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ABSTRACT 

The shallow underground excavation may leads to ground movements and 
surface settlement which may cause damage to structures. Several tunnel excavation 
methods had been developed during the last decades to minimize the effects of the 
tunnel construction on the surface settlement. The Karaj Metro tunnel (KMT) had 
been constructed in accordance with the principles of the New Austrian Tunneling 
Method (NATM). This method had been used widely to construct large diameter 
tunnels mainly due to its flexibility to adapt different ground conditions. Tunnel 
designs by NATM are generally based on empirical and numerical methods and 
construction process may be changed according to the observed response of the 
ground. Induced displacements are empirically controlled by adjusting the 
excavation rate, distance between tunnel face and support, partial heading excavation 
and closure of invert. This research is aimed at determining the effects of the 
excavation sequence and heading distance on the surface and subsurface settlement 
by carrying out two and three-dimensional Finite Element Modelling (FEM). 
Initially, the FEM is carried out to simulate step by step excavation sequence of 
KMT which had been constructed in soft soils by NATM method. The settlements 
obtained from monitoring of KMT had been used to validate the modelling work. 
The results show that the settlement varies with different excavation sequence and 
heading distance in NATM. The Side Galleries (SG) excavation model produced the 
lowest transverse and longitudinal surface settlements compared to KMT excavation 
model and other excavation sequences. The tunnel heading distance had more effect 
on both the transverse and longitudinal settlements for the KMT excavation model 
compared to SG model. Hence, the SG excavation model with heading distance of    
2 m is recommended in the construction of KMT using NATM based on the 
minimum settlement occurring during excavation. 
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ABSTRAK 

Kerja-kerja pengorekan cetek bawah tanah boleh menyebabkan pergerakan 
tanah dan enapan permukaan, dan seterusnya boleh mengakibatkan kerosakan 
kepada struktur. Beberapa kaedah pengorekan terowong telah dihasilkan sepanjang 
beberapa dekad yang lalu untuk mengurangkan kesan kerja pembinaan terowong 
terhadap enapan permukaan tanah. Terowong "Karaj Metro" (KMT) telah dibina 
menurut prinsip "New Austrian Tunneling Method" (NATM). Kaedah pembinaan ini 
telah digunakan dengan meluas untuk membina terowong bergarispusat besar kerana 
kaedah ini sesuai digunakan untuk pelbagai keadaan tanah. Rekabentuk terowong 
yang dihasilkan menggunakan kaedah NATM adalah berdasarkan kepada kaedah-
kaedah empirikal dan berangka, manakala proses pembinaan boleh diselaraskan 
menurut perubahan dan pergerakan tanah yang dipantau secara berterusan. Enapan 
yang teraruh oleh kerja pengorekan boleh dikawal secara empirikal dengan 
menyelaraskan kadar pengorekan, jarak antara permukaan terowong dan 
penyokongan, pengorekan separa permukaan terowong, serta pengecutan bumbung 
terowong. Penyelidikan ini bertujuan untuk menentukan kesan urutan pengorekan 
serta kesan jarak permukaan terowong terhadap enapan di permukaan dan sub-
permukaan tanah dengan menghasilkan model unsur terhingga “Finite Element 
Modelling” (FEM) dalam dua dimensi dan tiga dimensi. Pada mulanya FEM diguna 
untuk mensimulasi urutan proses pengorekan secara langkah demi langkah bagi 
projek KMT yang telah dibina di dalam tanah lembut dengan kaedah NATM. Bacaan 
enapan tanah yang diperolehi daripada pengawasan proses pembinaan Terowong 
"Karaj Metro" telah digunakan untuk mengesahkan kerja-kerja pemodelan yang telah 
dilakukan. Keputusan yang diperoleh daripada kerja pemodelan tersebut 
menunjukkan bahawa nilai enapan tanah berubah dengan perubahan kepada urutan 
proses pengorekan  dan jarak maju terowong di dalam kaedah NATM. Model 
pengorekan “Side Galleries” (SG) menghasilkan enapan-enapan melintang dan 
memanjang yang terendah dibandingkan dengan model pengorekan KMT dan urutan 
pengorekan yang lain. Jarak maju terowong memberi kesan yang lebih besar keatas 
enapan-enapan melintang dan memanjang bagi model pengorekan KMT 
dibandingkan dengan model SG. Justeru, model pengorekan SG dengan jarak 
pengorekan 2 m disyorkan untuk pembinaan KMT dengan menggunakan kaedah 
NATM berdasarkan kepada nilai enapan minimum yang berlaku semasa pengorekan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study 

Underground construction has become an important factor to reduce the 

congestion at the ground surface due to swift growth at the major cities. Tunnels are 

an important part of underground construction and the demand for tunnel 

transportation and safety excavation had been significantly increased for the 

development of rail or road tunnel systems in recent years. Hence, tunnels are 

increasingly used in the urban areas due to the growth of population. 

Since tunnels have been constructed over hundred years, the design has 

improved gradually based on analytical solutions by engineers and with the advents 

of computer technology. In several cases, different numerical modelling such as 

domain or differential approach and boundary or integral approach has been used by 

the computer technology to simulate the tunnel construction. Excavation of a tunnel 

has some effects on distribution of insitu stresses in the tunnel neighbourhood, and it 

is formed as a new stress distribution around the tunnel. The construction of a tunnel 

through urban areas can lead to ground deformations whereby in several cases 

damage occurred to the overlaying structures and services.  



2 
 

The New Austrian Tunneling Method (NATM) was developed by Rabcewicz 

(1964) and Muller (1978) in Austria. The usage of NATM was undertaken in shallow 

and large tunneling into the rock mass; nowadays, the demand of NATM is for the 

use into the soil mass with different resistance. The method had been established 

based on the use of surrounding mass strength to stabilize the tunnel with a 

noncircular and enlargement of tunnel opening. The use of NATM tunneling method 

had been known to have cost saving and control the settlement. Using this method, 

after excavation the soft soil area of the cross-section at the tunnel face, shotcrete as 

a supporting system is applied on the tunnel walls, constituting a thin and flexible 

shell. 

Several researchers had investigated the effects of heading distance on the 

NATM tunneling operation. However, limited research had been conducted to 

analyze the effects of different partial face excavation, in particular the sequence of 

the excavation, on the surface and subsurface settlement. Therefore, this study had 

been conducted to define the effect of ground movement due to NATM tunneling 

work. Hence, a specific excavation model needs to be provided to control surface 

settlements and minimize the potential impact on the surface structures. Thus, 

transverse, subsurface and longitudinal settlements need to be assessed from several 

excavation sequence method that can be conducted using a suitable excavation 

model. 

1.2 Problem Statement 

NATM is used in the large sized tunnels; so, full face excavation in the soils 

may cause large movements around the excavation area and subsequently at the 

ground surface. To reduce the stress distribution and yield zone around the tunnel, 

NATM tunneling offered the cross-section which is divided into several suitable 

parts in area and shape, in order to allow efficient and practical construction. The 

cross-section is excavated in each stage of excavation sequence. One of the important 

features in NATM tunneling is excavation sequences design, which depends on soil 

condition, tunnel geometry and tunneling requirements which may reduce the yield 
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zone, consequently to minimize the displacement. On the other hand, heading 

distance may cause the main settlement with respect to various cross-sections.  

Karaj Metro Tunnel had been constructed in urban areas with NATM 

method. The minimum settlement is important to avoid structures damage in the 

cities. In order to determined the optimum excavation sequence, several cross-

sections with different multiface excavation with specific heading distance had been 

introduced for the Karaj Metro Tunnel. The one that gives the least surface 

settlement is recommended as the excavation model. 

1.3 Aim and Objectives of the Study  

The aim of this study is to determine an “excavation model” in NATM 

Tunneling that cause minimum surface and subsurface settlements using finite 

element method. The Karaj Metro Tunnel, Iran had been taken as the case study. 

Hence, the objectives of this research are: 

1. To obtain the optimum excavation sequence by analyzing the ground 

response due to NATM tunneling using two dimensional finite element simulations 

for various excavation sequences, based on minimum surface settlement. 

2. To predict the transverse and longitudinal surface settlements at different 

face-distance for the recommended excavation model and to compare with the results 

from existing Karaj Metro Tunnel excavation method, using three dimensional finite 

element simulations. 

3. To determine the effect of different heading distance on the transverse and 

longitudinal settlements for both the Karaj Metro Tunnel and the recommended 

excavation models. 
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1.4 Significance of the Study  

Based on this study the optimum excavation sequence and heading distance 

in NATM had been recommended. This could minimize the ground displacement 

and consequently building damages for the tunneling work through the same soil 

condition at the Karaj Metro Tunnel, Iran. Results could be used by tunneling 

engineers to plan the tunneling work of large diameters tunnel through soil, to obtain 

optimum performance. 

1.5 Scope and Limitation of the Study 

The research is limited to the immediate settlement occurred during 

construction using NATM operation through alluvial deposits that contains mainly of 

sand with appreciable amount of silt (SM-SC) at Line 2 of the Karaj Metro Tunnel, 

Iran. The long term time dependent consolidation settlement is not covered in this 

research. 

In order to verify and evaluate the accuracy of the finite element (FE) models 

by the use of Plaxis and Abaqus software, the results had been compared with field 

measurement during the construction of Karaj Metro Tunnel project in Iran. 
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