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ABSTRACT 

 

 

Residual soils cover more than three-quarts of the land area of Peninsular 

Malaysia. Many steep slopes in these residual soils often have a deep ground water 

table. Above those ground water tables, the soils are in unsaturated conditions. In this 

study, unsaturated shear strength behavior of a tropical residual soil under different 

stress levels is investigated by using uncomplicated testing procedure. Existing 

triaxial tests use translation technique for determining unsaturated shear strength 

parameters but ordinary Unconsolidated Undrained triaxial tests were carried out due 

to lacking of the advanced testing unit in the laboratory. The Unconsolidated 

Undrained tests were carried out under different cell pressures at different suctions 

values to obtain the undrained compressive strengths of the specimens. Preliminary 

results of the consolidated isotropic undrained tests, show effective cohesion and 

effective angle of friction i.e., saturated shear strength parameters were 9 kPa and 

23°, respectively. In Unconsolidated Undrained tests, the values of apparent shear 

strength at high stress levels range from 66.1 − 72.6 kPa. At low stress levels, the 

range of apparent shear strength values was obtained in between  53.1 − 57.5 kPa. 

The value of friction angle for the highest suction pressure tested in this study (300 

kPa) was determined  9.9°. This study illustrated that there is nonlinear relationship 

between the apparent shear strength and suction. 
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ABSTRAK 

 

 

Lebih daripada tiga suku keluasan tanah di Semenanjung Malaysia 

merupakan tanah residul . Kebanyakan cerun yang curam yang terdiri daripada tanah 

residul mempunyai paras air bawah tanah yang agak rendah. Oleh yang demikian, 

tanah yang terdapat di atas paras air bawah tanah adalah berada dalam keadaan tidak 

tepu. Dalam kajian ini, kekuatan ricih tanah tidak tepu untuk tanah residul tropika 

adalah dikaji di bawah tekanan yang berbeza dengan menggunakan prosedur ujian 

makmal yang tidak rumit. Walaupun ujian tiga paksi yang sediada menggunakan 

teknik translasi bagi menentukan kekuatan ricih tanah namun ujian tidak tersalir 

tidak termampat yang biasa telah digunakan atas sebab kekurangan alat ujian di 

makmal. Ujian tidak tersalir tidak termampat telah dijalankan di bawah tekanan sel 

yang berbeza dan pada nilai sedutan yang berlainan untuk mendapatkan kekuatan 

mampatan tidak tersalir bagi tanah yang diuji.  Keputusan awalan daripada ujian 

pengukuhan isotropik tidak tersalir menunjukkan bacaan kekuatan ricih tepu iaitu 

nilai kejelekitan berkesan dan nilai sudut geseran berkesan sebanyak 9 kPa dan 

230 masing-masing. Dalam ujian tidak tersalir tidak termampat pula, nilai untuk 

kekuatan ricih sebenar pada tekanan yang tinggi adalah dalam lingkungan 66.1 – 

72.6 kPa. Sebaliknya, pada tahap tekanan yang rendah, lingkungan kekuatan ricih 

sebenar yang diperolehi adalah 53.1 – 57.5 kPa.  Manakala nilai sudut geseran yang 

direkodkan semasa tekanan sedutan tinggi iaitu pada 300 kPa adalah 9.90. Kajian ini 

telah menunjukkan bahawa tiada hubungan yang linear di antara nilai kekuatan ricih 

sebenar dan nilai tekanan sedutan. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background of Study 

 

For many years, unsaturated soils were either ignored in civil engineering 

design and construction analysis or were approached inappropriately from the 

traditional framework of saturated soil mechanics. According to Lu and Likos 

(2004), however rapid advancement in our understanding of unsaturated soil 

behavior over the last 30 to 40 years has led today’s civil engineer to realize that, 

there is now an opportunity to approach problems involving unsaturated soil on a 

much more rational basis. 

 

Climate plays an important role in whether a soil is saturated or unsaturated. 

Water is removed from the soil either by evaporation from the ground surface or by 

evaporation-aspiration from a vegetative cover. These processes produce upward 

flux water out of the soil. On the other hand, rainfall and other forms of precipitation 

provide a downward flux into the soil. The difference between two flux conditions 

on a local scale largely dictates the pore-water pressure conditions in the soil. A net 

upward flux produces a gradual drying, cracking, and desiccation of the soil mass 

and a net downward flux eventually saturates the soil mass. According to Dan’ azumi 
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et al. (2010), Malaysia experiences more than 2000 mm annual rainfall with most of 

the annual precipitation falls during the monsoon seasons. 

 

The microclimatic conditions in an area are the main factors causing a soil 

deposit to be unsaturated. Therefore, unsaturated soils or soils with negative pore-

water pressures can occur in essentially any geological deposit, such as residual soil, 

a lacustrine deposit, soils in arid and semi-arid areas with deep ground water table, 

and tropical soils. Residual soils are products of the in situ physical and chemical 

weathering of bedrocks. These soils are commonly situated above the groundwater 

table. Therefore, in situ residual soils are often unsaturated in the nature (or 

approaching to saturation), and the pore-water pressures of them are negative relative 

to atmospheric conditions. This negative pore-water pressure is called matric suction. 

According to Rahardjo et al. (1995), residual soils cover more than three-quarters of 

the land area of Peninsular Malaysia. Many steep slopes in these residual soils often 

have a deep ground water table above the soils with high extra attractive force i.e. 

matric suction. It is well established that the stability of a natural or a cut slope in 

residual soils depends on the shear strength which is affected by the matric suction. 

The in-situ matric suction and the shear strength of soils are in turn affected by the 

climatic conditions, particularly rainfall distributions.  

 

Shear strength parameters are the key input parameters in any soil stability 

analysis. In fact, the value for determining the shear strength parameters of a soil is 

required in the prediction of the stability of slopes and embankments, in the bearing 

capacity of foundations, and in pressures against earth retaining structures. Predicting 

unsaturated shear strength parameters is more significant in tropical countries, where 

rainfall and intense chemical weathering have resulted in the formation of such soils. 

 

In vadose zone, the zone above groundwater table, matric suction has a strong 

influence on shear strength behaviour. This extra attractive force is producing extra 

shear strength, i.e. apparent shear strength (���� ) and friction angle with respect to 

suction (�� ). The parameters ����  and �� are named unsaturated shear strength 



3 
 

parameters.  According to Md. Noor (2011), unsaturated shear strength parameters 

are not constant variables, but vary with depth and suction. 

 

Several empirical models have also been proposed in prediction of 

unsaturated soil shear strength parameters, for instance by Fredlund et al. (1996), 

Vanapalli et al. (1996). These empirical approaches employ the soil water 

characteristic curve (SWCC). Laboratory works, despite of imposing extra time 

consuming and relatively higher expenses, are evidently providing the most 

appropriate mean for measuring the unsaturated shear strength parameters. 

 

Conventional triaxial tests for unsaturated soils require modifications. The 

presence of air and water in the pores of soil causes the testing procedures and 

techniques to be more complex than those required when testing saturated soils. The 

modification must accommodate the independent measurement or control of pore-air 

and pore-water pressures .i.e. translation technique. In addition, in unsaturated soils 

the pore-water pressure is usually negative and can result in water cavitation 

problems in the measurement. In this project for predicting unsaturated shear 

strength parameters normal unconsolidated undrained tests were conducted due to 

the absence of advanced testing unit. These unconsolidated undrained tests were 

carried out at different confining pressures and different suctions with using 

Vanapalli and Fredlund (1997) formulas. This procedure is faster, cheaper and easier 

to conduct to the existing laboratory procedures. 
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1.2 Problem Statement 

 

Several empirical models have been proposed in recent years to predict the 

unsaturated soil shear strength parameters. Laboratory tests, despite of imposing 

extra time consuming and relatively higher expenses, are evidently providing the 

most appropriate means for measuring the unsaturated shear strength parameters 

rather than empirical models. 

 

 Existing laboratory tests for determining unsaturated shear strength 

parameters such as consolidated drained tests and consolidated undrained tests are 

base on measuring pore-air and pore-water pressures .i.e. translation technique. 

Those procedures are difficult to conduct, complicated, costly and time consuming. 

This study has been proposed a simple, low cost, and quick way for predicting 

unsaturated soil shear strength parameters by using normal unconsolidated undrained 

tests.   

 

 

1.3 Objectives of Study 

 

The aim of this study is to investigate the effect of stress level on the apparent 

shear strength of an unsaturated tropical residual soil by using uncomplicated testing 

procedures. In order to achieve this aim, three objectives are outlined as follows: 

 

1) To determine the apparent shear strength (���� )   from unconsolidated 

undrained test at different stress levels.  

2) To determine the friction angle (�� ) from unconsolidated undrained test at 

different stress levels. 

3) To investigate the relationship between apparent shear strength and stress 

level of the unsaturated residual soil. 
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1.4 Scope and Limitation of Study 

 

The results of this study were restricted to the soil samples collected from a 

slope with existence mature tropical tree acacia situated at latitude (+1°33′ 32.03′′ ) 

and longitude (+103°38′ 38.04′′ ). The tree located at the toe of slope in front of P16 

at Faculty of Electrical Engineering Universiti Teknologi Malaysia.  

 

In this project, several unconsolidated undrained triaxial tests using normal 

triaxial testing apparatus, under different cell pressures and different suctions were 

carried out to obtain the maximum deviator stresses of the unsaturated soil 

specimens. The unconsolidated undrained triaxial tests have been performed 

following BS 1377: part 7:1990, clause 8. The only difference was that the 

unsaturated soil specimens were tested in their initial water contents and suctions. 

For obtaining saturated shear strength parameters, consolidated isotropic undrained 

tests have been conducted based on BS 1377: part 8:1990, clause 7. Lack of the 

advanced testing unit was the limitation of this project. 

. 
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