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ABSTRACT 

 

 

 

 

Pinch analysis is an established methodology for process design and optimization 

to achieve the minimum utility consumption.  The Problem Table Algorithm (PTA) is one 

of the most popular numerical methods to determine the energy targets.  However, the 

PTA is unable to show the individual hot and cold stream heat cascade profile.  This work 

presents a new numerical tool for simultaneous targeting and design of heat exchanger 

networks called the Segregated Problem Table Algorithm (SePTA).  SePTA, which 

shows individual hot and cold streams heat cascade profiles across temperature intervals, 

allows a designer to simultaneously determine the energy targets, locate the pinch points 

and perform the SePTA Heat Allocation (SHA).  This work also extends the use of 

SePTA for process integration of a trigeneration system.  Using SePTA, appropriate 

matching of heat engines and heat pumps with process streams can be made.  Process 

integration with trigeneration has been implemented in a case study involving edible palm 

oil plant to reduce demands for heating, cooling as well as power consumptions.  The 

results have been compared to a system without trigeneration, and those with a heat 

engine as well as a heat pump.  The trigeneration system is able to fulfill 3990kW of hot 

utility for the process and 1241kW of driving energy required by an absorption heat 

pumps’s generator.  At the same time, 238kW electricity is produced by the turbine and 

185kW is saved from the shut down of one unit chiller for a compressor.  Trigeneration 

integration with process led to an annual savings of RM 1.1 mil with an investment 

payback period of 1.9 years. 
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ABSTRAK 

 

 

 

 

Analisis jepit adalah kaedah bagi rekabentuk proses dan pengoptimuman untuk 

mencapai penggunaan utiliti minimum. Problem Table Algorithm (PTA) adalah kaedah 

berangka yang paling popular untuk menentukan sasaran tenaga. Walau bagaimanapun, 

PTA tidak dapat menunjukkan haba lata profil untuk aliran individu yang panas dan sejuk. 

Kerja ini membentangkan alat berangka baru dipanggil Segregated Problem Table 

Algorithm (SePTA) untuk penyasaran serentak dan rekabentuk rangkaian penukar haba.  

SePTA menunjukkan haba lata profil untuk aliran individu yang panas dan sejuk 

merentasi selang suhu, membolehkan pereka menentukan sasaran tenaga and mentukan 

pinch point secara serentak dan melaksanakan SePTA Heat Allocation (SHA).  Kerja ini 

juga merangkumi penggunaan SePTA untuk integrasi proses sistem tri-generasi. 

Menggunakan SePTA, padanan yang sesuai untuk  enjin haba dan pam haba degan aliran 

proses boleh dilakukan. Proses integrasi dengan sistem tri-generasi telah dilaksanakan 

dalam kajian kes yang melibatkan perindustrian minyak kelapa sawit yang boleh makan 

untuk pengurangan permintaan untuk pemanasan, penyejukan serta penggunaan kuasa. 

Hasil kajian ini akan dibandingkan dengan sistem tanpa tri-generasi, dan bahawa dengan 

enjin haba dan pam haba.  Sistem tri-generasi dapat memenuhi 3990kW utiliti panas 

untuk proses dan 1241kW tenaga yang diperlukan oleh penjana pada sistem pendingin 

jenis penyerapan.  Pada masa yang sama, elektrik 238kW dapat dihasilkan oleh turbin dan 

185kW dapat jimat dari menutup 1 unit sistem pendingin jenis pemampat.  Integrasi tri-

generasi dengan proses boleh membawa penjimatan tahunan sebanyak RM1.1 juta dan 

bayar balik tempoh dalam 1.9 tahun. 
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CHAPTER 1 

 

  

 

 

INTRODUCTION 

 

 

 

 

1.1      Introduction 

 

 

Since the beginning of the industrial revolution in the 17th century, the growth in 

the world economy leads to the increased use of energy.  It is reported that the fossil fuel 

consumption rose by 57  percent between 1973 and 2009.  In 2009, the total worldwide 

energy consumption was 8353 Mtoe (million tones oil equivalent) with 67 percent derived 

from the combustion of fossil fuels (Figure 1.1) (International Energy Agency,2011). 



  2 

 

(a) 

 

 

(b) 

Figure 1.1: (a) Evolution from 1971 to 2009 of world total final consumption by fuel 

(Mtoe) and (b) 1973 and 2009 fuel shares of total final consumption (International Energy 

Agency, 2011) 

 

 

 The finite amount of fossil fuel coupled with therapid rate of fossil fuel 

consumption lead to  fossil fuel depletion.  The Energy Watch Group (EWG) reports that, 

the oil supply may be insufficient (Energy Watch Group, 2007) and non renewable energy 
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such as uranium resources would be exhaust within 70 years (Energy Watch Group, 2006).  

The International Energy Agency (EIA) also reported that the coal reserves are around 998 

billon tonnes which could sustain the current production rate for 164 years.  However, 

with 5% growth in consumption per annum, the coal reserve is only expected to last until 

the year 2051 (Energy Watch Group, 2007). 

 

 

 Increase in world energy consumption not only increases the rate of fossil fuel 

depletion, it also governs the greenhouse gas emissions to the atmosphere and 

subsequently causes global warming.  The global carbon dioxide emission has increase by 

107 percent between 1971 and 2009.  In the year 2009, it has been recorded that the 

carbon emission was high as 29,000 metric tons of carbon (Figure 1.2) (International 

Energy Agency, 2011).  

 

 

 

Figure 1.2: World carbon dioxide emissions from 1971 to 2009 by fuel (Mt of CO2) 

(International Energy Agency, 2011) 

 

 

The US Environmental Protection Agency (USEPA) presented the inventory of 

U.S greenhouse gas emissions and sinks based on the common economic sector (Figure 

1.3).  Its shows that, the emissions from the electricity generation produce the largest 

portion of greenhouse gas to the environment from year 1990 to 2006, followed by the 

transportation and industry sector.  The agriculture, commercial and residential economic 

sectors emission only shows one quarter of the electricity generation sector.  
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Figure 1.3: Inventory of U.S. Greenhouse Gas Emissions and Sinks:  

1990-2006 (U.S Environmental Protection Agency, 2008) 

 

 

 The large quantity of green house gas emissions is causing serious global warming 

impacts.  Over the last 50 years, the southern part of the Arctic region at northern 

hemisphere has experienced the temperature rise of between 1 oC to 3 oC.  It was projected 

that global warming may cause an increase in average temperature of the earth by 

0.74±0.18 °C between early and by the end of 20th century (Intergovernmental Panel on 

Climate Change, IPPC, 2007). 

 

 

 Reducing energy consumption can contribute towards reducing global warming.  

Since the industry is the main sector causing the greenhouse gas emissions, it becomes 

important for industries to look for effective technologies to reduce energy consumption as 

well as harmful environmental emissions.  Over the past 20 years, pinch analysis has been 

used as a tool for the optimal design of heat, power, water, mass, hydrogen recovery 

networks (Natural Resources Canada, 2008).  Heat pinch analysis, which is the oldest 

pinch analysis application, provides tools for maximizing heat recovery and minimizing 

the demand for external utilities using graphical techniques such as the Composite Curves 

(CCs) and numerical techniques such as the Problem Table Algorithm (PTA) (Linnhoff & 

Flower, 1978; Linnhoff et al., 1982; Linnhoff-March Limited, 1992; Smith, 1995; Kemp, 
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2007).  In determining the energy targets and the pinch points, the PTA is typically 

preferred to drawing the CCs because of its advantages in terms of accuracy and speed, 

and due to its amenability to computer programming. 

 

 

 To date, there has been an increased interest on the use of energy-efficient tool 

such as cogeneration as well as trigeneration systems.  Cogeneration system refers to the 

combined production of electrical and thermal energy by utilization of the same fuel.  

Trigeneration, on the other hand have the additional advantage of generating cooling 

energy apart from electrical and thermal from utilization of the same fuel.  To enhance the 

energy savings potential, pinch analysis tools such as the Grand Composite Curve (GCC) 

which is generated from the PTA has been used for process integration with trigeneration 

systems (Calva et al., 2005 and Marinova et al., 2007).  

 

 

 

 

1.2  Problem Background 

  

 

 The PTA is an efficient and popular alternative for CCs as it uses 

algebraic/numerical calculations which are more accurate and exact.  The minimum 

approach temperature (∆Tmin) in PTA ensures a minimum driving force, and hence, 

feasible heat exchange between hot and cold streams in a given temperature interval range.  

The PTA approach essentially lumps the hot and cold streams enthalpy and cascades the 

net heat surplus or deficit to intervals at lower temperatures.  However, due to this 

lumping process, the PTA does not fully show the individual hot and cold streams heat 

cascade profile.  Hence, PTA cannot guide individual “process to process” or “process to 

utility” streams matching.  

 

 

  The GCC generated from PTA is unable to show the individual hot and cold 

streams heat cascade profile, and also unable to guide the individual “process to process” 

or “process to utility” streams matches.  Thus, heat engines and heat pumps position 

cannot be exactly pinpointed to process and utility streams.  In addition, most of the 
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trigeneration system configuration selections are based on the economic analysis without 

considering the overall process, it may cause higher energy requirements than the 

theoretical minimum requirements even though with the low investment cost and higher 

revenue. 

 

 

 Most of the works on mathematical programming and commercial software for 

trigeneration problems such as Cycle Tempo, Linear programming (LP), Lagrangian 

Relaxation (LR)-Based Algorithm and matrices modeling are mainly focusing on the 

trigeneration system selection and optimization.  However, these techniques are difficult 

to set up and master. 

 

 

 

 

1.3  Problem Statement 

 

 

Global climate change has raised public concern and focus towards the reducing 

energy consumption and as well as harmful environmental emissions.  These issues have 

increased the need for energy-efficient systems.  Process integration to reduce the 

consumption energy and to produce the cost-effective minimum resource utilization 

network becomes important.  Integrating a trigeneration system to a process can further 

reduce the consumption of energy.  A systematic numerical pinch analysis technique that 

can provide designers with a good visualisation tool is therefore required for process 

integration of a trigeneration system to help achieve energy savings. 

 

 

The process integration problem is summarized as follows: 

 

 

Given a set of thermal data consisting of hot and cold streams for a process;   specified 

power as well as refrigeration requirements, the problem involves finding an optimal 

scheme for integrating a trigeneration system with a process. The Segregated Problem 

Table Algorithm (SePTA) has been developed to simultaneously perform energy targeting, 
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pinch point determination and optimal integration of the trigeneration system with 

individual processes at specific temperatures and corresponding heat loads.  Finally, the 

savings derived from the scheme generated using SePTA and the one generated using 

current approach for integration of heat engine and heat pump will be compared. 

 

 

 

 

1.4 Objective 

 

 

The objective of this research is  

• to develop a new numerical pinch analysis tool called the Segregated Problem 

Table Algorithm (SePTA) for simultaneous energy targeting and optimal process 

integration.   

• to apply the new technique to a trigeneration system. 

 

 

 

 

1.5 Scope of Research 

 

 

 The scope of this work include: 

 

1. Analysis of state-of-art technique for energy targeting based on numerical pinch 

analysis 

This involves analysis of the current approaches on their advantages and 

disadvantages as well as limitation.  The research gap and potential area of 

improvement are highlighted. 

 

2. Procedure development 

This involves the development of new systematic algebraic/numerical technique 

for simultanoues energy and pinch point targeting.  With this new procedure, 

individual stream matching can be visualized.  It can be used to pinpoint the exact 
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process and utility stream matches on top of targeting the multiple utility loads and 

levels.  

 

3. Procedure testing 

The new systematic design procedure proposed in this research will be applied to 

industry case study.  

 

4. Analysis of the state-of-art technique for process integration with trigeneration 

It involves analysis of the previous work on process integration with trigeneration 

systems, their advantages, disadvantages, limitations and the research gaps. 

 

5. Analysis of heat pumps and heat engines individually 

This involves individual integration of heat engines and heat pumps with palm oil 

process.  This approach is used to compare the energy savings between the 

trigeneration system with the individual heat pumps and heat engines. 

 

6. Development of a procedure for optimal integration of a process with a 

trigeneration system 

A new systematic integration technique between a process and a trigeneration 

systems is  established.  The segregated problem table analysis technique is used 

for the first time to perform energy targeting and simultaneously integrate a 

trigeneration system with a process to maximize heat recovery, cooling duty 

recovery as well as power generation . 

 

 

 

 

1.6 Research Contributions 

 

 

The main contribution of this research include: 

 

1. A new technique for simultaneous targeting and design of integrated energy 

networks 
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A new numerical tool for simultaneous energy targeting called Segregated Problem 

Table Algorithm (SePTA), which is able to show heat cascade profile across 

temperature intervals for continuous individual hot and cold streams and perform 

SePTA heat allocation (SHA). 

 

2. A tool within SePTA to pinpoint the exact process and utility stream matches on 

top of targeting the multiple utility loads and levels.  Thus, heat engines and heat 

pumps position can be exactly pinpointed to process and utility streams. 

 

3. Implementation of SePTA for the first time on a palm oil process that involves a 

trigeneration system with heating, power generation, and chiller systems. 
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