DESIGN OF CURRENT CONTROL MODE FOR WIND TURBINE APPLICATION

SITI MAHERAH BT HUSSIN

A project report submitted in partial fulfilment of the requirements for the award of a degree of Master of Engineering (Electrical-Power)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > MAY 2011

Special for:

My late father and my mother ... Hussin b. Yusoff & Rahimah bt Hj.Ghazali

also to my brothers and sisters...

and not forgotten to my friends

Muhamad Amzar b. Ahmad Nor Alhuda bt Mohammad Ishak

In thankful appreciation for support and encouragement to my supervisor...

Assoc Prof Md Shah b. Majid

ACKNOWLEDGEMENT

In the name of ALLAH, thanks for His blessing to make this project successful although the uneasiness and hardship which I have to face. Thank you for the strengths and the spirits.

I am deeply indebted to my supervisor Assoc Prof Md Shah bin Majid for the help, stimulating suggestions and encouragement during the research, and from the beginning till the end of this thesis.

Furthermore, I would like to express my special gratitude to Muhamad Amzar b. Ahmad for his valuable advice and friendly help. His extensive discussions throughout my work and the interesting explorations have been very helpful for this study.

Thanks also to all my friends who have been involved directly or indirectly during the completion of this project. Their help and ideas are much appreciated.

For my last dedication, I would like to give my thankful heart to my mother, brother and sisters for their never ending support and understanding throughout my master study.

ABSTRACT

Stochastic nature of the wind speed is the main reason that leads to variability of output power of wind farm. Thus high penetration of the wind farm will cause power fluctuation and voltage variation in grid system. Current control method was designed to control power flow in the grid system hence the occurrence of fluctuant power can be eliminated in the network. A new technique using mathematical modeling was developed in designing the control system. The block diagram of this control system was built based on the dynamic analysis of the circuit by assuming the steady state condition. Some parameters for instance proportional and integral gain were determined based on the assumption of the values of line inductance, resistance and time constant . MATLAB/simulink tool was used to scrutinize the performance of the designed model. The performance of the designed control system and the results were also investigated in fault condition. The results show that the current control method has high potential in control power leveling in the grid system.

ABSTRAK

Sifat semulajadi kelajuan angin yang tidak menentu merupakan punca utama keluaran kuasa tenaga angin berubah dari semasa ke semasa. Penggunaan tenaga angin yang berleluasa akan menyebabkan kuasa dan voltan sistem grid juga turut berubahubah. Kaedah kawalan arus di reka khas untuk mengawal pengaliran kuasa dalam sistem grid seterusnya kepelbagaian kuasa dalam sistem rangkaian dapat dielakkan. Pendekatan baru telah diperkenalkan yang mana persamaan matematik dijadikan asas dalam pembinaan model tersebut. Blok diagram bagi model kawalan arus direka berdasarkan analisis dinamik terhadap litar dengan menganggap bahawa sistem tersebut dalam keadaan stabil dan beberapa parameter ditentukan berdasarkan nilai peraruh, rintangan, dan pemalar masa. Perisian MATLAB telah digunakan sebagai ukuran pencapaian bagi model tersebut. Pencapaian diukur dengan membandingkan keputusan ujian dalam dua keadaan iaitu tanpa dan dengan kawalan arus dan seterusnya ujian turut dijalankan dalam keadaan kerosakan. Keputusan mengesahkan bahawa sistem kawalan arus berpotensi tinggi dalam mengawal pengaliran kuasa dalam sistem grid.

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

ii
iii
iv
v
vi
vii
X
xi
xiv
xvi

1 INTRODUCTION

1.1	Context	1
1.2	Background of Study	3
1.3	Problem Statements	3
1.4	Objectives	4
1.5	Scope of Project	4
1.6	Thesis Organization	5

2 LITERATURE REVIEW

2.1	Introduction		
2.2	Problems Related to Grid Connected Wind Turbine		
2.3	Concepts of Control System		10
	2.3.1	Solid State Synchronous Voltage Source	10
	2.3.2	Energy Storage System	12
	2.3.3	STATCOM	14
2.4	Conclu	sion	16

METHODOLOGY 3

3.1	Introduction	18
3.2	Control Strategy	20
3.3	Dynamic Analysis of Control System	21
3.4	Mathematical Modeling using MATLAB/Simulink	22
3.5	Conclusion	26

MATHEMATICAL MODEL 4

4.1	Introduction	27
4.2	Space-phasor Representation of a Balanced Three Phase	28
4.3	$\alpha\beta$ -Frame Representation of a Space Phasor	28
4.4	dq-Frame Representation of a Space Phasor	30
4.5	dq-Frame Representation of a three phase	31
4.6	Formulation of Power in dq -Frame	32
4.7	Control in <i>dq</i> -Frame	34
4.8	Phase-Locked Loop (PLL)	38
4.9	Design of the Block Diagram for Control System	39
4.10	Conclusion	41

5

RESULTS AND DISCUSSIONS

5.1	Introduction	43
5.2	Simulation without Control System	44
5.3	Simulation with Control System	47
5.4	Simulation in Fault condition	52
5.5	Conclusion	58

6 CONCLUSION AND SUGGESTION

6.1	Conclusion	59
6.2	Future work	61
6.3	Recommendations	62

REFERENCES

63-66

LIST OF TABLES

TABLE NO.	TITLE	PAGE
5.1 Rang	ge of Voltage Variation of Each Bus	46

LIST OF FIGURES

FIGURE NO.	. TITLE		
2.1	Shunt connected solid-state synchronous voltage source	11	
	(a) and its possible operating mode (b) for real and		
	reactive power generation.		
2.2	Series-connected synchronous voltage source (a) and its	12	
	possible operating modes (b) for real and reactive power		
	exchange.		
2.3	Schematic diagram of energy capacitor system (ECS)	13	
2.4	Control strategy of STATCOM for voltage fluctuation	16	
	Suppression		
3.1	Flowchart of the project works	19	
3.2	Relationship of current between grid, wind and controller	20	
3.3	Schematic diagram of VSC connecting to PCC	21	
3.4	Circuit diagram of wind farm connected to grid system	22	
3.5	Calculation of wind power	23	
3.6	Calculation of power fed by control system	23	
3.7	Calculation of I_d and I_q reference	24	
3.8	Simulink block diagram of control system	25	
3.9	Transformation block synchronize with PLL block	26	
4.1	The <i>abc</i> -frame to a $\alpha\beta$ -frame signal transformer	29	
4.2	The $\alpha\beta$ -frame to a dq -frame signal transformer	30	

The abc -frame to a dq -frame signal transformer	31
Schematic diagram of controller in dq -frame	34
Control block diagram of the PLL	39
Schematic diagram of PLL	39
Block diagram of control system	41
Real and reactive power of (a) wind turbine (b) 575V bus	45
(c) 132kV bus	
Voltage magnitude of 575V, 33kV and 132kV bus	46
system (Before controlled).	
Current flowing at 575V and 132kV bus	47
Line current in dq -frame I_d and I_q	48
Current reference in dq -frame I_{dref} and I_{dqref}	49
Voltage in DC component, V_{sd} and V_{sq}	49
Real and Reactive Power of (a) 575V bus (b) 132kV bus	50
Voltage magnitude of 575V, 33kV and 132kV bus	51
system (After controlled)	
Line current of 575V and 132kV bus system	52
Voltage sag of 575V,33kV and 132kV bus (a)with	54
control system (b) without control system	
Current waveform of 575V and 132kV (a) with control	55
system (b) without control system	
Power measured at 575V (a) without control system (b)	56
with control system	
Power measured at 132kV (a) without control system (b)	57
with control system.	
	The <i>abc</i> -frame to a <i>dq</i> -frame signal transformer Schematic diagram of controller in <i>dq</i> -frame Control block diagram of the PLL Schematic diagram of PLL Block diagram of control system Real and reactive power of (a) wind turbine (b) 575V bus (c) 132kV bus Voltage magnitude of 575V, 33kV and 132kV bus system (Before controlled). Current flowing at 575V and 132kV bus Line current in <i>dq</i> -frame I_d and I_q Current reference in <i>dq</i> -frame I_{dref} and I_{dqref} Voltage magnitude of 575V, 33kV and 132kV bus Line current in <i>dq</i> -frame I_d and V_{sq} Real and Reactive Power of (a) 575V bus (b) 132kV bus Voltage magnitude of 575V, 33kV and 132kV bus Voltage magnitude of 575V, 33kV and 132kV bus Voltage magnitude of 575V, 33kV and 132kV bus system (After controlled) Line current of 575V and 132kV bus system Voltage sag of 575V,33kV and 132kV bus (a)with control system (b) without control system Current waveform of 575V and 132kV (a) with control system (b) without control system Power measured at 575V (a) without control system (b) with control system Power measured at 132kV (a) without control system (b) with control system.

LIST OF ABBREVIATIONS

VSC	-	Voltage Source Converter
AC	-	Alternating Current
STATCOM	-	Static Var Compensator
SVS	-	Synchronous Voltage Source
SMES	-	Superconducting Magnetic Energy Storage System
ECS	-	Energy Capacitor Storage
PCC	-	Point of Common Connection
DFIG	-	Doubly-fed Induction Generator
IG	-	Induction Generator
SCC	-	short circuit capacity
GTO	-	gate turn-off
STATCON	-	static condenser
EDLC	-	electric double layer capacitor
PWM	-	Pulse Width Modulation
IGBT	-	isolated gate bipolar transistor
PFC	-	power factor correction
PSCAD	-	Power Systems Computer Aided Design
EMTDC	-	Electromagnetic Transients including DC
ETO	-	Emitter turn off
HAWT	-	Horizontal Axis Wind Turbines
VAWT	-	Vertical Axis Wind Turbines
TC	-	tap changers
MSC	-	mechanical switched cap

PV	-	Real Power vs Voltage
VQ	-	Voltage vs Reactive Power
KVL	-	Kirchhoff Voltage Law
PLL	-	Phase-Locked Loop
K_p	-	Proportional Gain
K_i	-	Integral Gain
PI	-	Proportional-Integral
ref	-	Reference
R	-	Resistor
L	-	Inductor
Х	-	admittance
t	-	Time
Re	-	Real part
Im	-	Imaginary part

-

LIST OF SYMBOLS

θ	-	Angle
f	-	Function
ω	-	Rad/s
α	-	Alpha
β	-	Beta
$ au_i$	-	Time Constant
j	-	Imaginary part
m	-	Mili
Gff	-	Feed forward Filter
Ω	-	Ohm
π	-	Pi
μ	-	Mikro
%	-	Percentage
S	-	Transfer function
Hz	-	Hertz
k	-	Kilo
А	-	Ampere
V	-	Volt
М	-	Mega
W	-	Watt

CHAPTER 1

INTRODUCTION

1.1 Context

Nowadays, electricity demand is increasing from year to year but at the same time the amount of fuel tends to be depleting over time. This phenomenon has become a big problem to the energy suppliers. Renewable and alternative energy is a few of the promising resources which have been introduced to overcome this problem. Wind energy, a form of a renewable energy is found to be the most popular source due to its free, clean and renewable character hence its integration into power system is important and rewarding task for the next decades [1]. There are four available types of wind turbine; Wind Turbine Squirrel Cage Induction Generator, Wind Turbine Asynchronous Generator, Doubly-Fed Induction Generator (DFIG) and Synchronous Generator Full Scale Converter. In this study, the latter type will be used in the simulation. In practical application, the wind turbine is designed either vertical or horizontal axis depending on the wind speed of the installed location. Horizontal Axis Wind Turbines (HAWTs) are more efficient in lower wind speed condition meanwhile; Horizontal Axis Wind Turbines (VAWTs) can withstand at higher wind speed which can be up to eight times more efficient than HAWTs [21].

The term of a wind farm is referred to a group of wind turbines which located at the same location in which it may consists of several hundred individual wind turbine. The main role of the wind turbine is to convert kinetic energy from the wind into mechanical energy that directs the blades to turn around. The blades of the wind turbine are connecting to the generator via the main shaft hence the rotation of the blades will cause the rotor to spin accordingly which further result in electricity generation. By understanding the fundamental work of the wind turbine, it reveals that its output power depends totally on the wind speed [22].

Due to stochastic nature of the wind, electricity generated from the wind turbine can be highly variable at several different timescales: from hour to hour, daily, and seasonally. Its variability cause the power in grid system fluctuates randomly, resulting in voltage and frequency variation. The integration of the wind farm into the grid system requires careful consideration in order to maintain a high degree of reliability and security of the system. To make sure the system is in secured condition, penetration of the wind turbine should not violate the limitation of transmission line capacity. Besides, its voltage fluctuation margin at the point of common connection (PCC) should be remains under limit which is $\pm 2.5\%$ and the nominal voltage of the power system should be maintained in between 0.95 to 1.03 per-units. The impact of wind turbine on system operation depends on the grid strength of the connection point for example, the location of the wind farms, the type of wind generator, and the correlation between wind power production and load consumption [23].

Control system has been introduced to solve the problem of grid connected wind turbine. Many methods of control system are available but in this research, a new technique using mathematical equation is used to design the control system where current is the main components that is going to control in this scheme [24].

1.2 Background of Study

Output power of the wind turbine fluctuates randomly depending on the stochastic nature of the wind speed. High wind speed will produce larger output power and vice versa. Penetration of the wind farm into the grid system will affect a normal operation of the power system in which will lead to power fluctuation and voltage variation in the system. Introducing a control system can help to fix this problem. Power electronic converter is one part of the control system in which it is mostly used for active filtering, compensation purpose and power conditioning. Good design of a control system is determined by the quality of the power system hence it became a big challenge for researchers nowadays.

In this research, the study focuses on the designing of the control system by using current control method. The main purpose of this work is to minimize power fluctuation caused by the wind turbine that utilized in distributed generation system [2]. In this study, the design is based on the mathematical analysis by assuming the system operates in steady state condition. MATLAB/Simulink software is a preferred tool in analyzing the performance of designed control system.

1.3 Problem Statement

Wind turbine always depends on wind speed characteristics to produce the output power. Thus, due to stochastic nature of the wind speed, output power of the wind turbine fluctuates randomly which contributes to power fluctuation in the grid system hence will affect the frequency of the system [3]. Frequency should be constant unless the system will be unstable. In the condition of lower frequency, the current in the system will suddenly increased thus, the system tend to blackout due to generator trip [4]. Moreover, the fluctuant power will induce voltage and current variation in the system. These types of problem can be solved accordingly by embedding control scheme in the grid system connected to the wind turbine. As a solution, current control scheme is designed in this study to damp power fluctuation that result in reducing the voltage and current variation in the system.

1.4 Objectives

The objectives of this research are:

- 1. To design the mathematical modeling of current control method and implement it in MATLAB/Simulink tool.
- 2. To study the performance of current control method in power leveling for grid connected wind turbine system.
- 3. To investigate the effect of using current control method in fault condition.

1.5 Scope of project

In this project, control system based on voltage source converter is designed for grid connected wind turbine. To control the voltage source converter, current mode control method is used instead of voltage mode since it has many advantages in which voltage source converter (VSC) is protected against over-current condition due to its robustness against variation parameters of the VSC and AC system. In addition, this method is superior in dynamic performance and has higher control precision. The control strategy is designed by using mathematical technique instead of using actual power electronic component. MATLAB/simulink is used to test the performance of the control system. The entire mechanical aspect of the wind turbine was not modeled since the project focus on the part of control system rather than obtaining precise values for wind turbine response.

1.6 Thesis Organization

This thesis is organized into six chapters:

Chapter I briefly describes the introduction of the thesis. It covers topics such as the context, problem statement, objectives and scope of the project.

Chapter II explains the literature review of the topics related to this research work. Two main topics have been highlighted which are the problems related to wind turbine connected to grid system and the concepts of various control methods.

Chapter III expresses the mathematical equations which contribute to the design of block diagram of the control system. In this chapter transformation process from abc-frame to dq-frame has been derived in detail.

Chapter IV explains the methodology of the project. This chapter will briefly explicate the design process of current control method using mathematical model and its implementation in MATLAB/Simulink.

Chapter V presents the results obtained from the simulation. These results are analyzed and discussed in detail. Here the results before and after implementation of current control will be compared accordingly.

Chapter VI presents the conclusion and recommendations or suggestions for future work.

REFERENCES

- M.H.Ali, J.Tamura, and B.Wu (2008). Smes Strategy to Minimize Frequency Fluctuations of Wind Generator System. 34th Annual Conference of IEEE on Industrial Electronics, 10-13 November, pp 3382 – 3387.
- [2] L.Changjin, H.Changsheng, L.Xiao, C.Yi, C.Min, and X.Dehong (2008).
 Applying SMES to Smooth Short-Term Power Fluctuations in Wind Farms. 34th
 Annual Conference of IEEE on Industrial Electronic, 10-13 November. 2008, pp 3352 3357.
- J.Shi, Y.J.Tang, L.Ren, J.D.Li, and S.J.Chen (2008). Application of SMES in Wind Farm to Improve Voltage Stability. *Physic Superconductivity*, 15 September, pp 2100-2103.
- [4] F.Zhou, G.Joos, Cabbey, L.Jiao, and B.T.Ooi (2004). Use of Large Capacity Smes to Improve the Power Quality and Stability of Wind Farms. *Power Engineering Society General Meeting, IEEE*, 10 June, pp 2025 – 2030.
- [5] E, Muljadi, C.P Butterfield, J.Chacon, and H.Romanowitz (2006). Power Quality Aspect in a Wind Power Plant. *Power Engineering Society General Meeting*, *IEEE*, 16 October, pp 8.
- [6] C.Yongning, L.Yanhua, W.Weisheng, and D.Huizhu (2006). Voltage Stability Analysis of Wind Farm Integration into Transmission Network. *International Conference on Power System Technology*, 22-26 October. pp 1 – 7.

- [7] L.Xiaohu, K.Yong, L.Kevin, L.Xinchun, and L.Chun (2009). Investigation of the Transmission Line Impedance Effects on Voltage Quality and Flicker Emission for Grid connected to Wind Turbine. *Power Electronics and Motion Control Conference, IPEMC '09. IEEE 6th International*, 17-20 May, pp 2260 – 226.
- [8] M.R. Juan, L.F. Jose, B. Domingo. I.Ramon, and U.Julio (2002). Incidence on Power System Dynamic of High Penetration of Fixed Speed and Doubly Fed Wind Energy System: Study of the Spanish Case. *IEEE transaction on Power System*, 17(4), 1089 – 1095.
- [9] L.Gyugyi (1994).Dynamic Compensation of AC Transmission Lines by Solid-State Synchronous Voltage Source. *IEEE Transactions on Power Delivery*, 9(2), 904 – 911.
- [10] S.M.Muyen, R.Takahashi, M.H.Ali, M.Toshiaki, T.Murata, and J.Tamura (2008). Transient Stability Augmentation of Power System Including Wind Farm by Using ECS. *IEEE Transactions on Power Systems*, 23(3), 1179 – 1187.
- [11] S.Nomura, Y. Ohata, T.Hagita, H.Tsutsui, S.Tsuji-Lio, and R.Shimada (2005).
 Wind Farms Linked by SMES System. *IEEE Transactions on Applied Superconductivity, part 2*, 15(2), 1951 1954.
- [12] Z.S.Saoud, M.L.Lisboa, J.B.Ekanayake, N.Jenkins, and G.Strbac (1998)
 "Application of STATCOM to wind farms. *Generation, Transmission and Distribution, IEE Proceedings*, pp 511 516.

- [13] C.Han, A.Q.Huang, M.E. Baran, S.Bhattacharya, W.Litzenberger, L.Anderson, A.L.Johnson, and A.A.Edris (2006). STATCOM Impact Study on the Integration of a Large Wind Farm into a Weak Loop Power System. *IEEE Transactions on Energy Conversion*, 23(1), 226 – 233.
- [14] A.Arulampalam, M.Barnes, N.Jenkins, and J.B.Ekanayake (2006). Power Quality and Stability Improvement of a Wind Farm using STATCOM supported with Hybrid Battery Energy Storage", *Generation, Transmission and Distribution, IEE Proceedings*, 153(6),701 – 710.
- [15] W.Qiao, G.K.Venayagamoorthy, and R.G Harley (2009). Real-Time Implementation of a STATCOM on a Wind Farm Equipped With Doubly Fed Induction Generators. *IEEE Transaction on Industry Application*, 45(1), 98 – 107.
- [16] T.Kinjo, T.Senjyu, N.Urasaki, and H.Fujita (2006). Output Levelling of Renewable Energy by Electric Double-Layer Capacitor Applied for Energy Storage System. *IEEE Transactions on Energy Conversion*, 21(1), 221 – 227.
- [17] M.H.Ali, and B.Wu (2010). Comparison of Stabilization Method for Fixed-Speed Wind Generator Systems. *IEEE Transactions on Power Delivery*, 25(1), 323 331
- P.L.Seta, and P.Schegner (2005). Comparison of Stabilizing Method for Doubly-Fed Induction Generators for Wind Turbines. *International Conference on Future Power Systems*,18 November, pp 6.

- [19] Yazdani A, and Iravani R (2010). Voltage-Sourced Converters in Power System-Modelling, Control, and Application. Canada: John Wiley & Sons Inc.
- [20] N.T Linh (2009). Power Quality Investigation of Grid Connected Wind Turbines. 4th IEEE Conference on Industrial Electronics and Applications, 25-27 May, pp 2218 – 2222.
- [21] W.Hu, Y. Wang, X. Song, Z. Wang (2008). Development of vertical-axis wind turbine with asynchronous generator interconnected to the electric network. International Conference on Electrical Machines and Systems, 17-20 October, pp 2289 – 2293.
- [22] G. Masters (2005) Renewable and Efficient Electric Power Systems. Power, Energy, & Industry Applications, IEEE publisher, pp 307 -383.
- [23] R. Reginato, M.G. Zanchettin, and M. Tragueta (2009). Analysis of Safe Integration Criteria for Wind Power with Induction Generators based wind Turbine. *Power & Energy Society General Meeting, IEEE*, 26-30 July, pp 1 – 8.
- [24] A. Beekmann, J.Marques, E.Quitmann, and S.Watchtel (2009). Wind Energy with FACTS Capabilities for Optimized Integration of Wind Power into Transmission and Distribution Systems. Integration of Wide-Scale Renewable Resources Into the Power Delivery System CIGRE/IEEE PES Joint Symposium, 29-31 July, pp 1.