CHAPTER 1

INTRODUCTION

1.1 Introduction to Minimax Location Problem

Uncapacitated facility location problems take a great variety of forms, depending on the nature of the objective function (minisum, minimax, problems with covering constraints), on the time horizon under consideration (static, dynamic), on the existence of hierarchical relationships between the facilities and on the inclusion or not of stochastic elements in their formulation (probabilistic, deterministic). When we consider the possible combinations of the categories above, numerous different types of the problem can be defined (Roberto, 2003). Center or minimax location problems are recently paid attention by many researchers of operational research. Potential applications of this problem are as follows: Warehouse location, public service centers, emergency service centers and military service (Amiri-Aref et al., 2011).

In addition, facility location models can also differ in the distance metric applied, the number and size of the facilities to locate, and several other decision indices, depending on the specific application, inclusion and consideration of these various indices in the problem formulation will lead to very different location models (Farahani et al., 2009).
One of the factors that are widely considered in the studies of facility location problem is distance. Euclidean distance assumes that travelling is possible to any orientations at any points. However, this assumption does not usually hold for facility location in urban areas. In this case, the block norm which is assumed that it can be traveled to a given several allowable orientations of movement with weights at any points is more applicable. Rectilinear distance is regarded as one of the block norms such that there are two allowable orientations which cross at right angles with the same weights (Uno et al., 2007).

Besides, location problem in which regions are excluded from siting new facilities, but travelling through is allowed are called restricted location problems. These problems have been solved for median and center objectives (Nandikonda et al., 2003). In reality, facility location problems involve the consideration of restrictions imposed by barriers. Miyagawa (2012) defined barriers as regions where traveling as well as locating new facilities is prohibited. Examples of barriers include lakes, parks, and military areas. Barriers also take place because of the disasters and accidents that cause damage to road networks. The shape of barriers also varies, for instance there are convex polygonal, circular, line with passages and rectangular barriers.

1.2 Background of the Problem

According to Amiri-Aref et al. (2011), the main purpose of the minimax location problem is to minimize the maximum distance from the facility to the demand points. The planar minimax location problem is first introduced by Sylvester in 1887. After that, Elzinga and Hearn efficiently solved the Euclidean center location problems with equal weight in 1972. But most of the real problems involve unequal weight. So, in 1982, Charalambous, Hearn and Vijay researched on the minimax problem
with unequal weight distance, separately (Amiri-Aref et al., 2011). Weights can be defined as the demand of the corresponding existing facilities (Biscoff et al., 2007).

In reality, barrier is a very important constraint in solving the facility location problem. So, there are many researchers that researched on the minimax problems involving barriers. Aupperle and Keil (1989) proposed polynomial time algorithm for the Euclidean p-minimax problem when the demand points are restricted to lie on a fixed number of parallel lines. Then, Frieß et al., (2005), solve the minimax problems in the presence of polyhedral barriers with Euclidean distance using propagation of circular wavefronts approach. By using the same type of barriers, Bischoff et al., (2009) presented the Euclidean multifacility location-allocation problem and proposed two heuristics to solve the problem.

Most real problems have interaction with rectilinear or block norm because the distance is not always linear or on straight line. Consequently, many researchers approach to the minimax problem in the presence of barriers are based on rectilinear or block distance or block norm distances which allows for problem decompositions and discretizations. According to Amiri-Aref et al. (2011), Chakrabarty and Chaudhuri considered a constrained rectilinear distance minimax location problem and presented a geometric solution approach in 1990 and 1992. After that, there is study on the restricted center location problem under polyhedral gauges by Nickel in 1998. Then, Dearing et al. in 2002 came with a new type of barrier. He considered the rectilinear distances center facility location problem with polyhedral barriers and derived a finite dominating set result for the problem. There are researchers who extended similar ideas to a more general class of location problems. Segars Jr. (2000) and Dearing and Segars Jr. (2002a, b) developed a decomposition approach on which the objective function of a location problem with barriers is convex and optimized the problem using convex optimization methods. Then, by using the same problem, Dearing et al. (2005) used block norm distances in place of the rectilinear distances. The researchers presented new barriers which is arbitrary shaped barriers. They considered a single finite-size facility location problems with Manhattan (i.e., rectilinear) distance metric.
Based on the work of Savas et al. in 2002, Kelachankuttu et al. (2007) introduced a new facility location problem by applying a contour line. Then, extending the work of Savas et al. in 2002, Sarkar et al. (2007) addressed the problem involving finite facility location problem with only user-facility interactions. Nandikonda et al. (2003) changed the objective function of the problem, they considered the rectilinear distance in center problem with the presence of arbitrary shaped barriers. After that, Canbolat and Wesolowsky (2010) proposed a solution approach for the rectilinear Weber problem with a probabilistic line barrier. Then, in 2011, Amiri-Aref et al. extended the study by Canbolat and Wesolowsky (2010). The study concentrated on the center problem instead of Weber problem but it is still in the presence of the same type of barrier which is probabilistic line barrier.

However, based on the works discussed earlier, it can be seen that most of the problems are solved by using exact method, in many applications, the exact solution for the facility location problem is not feasible because of its complexity due to large number of variables, inadequate knowledge of how the variable interact, long computations times, and high noise environments that mask system functionality, among other factors. Therefore, heuristic method is applied. Figure 1.1 presents the scenario leading to the research problem considered in this study.
Motivation
- Minimax problems are applicable in various areas

Existing work

Formulation
- Probabilistic
- Equal weight
- Unequal weight

Solution methods
- Graphical method
- Time algorithm
- Geometrical method

Scenario
- Line barrier is most applicable
- Probabilistic problem can always be converted to deterministic problem which is easier to solve

Limitation
- Optimal solution is very computationally expensive

Proposed Work
- Solve the minimax problem with fixed line barrier by using SA approach

Figure 1.1: Scenario Leading to the Research Problem
1.3 Statement of the Problem

In this study, minimax problem involving fixed line barrier is considered. This problem was solved optimally but in many applications, solution for the problem is not feasible because of its complexity. Therefore, this study proposed a heuristic approach namely Simulated Annealing (SA) in solving the problem.

1.4 Objective of the Study

The objectives of the study are:

a) To solve Mix Integer Nonlinear Programming (MINLP) model for single-facility problem using LINGO.
b) To develop Simulated Annealing (SA) algorithm for solving single and multi-facility problem.
c) To implement the developed SA procedure using C++ programming.
d) To investigate the performance of various parameter settings in the algorithms.

1.5 Scope of the Study

The problem involving random 50 fixed points are considered. Generated data is used for experimental purpose. Deterministic is algorithm whose resulting behavior is entirely determined by its initial solution and it always arrives at the same final
solution through the same sequence of solutions. Continuous location problems involves an infinite set of possible locations for a new facility

1.6 Significance of the Study

This study focuses in developing the Simulated Annealing algorithm for solving minimax problem with fixed line barrier. The proposed technique will be able to solve large size problem with less computational effort. The main contributions of the research are summarized as follows:

i) Development of Simulated Annealing algorithm for solving minimax problem with fixed line barrier.

ii) Evaluation of the performance of the variants of the proposed algorithm for different temperature decrement rule and stopping criteria.

iii) As a reference for solving real minimax problem involving fixed line barrier.

1.7 Outline of the Thesis

This thesis contains five chapters. Chapter 1 is the introduction of this research. Chapter 2 provides the literature review on the minimax location problems without barriers and also problems with barriers. This chapter also shares information about the method used in solving the problems. Then, Chapter 3 presents the research methodology adopted in carrying out the work. The chapter explains the basic algorithm of Simulated Annealing (SA) technique and the factors that affect the efficiency of annealing process. Chapter 4 presents the framework of solving the
minimax problem, the implementation of LINGO and discussion on the result obtained from LINGO and C++ programming. Finally, the last chapter gives the conclusion and the recommendation for future work.