micro operation fault was introduced in Chen’s fault model, where it is a

failure of micro operation to perform its intended function. The operators for the

micro operation can be logical operators, relational operators, unary operators and

arithmetic operators. An operator may fail to any other operator in its category. This

fault is mapped by replacing the operator considered with its counter operator which

must be defined. This project looks into Chen’s fault model for micro operation fault,

specifically on arithmetic operators like addition, subtraction, multiplication and

division.

3

1.2 Problem Statement

A better functional fault model called Enhanced Micro Operation Fault

Model (Ooi and Fujiwara, 2010) was introduced to overcome Fummi’s and Chen’s

fault models in the early 2010. In order to implement these fault models effectively

without too much manual labor, an automated functional test generation platform is

required especially when these fault model targets hard-to-test circuit. Unfortunately,

currently only proprietary version of automation is developed (Chen and Noh, 1998)

and it is not available for public usage.

Full automation is necessary in this context because in order to generate test

pattern using micro operation fault model, it involves steps like conversion of

behavioral HDL into Extended Finite State Machine (EFSM). Also, with automation,

one can easily trigger intended fault, and find its state justification path and

propagation path to build the constraint sequence. Besides that, the conventional

method to build constraint model is using manual effort and the designer has to

always refer back to the behavioral model of the circuit. All these can be eliminated

with the automated test pattern generation platform.

1.3 Objectives

The main objective of this project is to build an automated constraint models

generation platform via series of software programming which basically reads in the

behavioral model of a design under test (DUT), generates the corresponding

constraint sequence and constraint model. The constraint models generated here

shall be useful for high-level test pattern generation. This project does not only focus

on the implementation part, but also to be tested on dedicated validation benchmark

circuits from the 1999 International Test Conference (ITC’99). This is to analyze its

functionality and effectiveness in terms of fault coverage and test generation time.

4

1.4 Scopes of Study

This project involves a series of research and work on functional fault

modeling, high level automatic test pattern generation and constraint solving in order

to develop a software program that is capable of generating test pattern based on

micro operation fault model. The scope of work begins with the understanding of

behavioral model of DUT in VHDL (very-high-speed-integrated-circuit hardware

description language). This is because the benchmark circuits from ITC’99 are all

released in VHDL code. It is important to differentiate the design entity of the DUT

which basically consists of entity declaration and architecture block. In VHDL

behavioral modeling, the code contains sequential statements that are executed

sequentially in a predefined order. This order of the statements in the code is

important and may affect the semantics of the code.

EFSM was studied to understand all of its entities. EFSM plays a very

important role to model the DUT from VHDL and to derive test sequences. These

test sequences are derived such that all the transitions of the EFSM are traversed to

guarantee that every statement in the behavioral description is verified. Constraint

models using SystemVerilog are generated from these test sequences.

By using constraint solver tool called VCS (Verilog Compiler Simulator,

from Synopsys) to solve the constraint models, the corresponding test pattern can be

generated. These test patterns are used to activate and propagate targeted faults.

Another software tool called Altera Quartus II is used to simulate the DUT with the

test pattern obtained earlier. The simulation waveforms can be used to validate and

verify the quality of the test patterns.

The main software program is written using Perl programming language.

Perl was chosen because it has very strong regular expression functions and its

multiple levels of hashes of hashes can be easily implemented as database to store all

the information of the EFSM. Besides that, Perl is a good scripting language and can

5

be easily used to detect an arithmetic operation and trigger an intended fault to obtain

the test sequence.

1.5 Organization of the Report

This report consists of six chapters with the brief description of each chapter

as stated below:

Chapter 1 presents the introduction to this project, including the background

of the project, problem statements, objectives of the project and scopes of the study.

Chapter 2 provides literature reviews from previous research work on high

level ATPG and functional fault modeling.

Chapter 3 discusses the methodology applied in this project, including the

project planning and schedule, design and implementation workflow, and software

involved in this project.

Chapter 4 describes the software design and test bench design of the project.

This chapter discuss about the architecture and structure of the main program and

how SystemVerilog test bench is built as input for test pattern generation.

Chapter 5 discusses the result from the main software program, test bench

building and VCS run. The verification of the run result is discussed as well,

followed by analysis of the result.

Chapter 6 concludes the overall work done in this project. Limitations of the

design in this project were discussed, including recommendation for future work.

54

REFERENCES

T. M. Sarfet, R.G. Markgraf, M.H. Schulz and E. Trischler (1992). A hierarchical

test pattern generation system based on high-level primitives. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems. January 1992.

Volume 11, 34-44.

I. Ghosh and M. Fujita (2001). Automatic test pattern generation for functional

register-transfer level circuits using assignment decision diagrams. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems.

March 2001. Volume 20, 402-415.

Jaan Raik and Raimund Ubar (2004). Enhancing hierarchical ATPG with a

functional fault model for multiplexers. Proceeding of DDECS. 219-222.

K. T. Cheng and J.Y. Jou (1992). A functional fault model for sequential machines.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems. September 1992. 1065-1073.

K. T. Cheng and A. S. Krishnakumar (1993). Automatic Functional Test Generation

Using the Extended Finite State Machine Model. 30th Conference on Design

Automation. June 1993. 86-91.

F. Ferrandi, F. Fummi and D. Sciuto (1998). Implicit Test Generation for Behavioral

VHDL Models. Proceedings International Test Conference 1998. 18-23 October.

587-596.

C-I. H. Chen (2003). Behavioral test generation/fault simulation. IEEE Potentials.

Feb/Mac 2003. Volume 22, 27-32.

C. Y. Ooi and H. Fujiwara (2010). Constraint Driven Functional Test Generation

Using Enhanced Micro Operation Fault Model. UTM, Malaysia and NAIST,

Japan.

C. Y. Ooi and H. Fujiwara (2010). Enhanced Functional Fault Model for Micro

Operation Faults. NAIST Information Science Technical Report, No.2010004.

July 2010.

55

C-I. H. Chen and T. H. Noh (1998). VHDL behavioral ATPG and fault simulation of

digital systems. IEEE Transactions on Aerospace and Electronic Systems. April

1998. Volume 34, 428-447.

Accellera Organization, Inc (2004). SystemVerilog 3.1a Language Reference Manual.

