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ABSTRACT 

 

 

 

 

 Monitoring of deflection in the construction of a long span segmental balanced 

cantilever prestressed concrete box girder bridge is very important because bridge 

deflection will affect the final bridge level and to avoid large level discrepancies during 

the joining of two cantilevers. This study presents a comparison of actual and design 

short-term deflection considering the effect of creep for a four span balanced cantilever 

prestressed concrete box girder bridge.  Each span consists of 26 segments and the 

deflection data were obtained using leveling instruments. The actual concrete strength of 

the segments were also recorded. Analysis using these data and the local creep 

coefficient were carried out using ADAPT-ABI software. Comparisons between actual 

and design deflections indicate that they are similar for the first four segments of each 

span with very small values. Substantial values of deflection begin to develop at the fifth 

segment and the critical value occurred at the middle of the cantilever span. It is also 

observed that the deflection values are inversely proportional to the concrete strength but 

directly proportional to the creep coefficient. As an extension of this study, further 

investigations can be carried out on long term deflection of concrete box girder bridge, 

behaviour of box girder bridge due to temperature difference, effect of varying element 

thicknesses and early loading. 
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ABSTRAK 

 

 

 

 

 Pemantauan pesongan terhadap pembinaan jambatan konkrit prategasan bentuk 

kekotak secara bersegmen yang panjang merupakan satu perkara yang penting kerana 

pesongan jambatan akan memberikan kesan terhadap aras jambatan dan bagi 

mengelakkan perbezaan aras yang besar ketika mencantumkan kedua-dua hujung 

rentang terjulur. Kajian ini menunjukkan perbandingan antara pesongan jangka pendek 

sebenar di tapak dan semasa rekabentuk dengan mengambilkira kesan daripada rayapan 

konkrit bagi empat rentang jambatan konkrit terjulur. Setiap rentang terdiri daripada 26 

segmen dan data pesongan diperolehi dengan menggunakan alat aras. Kekuatan konkrit 

sebenar bagi setiap segmen turut direkodkan. Analisa menggunakan data-data tersebut 

dan pekali rayapan di Malaysia dijalankan dengan menggunakan perisian komputar 

ADAPT-ABI. Perbandingan antara aras jambatan sebenar dengan aras rekabentuk 

adalah sama bagi empat segmen pertama untuk setiap rentang dengan perbezaan aras 

yang kecil. Pesongan yang ketara mula terbentuk pada segmen kelima dan segmen 

kritikal berada di pertengahan rentang jambatan terjulur. Pemerhatian juga mendapati  

bahawa nilai pesongan adalah berkadar songsang dengan kekuatan konkrit tetapi 

berkadar terus dengan pekali rayapan konkrit. Lanjutan daripada kajian ini, siasatan 

lanjut boleh dijalankan terhadap pesongan jangka panjang bagi jambatan konkrit bentuk 

kekotak, sifat jambatan bentuk kekotak disebabkan oleh perubahan suhu, kesan daripada 

kepelbagaian ketebalan elemen dan beban awalan. 
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CHAPTER I 
 

 

 

 

INTRODUCTION 
 

 

 

 

1.1 Introduction 
 

 

Today’s   modern   and   challenging world does not restrict only at the urban 

areas but also rural areas. Due to site topography and economy constraints, the need 

for longer bridge spans increases. Since prestressed concrete bridges are introduced 

into the United States in 1949, prestressed concrete bridges today represent over 50 

percent of all bridges built [1]. Based on the Public Work Department Malaysia [2] 

database updated until December 2009, there are 9157 bridges recorded on Federal 

Roads, Malaysia.  

 

 

Despite the conventional prestressed concrete girder such as I-beam and T-

beam, the concrete box girder bridge can be built with longer span. Due to its hollow 

section, the weight of the girder can be reduced, therefore, the flexural capacity for 

the section may increase and longer span can be produced. The development of the 

curved beam theory by Saint-Venant (1843) and later the thin-walled beam theory by 

Vlasov (1965) marked the birth of all research efforts published to date on the 

analysis and design of straight and curved box-girder bridges [3].  
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Generally, the deflections of concrete are caused due to applied load and 

internal stress, which are creep and shrinkage. There are several standard or design 

manuals available such as AASHTO and British Standard used to design concrete 

box girder bridges. Nowadays, the deflection caused by applied loading can be 

calculated or predicted using commercial design software. 

 

 

There are two types of deflections to be considered in box girder bridge 

which are short-term deflection (during construction) and long-term deflection (after 

bridge completed and open to traffic). According to Richard Malm and Hakan 

Sundquist [4], the vertical deflection of box girder bridges construct using segmental 

balanced cantilever method are effected by the downward deflection (due to dead 

load and live load) and upward deflection (due to prestress of tendons) which is 

known as short-term deflection.  

 

 

Generally, long-term deflection is caused by creep, shrinkage and relaxation 

of the prestressing tendons. The three distinct but inter-related time dependent effects 

must be considered in the analysis of a segmental bridge [5]. The effect of these three 

distinct are:- 

 

 

1) Creep is the change in strain with time due to constant stress; 

 

2) Shrinkage is the change in strain with time not due to stress; 

 

3) Relaxation is the change in stress with time due to constant strain [6].  

 

 

Due to the construction method, it is important to be able to obtain accurate 

predictions of the bridge deformation during construction and their service life [6].  
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1.2 Background 
 

 

 The main advantage of cast in-situ balanced cantilever box girder bridge 

compared to precast concrete box girder bridge is the material transportation 

accessibility. Due to balanced cantilever construction method, one of the main 

objectives is the finish level of each segment where all bridge segments must be 

connected to one another. Despite of smooth driving, the final segment level of each 

span is very important in order to connect with other spans.  

 

 

 The construction of balance cantilever bridge starts from the support and 

constructed segment by segment, connecting at both cantilever ends. If the difference 

of level is severe, appropriate action must be taken to make sure that the difference is 

within the allowable tolerance in order to joint both cantilever ends.  

 

 

 

 

1.3 Problem Statement  
 

 

 According to Mathivat [7], cast in-place (cast in-situ) cantilevering will 

usually have larger deflections than precast cantilevers because those segments 

(precast) are stored for some time before placed in the bridge’s superstructure. Since 

the balanced cantilever box girder bridge is constructed segmentally, maximum 

deflection is expected to occur at the farthest segment from the pier (support). 

Therefore, designers and contractors may expect larger deflection to occur for longer 

bridge.  

 

 

 Each segment will experience stressing and concreting, which is additional 

loading  applied during construction stage until all segments are stressed. Therefore, 

pre-camber is applied to every segment during concreting to compensate the effect of 
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segment weight and construction equipment (form traveler, machinery and ect.). 

Gunnar Lucko [8] explains the reasons for compensation of the deflection caused by 

segment weight (dead load) as follow:-  

 

 

i. Ensuring that the two cantilever beams meet at the same midspan elevation so 

that the casting of the closure segment is not hindered. It is, however, possible 

to jack the two cantilever beams into alignment to correct minor 

misalignments before casting the closure segment [8]. 

 

ii. Giving the bridge in service to the visual appearance of strength. Sagging 

below the vertical plane would also be detrimental to the riding comfort [8].  

 

 

 One of the problems with deflection is during jointing both cantilever ends. 

During construction, the segments level is checked at least before concreting and 

after stressing to ensure that the segments level is as per design and expected.  

However, due to excessive deflection during construction stage, it may result sagging 

around the middle of the bridge span as illustrated in Figure 1.1 and Figure 1.2 [9]. 

Peter F. Takács [9] explains the primary importance is to achieve the smooth camber 

in the bridge deck and to avoid sag at mid-span. 

 

 

 
 

Figure 1.1 Vertical difference between the tips of the two cantilevers before the 

cantilevers are connected [9].  
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Figure 1.2  Excessive deflection in the completed bridge spans [9]. The dotted 

line represents the design level.  

 

 

 The segment by segment construction method has resulted in different 

concrete maturity rate with every segment. Since the normal construction cycle is 

between 7 to 9 days, the difference of concrete age in days between first segment and 

segment no. 13 can be 91 days to 117 days. Due to the nature of concrete, the early 

segment will experience more creep and shrinkage; therefore, it will affect the bridge 

deflection. 

 

 

 During cantilever state, each part of the box girder may tend to deflect 

downwards parallel to gravity force. The more deflection occur, the more difficult to 

join the final segment. In order to overcome the problem, the contractor may have to 

adjust the bearing at the bottom at each support (pier) or by other methods to suit the 

required level.  

 

 

Any adjustment made by the contractor, especially using mechanical methods 

such as jacking will impose additional loading to the cantilever structure. If the 

adjustment is not carefully conducted, the whole structure may fail and may provide 

damage to the bridge. James M. Baker [10] explains that the construction load must 

not increase significantly over what has been assumed in the design. This is because 

the tensile stress at the top flange for the same section or segment is offset by the 

post-tensioning forces applied at a rate similar to the moment.  
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1.4 Objectives of The Study 
 

 

 The overall aim of this research is to study the deflection behavior of concrete 

box girder bridge constructed using cast in-situ concrete and balanced cantilever 

method. The literature review of this research explains the basic concept of 

constructing box girder bridge and principle of box girder deflection. Therefore, this 

research is focused to achieve the following objectives:- 

 

 

i. To collect and compare the level data of all box girder segments during every 

construction stage; 

 

ii. To monitor deflection behavior and identify the critical segment of cast in-

situ cantilever prestressed concrete box girder;  

 

iii. To determine actual concrete strength and analyze the bridge deflection using 

the actual concrete data;  

 

iv. To analyze and compare deflection of each concrete box girder segment using 

different creep coefficient.    

 

 

 

 

1.5 Scope of study 
 

 

 The study is conducted at a bridge over Sungai Terengganu constructed by 

MTD Construction Sdn. Bhd. for East Coast Expressway Phase 2. The bridge is 

designed to suit the state road parameter which consists of two lanes with shoulders 

and verge. Based on the bridge design, the scope of study is limited to the design 

parameter itself as listed below:- 
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i. Deflection levels are measured using survey method which practically 

practiced by the contractor.  

 

ii. Certain assumptions referring to the design parameters which are 

temperature, relative humidity (RH), wind factor and other design 

parameters.  

 

iii. Design levels are taken as reference (datum) where upward deflection is 

taken as positive (deflection above datum) and downward deflection is 

negative (deflection below datum). 

 

iv. Specimens are constructed using cast in-situ concrete and balance cantilever 

method.  

 

 

 

 

1.6 Significance of study 
 

 

 The deflection of balanced cantilever bridge is one of the important elements 

during the bridge construction. On 2011, a cantilever bridge constructed using 

precast segment link to The New Istana Negara experienced severe level differential 

and adjustment had to be made in order to join both cantilever ends.  

 

 

 Cast in-situ segments experience larger deflections compared to pre-cast 

segments, and hence it is important to understand the bridge deflection behavior. Due 

to lack of research on deflection during construction in Malaysia, the result from this 

study may assist in providing better understanding to the designers and site engineers 

on the deflection behavior of segmental box girder bridge constructed using balanced 

cantilever method.  
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Figure 1.3  Misalignment of pre-cast box girder bridge near The New Istana 

Negara.  
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