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ABSTRACT 

 

 

 

 

Lightning arrester in a power system is categorized as a device, which 

operates in transient conditions.  Therefore, the performance of the arrester must be 

analyzed in transient circumstances. Some particular considerations such as physical 

(grounding installation) and electrical (impulse current) aspects must be taken.  

Hence, this research aims to take into account the effect of nonlinear characteristics 

of the grounding impedance on the residual voltage of the lightning protection 

system in different discharge conditions.  In this issue, the lightning protection 

system consisting of ZnO and grounding model was adjusted to yield the accurate 

results in EMTP.  For this purpose, IEEE dynamic model of ZnO arrester was 

adjusted such that the manufacturer's performance test results are achieved.  The 

arrester was connected to the improved  circuit model of the grounding electrode 

system. To analyze the performance of the lightning protection system with different  

grounding configurations, the system was subjected to the three groups of lightning 

impulse currents.  For this purpose, CIGRE standard, Berger, and 8/20 (μs/μs) 

standard lightning currents were applied as impulse currents.  The results shown that 

the lightning protection system cannot completely protect the power system 

equipment during the high amplitude and very fast front times of discharge currents, 

which were experienced under CIGRE and Berger current. In addition, residual 

voltages of the lightning protection system under standard performance tests for 

discharge currents less than 5kA do not exceed the protection level, but compare to 

the manufacturer’s results, the residual voltages are considerably increased.   
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ABSTRAK 

 

 

 

 

Penangkap kilat dalam sistem kuasa dikategorikan sebagai alat yang 

beroperasi dalam keadaan fana (sementara). Oleh itu, prestasi penangkap kilat mesti 

dianalisis dalam keadaan fana. Beberapa pertimbangan tertentu seperti aspek fizikal 

(asas pemasangan pembumian) dan elektrik (arus dorongan) perlu diambil kira. Oleh 

itu, penyelidikan ini bertujuan untuk mengambil kira kesan ciri-ciri linear rintangan 

pembumian pada sisa voltan sistem perlindungan kilat dalam keadaan pelepasan 

yang berbeza. Dalam isu ini, sistem perlindungan kilat terdiri daripada ZnO dan 

sistem pembumian yang telah diselaraskan untuk menghasilkan keputusan yang tepat 

dalam EMTP. Bagi tujuan ini, model dinamik IEEE penangkap ZnO telah 

diselaraskan untuk mencapai keputusan ujian prestasi pengilang. Penangkap kilat ini 

telah disambungkan kepada model litar baik sistem elektrod pembumian. Untuk 

menganalisis prestasi sistem perlindungan kilat dengan konfigurasi asas yang 

berbeza, sistem adalah tertakluk kepada tiga kumpulan arus dorongan kilat. Bagi 

tujuan ini, kelas CIGRE, Berger dan 8/20 (μs / μs) arus kilat piawai digunakan 

sebagai arus dorongan. Keputusan menunjukkan bahawa sistem perlindungan kilat 

tidak dapat melindungi peralatan sistem kuasa semasa amplitud tinggi dan masa 

depan arus pelepasan yang sangat cepat, di mana ia telah berpengalaman di bawah 

arus CIGRE dan Berger. Di samping itu, sisa voltan sistem perlindungan kilat di 

bawah ujian prestasi piawai bagi pelepasan arus kurang dari 5kA tidak melebihi 

tahap perlindungan, tetapi sisa voltan ini meningkat dengan ketara berbanding 

dengan keputusan pengeluar. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

In normal operation, lightning arresters according to the micro characteristics 

(micro varistor) are in a block position until the system is exposed to transient 

overvoltages.  Then in these circumstances, the lightning arrester is short-circuited 

and it instantly discharges the impulse current and mitigates the overvoltage to less 

than the desired value (80-85% BIL).  In power frequency, a pure resistor 

characterizes the grounding system of the power system equipment, however, under 

transient overvoltage circumstances the nonlinear behavior of the grounding system, 

in relation to the high discharge frequency, requires a complex model of earthing 

system, which includes resistor, inductor, and capacitor [1].  In these conditions, the 

residual voltages of the lightning protection system is different when compared to the 

simple grounding model or power frequency cases.  Therefore, the effect of 

grounding nonlinear characteristics in transient condition should be taken into 

account [2], [3].  Although many studies that have been conducted in the field of 

lightning protection systems include gapless ZnO lightning arresters, none of them 

shows the effect of non-linearity characteristics of the ground impedance under 

transient conditions on the residual voltage of the system.  In the IEEE standard, only 

the inductive behavior is considered with a length of more than 300m. However, 
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many studies were done to analyze the soil and impedance behavior [4], [5].  

Therefore, it needs more investigations to determine the effects of nonlinearity 

behavior of the grounding system on the protective performance of the lightning 

protection system, which includes the surge arrester and grounding system.  

 

 

 

 

1.2 Statement of Problem 

 

 

To damp the effects of the surge impulses in power system equipment such as 

transformers, reactors, or cables, use of lightning surge arresters are necessary. Surge 

arresters are connected between line conductors and earthing system by means of 

leads and connectors. In a simple configuration, ground electrode is modeled as a 

resistor and in some surveys, it is neglected.  However, in transient conditions, two 

phenomena affect the ground impedance, which are soil breakdown and 

electromagnetic effects.  Many parameters such as the length of the electrode, soil 

resistivity, discharge current magnitude, and current front time affect the ground 

impedance characteristics.  In some cases, according to the previously mentioned 

parameters, the so-called impulse coefficient can be less than one or greater than one, 

which represents more or less the grounding system efficiency.  Therefore, the 

voltage drop across the ground impedance varies with the effect of these parameters 

and behavior of the ground system.  This voltage drop is represented by 

V(t)=R(t).I(t)+X(t), where R(t) is the soil breakdown nonlinear resistance,  I(t) is the 

discharge current, and X(t) is the voltage drop related to the frequency dependent 

phenomena.  According to the impulse coefficient of the earthing system (the 

impulse coefficient defined as A=Z/R), the voltage drop in earthing systems can be 

more or less than the measured value in the simple resistive model.  This voltage is to 

be added to the residual voltage of the ZnO lightning arrester. Therefore, the effects 

of the grounding impedance characteristics and effective parameters in transient 

conditions, on the total residual voltage of the lightning protection system should be 

taken into account. 
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1.3 Purpose of Study 

  

 

 The aim of this research is to survey the effect of dynamic ground impedance 

characteristics under transient overvoltage conditions and lightning current 

parameters on the value of the voltage drop across the whole lightning protection 

system, which includes the ZnO lightning surge arrester and the ground proper.  

 

 

 

 

1.4 Objectives of Study 

 

 

The objectives of the study are as follows: 

 

1) To improve the model of the grounding system to cope with the various impulse  

    conditions. 

 

2) To evaluate the protective performance of the ZnO lightning arrester based on     

    simple and complex grounding models. 

 

3) To survey the effects of lightning current amplitude and front time on the  

    protective performance of the lightning protection system. 

 

 

1.5 Significance of Study 

 

 

By determining the voltage drop value in different conditions according to the 

effective parameters of the impulse current for simple and complex models of the 

grounding systems, accurate data can be used in protection formulas.these data can 

be taken into account to determine the residual voltage across the lightning protection 

system during the insulation coordination considerations.  
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1.6 Scope of Study 

 

 

The scope of the research is 33kV AC transmission overhead lines, which are 

protected by gapless ZnO lightning surge arrester grounded by simple and complex 

earthing system. 

 

 

 

 

1.7 Methodology 

 

 

 This study was conducted to evaluate the effect of grounding system on 

residual voltage of the lightning protection system.  Therefore, three main 

components of the lightning protection system, which are zinc oxide gapless 

lightning arrester, grounding system, and the lightning current source were taken into 

account.  In this regard, IEEE-C62.22 was used to set the dynamic model of ZnO 

lightning arrester in transient conditions for ABB commercial lightning arresters 

(MVK type) in 33kV overhead transmission lines.  A linear resistor was used as an 

equivalent circuit of the horizontal and vertical rod representing a simple earthing 

model. While, for the modeling of complex grounding system the improved 

grounding system based on the electromagnetic approaches was used as grounding 

system.  The validity of the improved model was checked by the computational, 

simulation and experimental cases.  Three types of current sources based on 

incidence probability, CIGRE impulse current, Berger  findings, and  ZnO  standard  

performance  test (8/20 (μs/μs) in different magnitudes) were used as current sources. 
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