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ABSTRACT

As semiconductor technology advances further into nanometer regime, 

integrated circuit testing and validation continues to play a very important role to 

ensure high quality product.  Conventionally, test patterns are generated from a gate 

level netlist using test generation tool.  However, as the digital design increases in 

complexity, the gate level test generation process becomes more complicated and 

time consuming.  As an extended alternative to this, functional fault model like micro 

operation fault model was introduced.  However, in order to implement this, proper 

automation is necessary while minimizing intensive manual labor. Unfortunately, 

currently there is only proprietary version of automation available. In this project, an 

automated platform to generate test pattern using micro operation fault model was 

built using Perl programming language.  The methodology involves conversion of 

behavioral model of design under test into extended finite state machine.  This is 

followed by micro operation fault detection, fault activation and fault propagation 

with all the corresponding constraint sequences captured and converted into 

constraint model using SystemVerilog, a hardware description language.  These 

models of fault free and intended faulty circuit were fed into a constraint solver tool, 

VCS by Synopsys to generate the test pattern.  For verification purpose, these test 

patterns were validated by simulating the circuit using Altera Quartus II tool.  The 

result of this project shows that reasonable fault coverage was achieved using this 

methodology.  
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ABSTRAK 

Dalam era pembangunan teknologi nanometer separa pengalir terkini, 

pengujian dan pengesahan litar bersepadu masih memainkan peranan yang amat 

penting untuk memastikan kualiti produk atau komponen elektronik tetap tinggi.  

Secara lazimnya, corak ujian untuk tujuan pengesahan adalah dihasilkan daripada 

litar di peringkat get.  Akan tetapi, apabila teknologi reka bentuk digital menjadi kian 

rumit dan kompleks, proses penjanaan corak ujian turut menjadi semakin rumit dan 

memakan masa yang agak lama. Sebagai alternatif untuk menyelesaikan masalah ini, 

permodelan kerosakan di peringkat fungsional seperti permodelan kesalahan operasi 

mikro telah diperkenalkan.  Walau bagaimanapun, automasi adalah penting untuk 

pelaksanaan dan memudahkan proses penjanaan corak ujian sambil mengurangkan 

kerja manual. Dalam projek ini, pengautomatan untuk menghasilkan corak atau pola 

ujian menggunakan konsep permodelan kerosakan operasi mikro telah dilaksanakan 

dengan menggunakan bahasa pengaturcaraan Perl.  Kaedahnya melibatkan 

penukaran model perilaku reka bentuk litar ke extended finite state machine.  Ini 

diikuti oleh pengesanan dan pengaktifan kerosakan operasi aritmetik, dan 

perambatan kerosakan ini ke keluaran primer litar.  Jujukan yang didapati daripada 

proses ini djadikan model kekangan dengan menggunakan bahasa penggambaran 

SystemVerilog.  Seterusnya model-model akan diberikan kepada perisian penyelesai 

kekangan VCS untuk menjanakan corak ujian.  Untuk tujuan pengesahan, corak-

corak ujian ini disahkan oleh simulasi litar menggunakan perisian Altera Quartus II.  

Keputusan projek ini menunjukkan liputan kerosakan yang munasabah dapat dicapai 

dengan menggunakan metodologi atau kaedah yang dibincangkan.  
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CHAPTER 1 

INTRODUCTION 

1.1 Project Background 

Semiconductor technology has been improving rapidly lately and as it 

advances further into the nanometer regime, manufacturing processes become more 

defect-prone. Integrated circuit (IC) validation and testing play a very important role 

in ensuring and maintaining product quality while meeting the constraint of time-to-

market.  Ultimately the main goal is to obtain fault model that provides high fault 

coverage and requires short time for test generation. 

Besides, the ever increasing complexity of digital designs are causing gate-

level sequential test generation to become more time consuming and challenging. 

Many studies and researches have been done to achieve faster and better test 

sequence generation.  Subsequently, there were some attempts to obtain higher fault 

coverage within reasonable time.  One of them is the design-for-testability (DFT), 

such as scan methodology but this technique introduces additional hardware and 

causes area overhead. 

Alternatively, we can perform test generation process at higher level of 

abstraction of the digital design, called functional test generation technique. In this 

technique, desired circuit functions are specified using hardware description 

languages (HDLs).  The HDLs do all this without burdening the designer with the 

structural details of the circuit’s implementation.
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Since HDLs are used to describe hardware at a high-level, by definition, the 

language constructs must be related to the actual hardware.  This relationship has a 

higher degree of abstraction than the relationship between the gate-level 

representation of a design and the hardware.  The test generation algorithms designed 

for the high-level models are usually direct extensions of those for the gate-level 

models, in which the functional modules are treated as primitive components and this 

allows improvement because fewer components are evaluated during test generation.  

The potential performance advantage of the reduced structural complexity makes this 

approach more attractive. 

Since the conventional single LSA (Line Stuck-At) fault model is no longer 

suitable at this abstraction level, functional fault model is introduced to support this 

high level test generation platform. Currently, more complete functional fault 

models which can represent failure at more syntax of HDL description are Fummi’s 

fault model (Fummi et al., 1998) and Chen’s fault model (Chen, 2003).  Fummi 

introduced a fault model that consists of bit failure and condition failure.  Bit failure 

covers LSA of each bit of variable, signal or port, while condition failure covers LSA 

in each condition which may remove some execution paths in the erroneous HDL 

description. 

Micro operation fault was introduced in Chen’s fault model, where it is a 

failure of micro operation to perform its intended function.  The operators for the 

micro operation can be logical operators, relational operators, unary operators and 

arithmetic operators.  An operator may fail to any other operator in its category. This 

fault is mapped by replacing the operator considered with its counter operator which 

must be defined.  This project looks into Chen’s fault model for micro operation fault, 

specifically on arithmetic operators like addition, subtraction, multiplication and 

division.   
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1.2 Problem Statement 

A better functional fault model called Enhanced Micro Operation Fault 

Model (Ooi and Fujiwara, 2010) was introduced to overcome Fummi’s and Chen’s 

fault models in the early 2010.  In order to implement these fault models effectively 

without too much manual labor, an automated functional test generation platform is 

required especially when these fault model targets hard-to-test circuit.  Unfortunately, 

currently only proprietary version of automation is developed (Chen and Noh, 1998) 

and it is not available for public usage.   

Full automation is necessary in this context because in order to generate test 

pattern using micro operation fault model, it involves steps like conversion of 

behavioral HDL into Extended Finite State Machine (EFSM).  Also, with automation, 

one can easily trigger intended fault, and find its state justification path and 

propagation path to build the constraint sequence.  Besides that, the conventional 

method to build constraint model is using manual effort and the designer has to 

always refer back to the behavioral model of the circuit.  All these can be eliminated 

with the automated test pattern generation platform. 

1.3 Objectives 

The main objective of this project is to build an automated constraint models 

generation platform via series of software programming which basically reads in the 

behavioral model of a design under test (DUT), generates the corresponding 

constraint sequence and constraint model.  The constraint models generated here 

shall be useful for high-level test pattern generation.  This project does not only focus 

on the implementation part, but also to be tested on dedicated validation benchmark 

circuits from the 1999 International Test Conference (ITC’99).  This is to analyze its 

functionality and effectiveness in terms of fault coverage and test generation time. 
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1.4 Scopes of Study 

This project involves a series of research and work on functional fault 

modeling, high level automatic test pattern generation and constraint solving in order 

to develop a software program that is capable of generating test pattern based on 

micro operation fault model.  The scope of work begins with the understanding of 

behavioral model of DUT in VHDL (very-high-speed-integrated-circuit hardware 

description language).  This is because the benchmark circuits from ITC’99 are all 

released in VHDL code.  It is important to differentiate the design entity of the DUT 

which basically consists of entity declaration and architecture block. In VHDL 

behavioral modeling, the code contains sequential statements that are executed 

sequentially in a predefined order.  This order of the statements in the code is 

important and may affect the semantics of the code. 

EFSM was studied to understand all of its entities.  EFSM plays a very 

important role to model the DUT from VHDL and to derive test sequences.  These 

test sequences are derived such that all the transitions of the EFSM are traversed to 

guarantee that every statement in the behavioral description is verified.  Constraint 

models using SystemVerilog are generated from these test sequences.  

By using constraint solver tool called VCS (Verilog Compiler Simulator,

from Synopsys) to solve the constraint models, the corresponding test pattern can be 

generated.  These test patterns are used to activate and propagate targeted faults.  

Another software tool called Altera Quartus II is used to simulate the DUT with the 

test pattern obtained earlier.  The simulation waveforms can be used to validate and 

verify the quality of the test patterns. 

The main software program is written using Perl programming language.  

Perl was chosen because it has very strong regular expression functions and its 

multiple levels of hashes of hashes can be easily implemented as database to store all 

the information of the EFSM.  Besides that, Perl is a good scripting language and can 
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be easily used to detect an arithmetic operation and trigger an intended fault to obtain 

the test sequence.  

1.5 Organization of the Report 

This report consists of six chapters with the brief description of each chapter 

as stated below: 

Chapter 1 presents the introduction to this project, including the background 

of the project, problem statements, objectives of the project and scopes of the study. 

Chapter 2 provides literature reviews from previous research work on high 

level ATPG and functional fault modeling. 

Chapter 3 discusses the methodology applied in this project, including the 

project planning and schedule, design and implementation workflow, and software 

involved in this project. 

Chapter 4 describes the software design and test bench design of the project.   

This chapter discuss about the architecture and structure of the main program and 

how SystemVerilog test bench is built as input for test pattern generation. 

Chapter 5 discusses the result from the main software program, test bench 

building and VCS run. The verification of the run result is discussed as well, 

followed by analysis of the result. 

Chapter 6 concludes the overall work done in this project.  Limitations of the 

design in this project were discussed, including recommendation for future work. 
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