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Abstract: The aerodynamics analysis of rotor blade helicopter in forward flight by using a non uniform inflow models 
are presented. This work can be considered as a continuation from the previous work as described in the Ref.1. Here the 
linear inflow model would be used as the basic idea in solving the aerodynamic problems oppose with the Ref. 1 which 
used a uniform inflow model. Physical flow phenomena around a rotor blade helicopter had been recognized very 
complicated. Rotor blade behaves like a finite wing. The presence of lift upon a finite wing would be followed by wake 
vortex sheet this vortex sheet promotes induced velocity along span wise non uniformly. Only certain wing plan form 
namely elliptic wing plan form could generate uniform induced velocity along span wise. For an arbitrary wing plan 
form the induced velocities were normally non uniform. The shape of wake vortex sheet released from a finite wing 
relatively simple, the vortex sheet can be considered as a plane of an infinitesimal thickness starting from the trailing 
edge line goes down in parallel to the free stream flow. In the case of the rotor helicopter, the rotor blade becomes a 
rotating lifting surface. As result the shape of wake vortex sheet becomes more complex than a fixed finite wing. Hence 
the non uniformity of the induce velocity become apparent.    
 
Notation 
 

CT  Thrust Coefficient 
D Drag 
L Lift 
P Power 
Q Torque 

RB Blade Radius 

UT 
Velocity normal to blade leading edge 
line 

UP Out plane velocity 

UR  Radial Velocity 
U∞ Incoming flow velocity 
α           Angle Of Attack 

αeff       Effective Angle Of Attack 
β Coning Angle 
λave Uniform inflow ratio 
µ Advance ratio 
ψ Azimuth angle  
χ Wake skew angle 



Ω Rotor rotational speed 
εct Prescribed value 

 
I. Introduction 
 
The aerodynamics analysis of rotor blade helicopter in forward flight by using a non uniform inflow models are 
presented. This work can be considered as a continuation from the previous work as described in the Ref.1. The previous 
work used uniform inflow model as the basic idea in solving the aerodynamic problems of rotor blade.   Using this 
approach, various rotors had been analyzed in order to identify the influence of rotor blade parameter geometry, flight 
condition as well as the required numerical parameter imposed by the blade element requirements.  Physical flow 
phenomena around a rotor blade helicopter had been recognized to be very complicated. The rotor blade could be 
considered as a rotary wing. As result, as the blade rotates, it would be accompanied by the presence of wake vortex 
sheet. The shape of wake vortex sheet released from a finite wing is relatively a simple.  This sheet can be considered as 
a plane of an infinitesimal thickness started from the trailing edge line goes down stream in the direction parallel to the 
free stream velocity. While the rotor blade helicopter as a rotary wing would generate the wake vortex sheet with the 
shape is more complex than its counter part.  The wake shape would, at least, at helical form.  This vortex sheet in return 
would promote induced velocities along span wise which it is expected to distribute in non uniform manner. It is, 
therefore, the use of uniform inflow model seems is not adequate to perform an accurate aerodynamics analysis of the 
rotor blade helicopter.  
There are various model had been introduced to accommodate the variation induced velocity both in longitudinal ( radial 
direction ) as well as in lateral direction ( azimuth direction) such as presented in Ref. 2  and  3.  
 
The present work introduces the use of non uniform inflow models to be incorporated into the combined Momentum 
Theory and The Blade Element Theory. For a comparison purposes two types of a rotor blade helicopter were analyzed. 
The first type relates to the rotor blade which it was assumed no twist  and no coning angle and the blade plan form is 
simple a rectangular. The second type is similar to the first but with the coning angle which varying with respect to the 
azimuth positions.   
 
The comparison result with a uniform flow model is clearly indicated that all those six type of inflow models provide the 
average thrust coefficients are relatively lower than the result using a uniform inflow model. If the local thrust coefficient 
is plotted against the blade azimuth positions, the non uniform flow models shift the locations blade azimuth position at 
which the thrust coefficient reach maximum or minimum value. However to establish which the most accurate inflow 
model, further work to compare with experimental result is needed. This represents the suggested for the future work. 

 
II. Methodology 

      
2.1   Theoretical Background 

 
The Momentum Theory and The Blade Element Theory represent two independent methods. Both can be used as a tool 
for aerodynamics analysis of the rotor blade helicopter. However on the use to those methods independently need 
additional information. The momentum theory which is not required the detail of rotor blade geometry only can be used 
if the thrust coefficient is known then a uniform induced velocity cross the rotor disk plane can be deduced. In other way 
if induced velocity is known then the thrust coefficient can be estimated.  The blade element Theory required the detail 
information of the rotor blade geometry. It is means the method allows to study the influence of rotor blade parameter 
geometry affected to the aerodynamics performance of the rotor blade helicopter. Those two methods combine together 
would eliminate the lack of information. The induced velocity would be provided from the Momentum theory which then 
would be used in The blade element theory in order to obtain the thrust coefficient CT . An iteration process was 
required, since the thrust coefficient from the Blade Element Theory would not the same value used by the Momentum 
Theory. Finally the iterative calculation The Momentum Theory and The Blade Element theory would reach certain 
condition where the difference value between two successive iteration would not exceed a prescribed value εct . Here one 
choose εct  as small as possible. However in used of  εct  is equal to 0.005 is adequate which that the difference result 
between two iteration value would not exceed than 2 %. The detailed derivation of those two methods can be found  in  
Ref. 2,3 and 4.  

  



For a given a thrust coefficient CT, the incoming velocity U∞ and  the disk plane angle  αTPP  accordingly to  the 
Momentum theory gives the uniform inflow ratio λave  would be4  : 
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In above equation µx represent the advance ratio parallel to the disk plane. For a given  the rotor rotational speed and the 
rotor blade radius are denoted  by  Ω and RB respectively. The advance ratio µx is defined as : 
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While the advance ratio perpendicular with respect to the disk plane is denoted by µz defined as:  
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The term ΩRB is called as the blade tip speed Utip. 

 
The equation 1-1 represents the non linear equation in term of the inflow ratio aveλ .  Hence the solution for the λ needs to 

be done iteratively.  Using a Newton Raphson iterative method, the iterated value of  n
aveλ  at the nth iteration would be4: 
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The initial value of the inflow ratio  0λ   for starting the iteration process is given by: 
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Here one can implement the criteria for finishing the iteration process by the following equation  : 
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The ελ represents a prescribed value which can be chosen arbitrary. It could be, normally, below 0.005. If the chosen 
value ελ is set equal to 0.005, then the iteration process would be terminated at the difference value between two 
successive iteration results would not exceeded more than 0.5 %. 

 
To accommodate the variation of inflow ratio in both longitudinal and lateral one can use the variation of inflow model 
suggested by Glauert4 as: 



 
( ) ( )   sin r  k   cosr  k  1      , zxave Ψ+Ψ+=Ψ λλ r         1-7 

 
In above equation kx and ky can be viewed as weighting factors and represent the deviations of the inflow from the 
uniform value predicted by the Momentum theory Eq. 1.1. 

 
There are various attempts had been made  to provide the weighting factor kx and kz. Table 1.1 bellows shows a 
summarized of  the suggested value of those two weighting factors adopted from Ref. 4.  

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2.1 Weighting factor kx and kz for non uniform inflow model Eq.1.7 Adopted from Ref. 4. 

  
The variable χ in table 2.1 above is called as the wake skew angle and is given by : 
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The inflow ratio λ(r,Ψ)  was obtained by using Eq. 1.7 , would be as an input for the Blade element Theory. General 
speaking, The Blade Element Theory is similar to the strip theory commonly use a finite wing aerodynamics. Here the 
blade was considered as composed of a number of aerodynamically independent cross-sections, whose characteristics are 
the same as a blade at a proper angle of attack. The lift and drag are estimated at the strip by using 2-D airfoil 
characteristics accordingly to the local flow velocity.  It is, therefore, necessary to determine the magnitude as well as the 
direction of the airflow in the immediate vicinity of the blade element under consideration.  

  
Suppose that the motion of the rotor blade under consideration has a variable coning angle β as function of blade azimuth 
position Ψ can be written as4 : 

 
( )   sin  B     cosA      0 ββββ ++=Ψ         1-7 

 
The coefficient β0, A and B above equation are specified. Different helicopter might have different value coefficients.   

 
The incoming flow velocity U∞ to the   disk plane in forward flight, can be resolved into two component velocities, 
namely the component velocity parallel to the disk plane U∞//, and the component velocity U∞┴ which is perpendicular 
to it.  This incoming velocity would superimposed with the angular velocity of the blade Ω, induced velocity vi , and the 
velocity which generated by the change of  coning angle β(Ψ) as the blade rotates to produce the effective resultant 
velocity sees by the blade section.   This resultant velocity can be split into three component velocity. They are namely: 
the component velocity normal to blade leading edge line UT, the radial velocity  UR  and the out plane velocity UP. 
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Those three component velocities, of course, would be function of blade azimuth position Ψ and distance of blade section 
r to the axis of rotation. Figure 2.1 show the schematic diagram of velocities work on the rotor blade.  

 

 
Fig.2.1   Diagram Velocities over the rotor blade helicopter (Leishman, 2000)  
 
The three component velocities as mentioned above can be written, respectively as: 
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Let Eq. 1.8 is divided by the tip speed ratio ΩRB  in order to form in  non dimensional term as:  
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 Let consider a typical element or strip shown in the Figure 2.3.  

 
Figure 2.3: Velocity Diagram on the blade section (Leishman, 2000). 

 
This element has a pitch angle equal to θ, which represents the angle between the plane of rotation and the line of zero 
lift. Many rotor blades are, normally, twisted, so the pitch angle θ might varies with r. Hence it is necessary to note as 
θ(r).  If the blade section just   sees an in-plane velocity UT only, the pitch angle would be the section angle of attack at 
that section. The component out plane velocity U∞┴, and induced inflow velocity vi, would change the flow direction by 
amounts Φ, as shown in the Figure 2. 3 above, namely, 
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Considering velocity components   equation 1-8a and 1-8b for Up   and UT, both varying in longitudinal (radial direction) 
as well as in the azimuth direction. As result that the inflow angle Φ need to be viewed  as Φ(r,Ψ).   
The  effective angle of attack effα  , then , can be defined as : 
 



( )  )(r,  -   (r) θ    Ψ r,α eff ΨΦ=                    1-11 
           
The airfoil lift and drag coefficients Cl ( effα ) and Cd ( effα ) at this effective angle of attack effα  may be obtained from 
look up table of airfoil data.  The lift and drag forces will be perpendicular to, and along the apparent stream direction. 
The effective velocity works on  the  differential blade element ∆r,  creating a  differential lift ∆L(r,Ψ)  and  differential 
drag ∆D(r,Ψ)  as :  
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Those two differential forces must be rotated in directions normal to, and tangential to the rotor disk, respectively,  and 
producing the differential thrust ∆T(r,Ψ) and the differential axial force  ∆Fx(r,Ψ)  as given below :  
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The differential torque Q∆ (r,Ψ)  and differential power P∆ (r,Ψ)   can be obtained , respectively , as : 
 

( )  r, F r    )Q(r, x Ψ∆=Ψ∆                1-14a 
and  
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Finally, the thrust T(Ψ) , torque Q(Ψ)  and power P(Ψ)  may be found by integrating ∆T(r,Ψ) , ∆Q(r,Ψ)  and ∆P(r,Ψ) 
above from root to tip (r=0 to r=RB), and multiplying the results by the total number of blades Nb for a given certain 
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The average thrust Tave, torque Qave and power Pave  can be found by integrating T(Ψ) , Q(Ψ)  and ∆P(Ψ) from Ψ = 00  to  
Ψ = 3600 as:  
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and 
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The above integration can, in general, be only numerically done since the chord c, the sectional lift and drag coefficients 
may vary along the span wise as well as in the azimuth direction. The inflow velocity vi depends on T. Thus, an iterative 
process will be needed to find the quantity vi.  The iteration process would be accomplished, if the difference value 
between two successive iteration for the average thrust coefficient  1i

TC +   and  i
TC   defined as:  

ct1i
T

i
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In the right hand side above equation εct represents an arbitrary prescribed value which here may one can chose to be 
equal 0.005. 

 
 
  

2.2 Numerical Procedure 
 

For the purpose of aerodynamic rotor blade helicopter, this approach would require data for the rotor blade parameter 
geometry and the flight condition.  The first data would cover: chord distribution c(r), twist distributionθ(r) , 

aerodynamic airfoil data for the blade section ( ( )     c α and ( )     c αd , coning angle as function of blade azimuth 

position ( )Ψβ , blade radius RB and blade number NB. While the second data involved the incoming flow velocity U∞,  

the angle of attack with respect to the disk plane TPPα , and the  rotational speed rotor blade NRPM.  Additional data as 
numerical parameter calculation need to be supplied, namely : the number of  blade division for each blade NBE, the 
number of  azimuth division to complete on rotational calculation NR and two others prescribed value for  checking  the 
convergence ελ  and εct . The prescribed value ελ  is the value to establish that the iteration process for determining the 
average inflow ratio λave was completed. While the prescribed value εct in conjunction with iteration process for the thrust 
coefficient. 

  
The implementation of the combined Momentum theory and the blade Element theory for the aerodynamics rotor blade 
helicopter analysis can be described as shown by the flow diagram as depicted in the Figure 2.4. 

 
Given necessary input as described above, introduce the initial value of the thrust coefficient. Use this value to calculate 
the average inflow ratio λave by using the momentum theory Eq. 1.1 through an iteration process. As the average inflow 
ratio λave available calculate the local inflow ratio λ(r,Ψ) as defining by Eq. 1.7  at each predetermining blade section r 
and the blade azimuth position Ψ. The required wake skew angle χ can be obtained by using one of skew angle model as 
presented in the table 1.1. The resultant velocity and the effective angle of attack, then, can be obtained through out 
solving Eq. 1-9 to Eq. 1-11. Knowing the effective angle of attack αeff(r,Ψ) , then,  by  using look up table airfoil data, the 
local lift coefficient and drag coefficient  can be obtained.  Finally implement the numerical integration along blade span, 
the thrust coefficient, torque coefficient as well as  power coefficient  at particular each blade azimuth can be found. 
Similar calculation need to be carried out for different blade azimuth position until a prescribed number of blade azimuth 
position NR are completed. Sum up those obtained thrust coefficient for those NR positions. The summation result, then, 
divided by NR would give the average thrust coefficient. The average torque and power coefficient could be done in 
similar way as in determining the average thrust coefficient. This average thrust coefficient, of course, would not have 
the same value as it used in the beginning calculation to determine the average inflow ratio according to the momentum 
theory. Recalculation is, therefore, needed. This would be repeated until two successive iteration value of the average 
thrust equation as defined by Eq. 1-17 is satisfied. 
 
 
III. Discussion and Result 

 
For the purpose of comparison result between a uniform inflow model and non uniform inflow model, the rotor blade 
parameter geometry, flight condition as well as the required numerical parameters had been selected to have data as 
follows:  



 
1. Blade number  NB : 2  
2. Blade radius   RB  :  6  meters 
3. Uniform blade chord  c( r )  : 0.4 meter 
4. Rotational speed of the rotor blade  : 400 Rpm 
5. Angle of attack with respect to the rotor disk plane TPPα  = 80 
6. Number of blade element NBE : 40  
7. Number of division of blade azimuth position NR: 60  
8. Inner blade radius for starting the Blade Element theory applied  Ro = 0.1 meter 
9. The Prescribed convergence value of  the  average inflow ratio ελ  = 0.005 
10. The prescribed convergence value of the thrust coefficient εct = 0.005. 
Other required data would be added as the discussions proceed. 

 
Case the untwisted blade 
 
Here the rotor blade was assumed to have a uniform pitch angle   8   (r) 0=θ and there is no conning angle ( β(Ψ) = 00 ).  
The aerodynamics characteristic of the airfoil section defined to follow as example given in Ref. 4 as : 

 
 ( ) απα  2    =c  

( ) 2 0.65    0.025  0.1      ααα ++=dc                     1-17 α   in radian. 
 

This simple rotor blade model was chosen in order to give a better view in considering the difference result might be 
appeared between a uniform and non uniform inflow models. Instead of that, this suggested simple blade model was 
,also, designed  for the purpose of comparison result among various model of  non uniform inflow model as presented in 
the table 1.1. 

  
The incoming velocity of forward flight was assumed 50 m/sec.  With the rotor rotational speed at 400 RPM and the disk 
plane angle of attack TPPα =80. The problem in hand would correspond to the advance ratio at µx = 0.0197.  All 
calculations would be presented here used the same initial value for the thrust coefficient, CT0 = 0.002.  The comparison 
result in term of the average thrust coefficient, the torque coefficient and the required number of iteration can be 
summarized as shown in the table 3.1 bellows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



               
Inflow model  

 

Thrust 
Coef. 

CT 

Torque 
Coef. 

CQ 

Iterati
on 

numb
er 

Uniform 0.00684 0.00546 6 
Non uniform :  
Colement et al  
(1945) 

0.00655 0.00526 6 

Non uniform :  
Drees (1949) 

0.00666 0.00534 6 

Non uniform :  
Payne (1959) 

0.00641 0.00516 6 

Non uniform :  
White and 
Blake (1979) 

0.00630 0.00508 6 

Non uniform :  
Pitt & Peters 
(1981) 

 0 .00626 0.00504 6 

Non uniform :  
Howlett 
(1981) 

0 .00647 .00521 6 

 
Table 3.1: Comparison result of thrust coefficient and torque coefficient between various inflow models.  

 
Figure 3.1 showed the comparison result of thrust coefficient CT as function of blade azimuth position between a uniform 
flow model and various forms of non uniform inflow model as listed in the table 3.1 above. While Figure 3.2 showed the 
comparison in term of torque coefficient CQ. 
 
Those two figures show that the all non uniform flow models shift the peak of thrust coefficient at the blade azimuth 
position greater than a uniform flow model. The Coleman model give result closed to the uniform flow model, while the 
Pitt & Peters model and White & Blake model give the lowest curves. The Howlett model give CT curve in between 
among them.   
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 Figure 3.1: Comparison result thrust coefficient CT as function blade azimuth position between a uniform and non 
uniform flow models 
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Figure 3.2: Comparison result torque coefficient CQ as function blade azimuth position between a uniform and non 
uniform flow models 

 
 

Case the Untwisted Blade with Coning Angle. 
 
The following test case used a similar configuration of rotor blade in the previous test case. However the blade had been 
set to have certain a coning angle which is varying as function of blade azimuth position as given by:  

 
                       ( ) ( ) ( )ΨΨ=Ψ sin  4 -   cos 4 -  6     000β                     1-18 

 
The blade coning angle as given by Eq. 1-18 was adopted from Ref. 4. The previous result showed that the Howlett 
model give a moderate result compared to another 6 inflow models. Hence this model had been selected as the model 
would be used in this test case.   
 
Table 3.2 shows the comparison result of thrust coefficient between a uniform inflow model and non uniform inflow 
modeled by Howlett4 for the case with and without blade coning angle. 

 
Blade model Inflow 

model 
Thrust coef. 

CT 
No conning angle  uniform 0.00684 
No conning angle Howlett 

model 
0 .00647 

Coning angle Eq. 1-18 uniform 0.00686 
Coning angle Eq. 1-18 Howlett 

model 
0.00650 

 
Table 3.2  A comparison result of thrust coefficient between two inflow model  
 
Considering above result as shown in The table 3.2     indicates that the coning angle as given by Eq. 1-18 do not give a 
significant effect to the thrust coefficient.  

 
The Comparison result in term of thrust coefficient CT and torque coefficients presented as function of blade azimuth 
position for those two models as shown in the Figure 3.3 and Fig. 3.4 respectively.  The result showed that the 
distribution of the local thrust coefficient as well as torque coefficient change significantly although in term of the 
average quantities as shown in the table 3.2 do not show so much different.   
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Figure 3.3 Comparison result of thrust coefficient CT as function of blade azimuth position between a uniform inflow 
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Figure 3.4 Comparison result of thrust coefficient CT as function of blade azimuth position between a uniform inflow 
model and  Howlett inflow model. 
 
IV. Conclusion and Future work 
 
The computer code for aerodynamics analysis of the rotor blade helicopter had been successfully developed. Six types of 
non uniform inflow models had been incorporated into the code. This would give an option for the user to select which 
inflow model would be used. In term of distribution thrust coefficient CT plotted against the blade azimuth position, the 
non uniform inflow model tends to produce a lower CT compared to the uniform flow model. Coning angle seems to give 
a significant effect to the performance of rotor blade helicopter. The shape of curve thrust coefficient CT completely 
differ with the result if there is no a coning angle.  

 
A comparison with the experimental result to validate the present code is required. This would be useful in order to 
measure the degree of accuracy of the code and also to identify which inflow model offering the best fit to the 
experimental result. This represents the suggestion to the future work need to be carried out.  
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