SEGREGATED PROBLEM TABLE ALGORITHM FOR SIMULTANEOUS TARGETING AND DESIGN OF INTEGRATED ENERGY NETWORKS

CHUAH WEI SZE

UNIVERSITI TEKNOLOGI MALAYSIA

SEGREGATED PROBLEM TABLE ALGORITHM FOR SIMULTANEOUS TARGETING AND DESIGN OF INTEGRATED ENERGY NETWORKS

CHUAH WEI SZE

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Chemical)

> Faculty of Chemical Engineering Universiti Teknologi Malaysia

> > JANUARY 2013

To my beloved parents, brother and sister

ACKNOWLEDGEMENT

Firstly, I would like to express my sincere gratitude to my supervisor, Pro. Dr. Zainuddin Abdul Manan, and Assoc. Prof. Ir. Dr. Sharifah Rafidah Wan Alwi, for their dedication, support and guidance throughout the whole period of this research work.

Finally, I would like to thank my parents, brother and sister for their support and understanding during my difficulties. I also appreciate my fellow friends who have directly and indirectly contribute to the success of this project.

ABSTRACT

Pinch analysis is an established methodology for process design and optimization to achieve the minimum utility consumption. The Problem Table Algorithm (PTA) is one of the most popular numerical methods to determine the energy targets. However, the PTA is unable to show the individual hot and cold stream heat cascade profile. This work presents a new numerical tool for simultaneous targeting and design of heat exchanger networks called the Segregated Problem Table Algorithm (SePTA). SePTA, which shows individual hot and cold streams heat cascade profiles across temperature intervals, allows a designer to simultaneously determine the energy targets, locate the pinch points and perform the SePTA Heat Allocation (SHA). This work also extends the use of SePTA for process integration of a trigeneration system. Using SePTA, appropriate matching of heat engines and heat pumps with process streams can be made. Process integration with trigeneration has been implemented in a case study involving edible palm oil plant to reduce demands for heating, cooling as well as power consumptions. The results have been compared to a system without trigeneration, and those with a heat engine as well as a heat pump. The trigeneration system is able to fulfill 3990kW of hot utility for the process and 1241kW of driving energy required by an absorption heat pumps's generator. At the same time, 238kW electricity is produced by the turbine and 185kW is saved from the shut down of one unit chiller for a compressor. Trigeneration integration with process led to an annual savings of RM 1.1 mil with an investment payback period of 1.9 years.

ABSTRAK

Analisis jepit adalah kaedah bagi rekabentuk proses dan pengoptimuman untuk mencapai penggunaan utiliti minimum. Problem Table Algorithm (PTA) adalah kaedah berangka yang paling popular untuk menentukan sasaran tenaga. Walau bagaimanapun, PTA tidak dapat menunjukkan haba lata profil untuk aliran individu yang panas dan sejuk. Kerja ini membentangkan alat berangka baru dipanggil Segregated Problem Table Algorithm (SePTA) untuk penyasaran serentak dan rekabentuk rangkaian penukar haba. SePTA menunjukkan haba lata profil untuk aliran individu yang panas dan sejuk merentasi selang suhu, membolehkan pereka menentukan sasaran tenaga and mentukan pinch point secara serentak dan melaksanakan SePTA Heat Allocation (SHA). Kerja ini juga merangkumi penggunaan SePTA untuk integrasi proses sistem tri-generasi. Menggunakan SePTA, padanan yang sesuai untuk enjin haba dan pam haba degan aliran proses boleh dilakukan. Proses integrasi dengan sistem tri-generasi telah dilaksanakan dalam kajian kes yang melibatkan perindustrian minyak kelapa sawit yang boleh makan untuk pengurangan permintaan untuk pemanasan, penyejukan serta penggunaan kuasa. Hasil kajian ini akan dibandingkan dengan sistem tanpa tri-generasi, dan bahawa dengan enjin haba dan pam haba. Sistem tri-generasi dapat memenuhi 3990kW utiliti panas untuk proses dan 1241kW tenaga yang diperlukan oleh penjana pada sistem pendingin jenis penyerapan. Pada masa yang sama, elektrik 238kW dapat dihasilkan oleh turbin dan 185kW dapat jimat dari menutup 1 unit sistem pendingin jenis pemampat. Integrasi trigenerasi dengan proses boleh membawa penjimatan tahunan sebanyak RM1.1 juta dan bayar balik tempoh dalam 1.9 tahun.

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF FIGURES	xi
LIST OF TABLES	xii
LIST OF SYMBOLS	XV
LIST OF ABBREVIATIONS	xvii
LIST OF APPENDICES	xix

1 INTRODUCTION

Introduction	1
Problem Background	5
Problem Statement	6
Objective	7
Scope of Research	7
Research Contributions	8
	Problem Background Problem Statement Objective Scope of Research

FUNDAMENTAL THEORY

2.1	Pinch	Technology	10
	2.1.1	Energy Targets	11
		2.1.1.1 Composite Curves	11
		2.1.1.2 Determination of Minimum Energy Targets	12
		2.1.2.3 The Pinch Principle	13
2.2	Segreg	gated Problem Table Algorithm (SePTA)	14
	2.2.1	SePTA for Minimum Utility and Pinch Point	
		Targets	14
	2.2.2	SePTA for Multiple Utility Targeting	17
		2.2.2.1 SePTA Heat Allocation (SHA) for	
		Maximum Energy Recovery	17
		2.2.2.2 Multiple Pinch Problem and Stream	
		Splitting	17
		2.2.2.3 SePTA Multiple Utility Targeting	18
2.3	Heat E	Engines	20
	2.3.1	Introduction	20
	2.3.2	Appropriate Placement for Heat Engines	23
	2.3.3	Steam Turbine	24
2.4	Heat F	Pumps	28
	2.4.1	Introduction	28
	2.4.2	Appropriate Placement for Heat Pumps	29
		2.4.2.1 Interaction Analysis	31
	2.4.3	Absorption Refrigeration Systems	32
		2.4.3.1 Introduction	32
		2.4.3.2 Basic Absorption Refrigeration System	33
2.5	Trige	neration	43

LITERATURE REVIEW

3.1	Introduction	45
3.2	Numerical Pinch Analysis	46
3.3	Integration of Heat Engines and Heat Pumps with	
	Process Using Pinch Analysis	47
3.4	Trigeneration	48

3

2

METHODOLOGY

4.1	Introd	uction	54
4.2	Integration of Trigeneration System with Process		
	Assun	nptions	54
4.3	Energ	y Targeting	55
	4.3.1	Data Extraction	55
	4.3.2	Minimum Utility and Pinch Point Targeting	55
		4.3.2.1 Step 1: Set Temperature Intervals	56
		4.3.2.2 Step 2: Determine the hot and cold STEPs	
		Streams	57
		4.3.2.3 Step 3: Calculate The Net Heat Capacity	
		Flowrate In Each Enthalpy Interval	59
		4.3.2.4 Step 4: Calculate The Net Enthalpy	
		Requirement for Each Enthalpy Interval	59
		4.3.2.5 Step 5: Perform Heat Cascade and	
		Step 6: Revise Heat Cascade	60
		4.3.2.6 Step 7: Determine The Energy Targets and	
		1 8, 8, 8	
		Pinch Temperature	61
	4.3.3	Pinch Temperature	61 Energy
	4.3.3	Pinch Temperature	
	4.3.3 4.3.4	Pinch Temperature SePTA Heat Allocation (SHA) for the Maximum	Energy
		Pinch Temperature SePTA Heat Allocation (SHA) for the Maximum Recovery	Energy 61
	4.3.4	Pinch Temperature SePTA Heat Allocation (SHA) for the Maximum Recovery Multiple Pinch Problems	Energy 61 63
4.4	4.3.4 4.3.5 4.3.6	Pinch Temperature SePTA Heat Allocation (SHA) for the Maximum Recovery Multiple Pinch Problems Stream Splitting	Energy 61 63 65
4.4	4.3.4 4.3.5 4.3.6	Pinch Temperature SePTA Heat Allocation (SHA) for the Maximum Recovery Multiple Pinch Problems Stream Splitting Multiple Utility Targeting	Energy 61 63 65 66
4.4	4.3.4 4.3.5 4.3.6 Heat	Pinch Temperature SePTA Heat Allocation (SHA) for the Maximum Recovery Multiple Pinch Problems Stream Splitting Multiple Utility Targeting Engines Positioning	Energy 61 63 65 66 69
4.4	4.3.4 4.3.5 4.3.6 Heat 2 4.4.1	Pinch Temperature SePTA Heat Allocation (SHA) for the Maximum Recovery Multiple Pinch Problems Stream Splitting Multiple Utility Targeting Engines Positioning Steam Turbine Dimensioning	Energy 61 63 65 66 69 69
4.4	4.3.4 4.3.5 4.3.6 Heat 4.4.1 4.4.2 4.4.3	Pinch Temperature SePTA Heat Allocation (SHA) for the Maximum Recovery Multiple Pinch Problems Stream Splitting Multiple Utility Targeting Engines Positioning Steam Turbine Dimensioning Thermodynamic Analysis of Steam Turbines	Energy 61 63 65 66 69 69 70
	4.3.4 4.3.5 4.3.6 Heat 4.4.1 4.4.2 4.4.3	Pinch Temperature Pinch Temperature SePTA Heat Allocation (SHA) for the Maximum Recovery Multiple Pinch Problems Stream Splitting Multiple Utility Targeting Engines Positioning Steam Turbine Dimensioning Thermodynamic Analysis of Steam Turbines Economics Analysis	Energy 61 63 65 66 69 69 70
	4.3.4 4.3.5 4.3.6 Heat 2 4.4.1 4.4.2 4.4.3 Heat F	Pinch Temperature Pinch Temperature SePTA Heat Allocation (SHA) for the Maximum Recovery Multiple Pinch Problems Stream Splitting Multiple Utility Targeting Engines Positioning Steam Turbine Dimensioning Thermodynamic Analysis of Steam Turbines Economics Analysis Pumps Positioning	Energy 61 63 65 66 69 69 70 71
	4.3.4 4.3.5 4.3.6 Heat 1 4.4.1 4.4.2 4.4.3 Heat F 4.5.1	Pinch Temperature Pinch Temperature SePTA Heat Allocation (SHA) for the Maximum Recovery Multiple Pinch Problems Stream Splitting Multiple Utility Targeting Engines Positioning Steam Turbine Dimensioning Thermodynamic Analysis of Steam Turbines Economics Analysis Pumps Positioning Absorption Heat Pump Dimensioning	Energy 61 63 65 66 69 69 70 71
	4.3.4 4.3.5 4.3.6 Heat 1 4.4.1 4.4.2 4.4.3 Heat F 4.5.1	Pinch Temperature Pinch Temperature SePTA Heat Allocation (SHA) for the Maximum Recovery Multiple Pinch Problems Stream Splitting Multiple Utility Targeting Engines Positioning Steam Turbine Dimensioning Thermodynamic Analysis of Steam Turbines Economics Analysis Pumps Positioning Absorption Heat Pump Dimensioning Thermodynamic Analysis of Absorption Heat	Energy 61 63 65 66 69 69 70 71 73

4

5 **RESULTS AND DISCUSSION**

5.1	Integration of Trigeneration System with Process	
	Using SePTA 8	31
	5.1.1 Problem Statement and Assumptions 8	31
5.2	Case Study 8	31
	5.2.1 Solvent Fractionation Plant Overview 8	31
5.3	Energy Target 8	37
	5.3.1 Data Extraction 8	88
	5.3.2 Minimum Utility and Pinch Point Targeting	90
	5.3.3 SePTA Heat Allocation (SHA) for Maximum	
	Energy Recovery 1	101
	5.3.4 Multiple Utilities Targeting	112
5.4	Steam Turbine 1	124
	5.4.1 Thermodynamic Analysis and Economic Analysis	
	for Turbine 1	125
5.5	Absorption Heat Pump 1	126
	5.5.1 Thermodynamic Analysis and Economic Analysis	
	for AHP 1	128
5.6	Trigeneration Implementation 1	130

6

CONCLUSIONS AND FUTURE WORKS

6.1	Summary and Significance	132
6.2	Future Works	133

REFERENCES 134

APPENDICES	139
------------	-----

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

1.1	(a) Evolution from 1971 to 2009 of world total final	
	consumption by fuel (Mtoe)	2
	(b) 1973 and 2009 fuel shares of total final consumption	
	(International Energy Agency, 2011)	2
1.2	World carbon dioxide emissions from 1971 to 2009 by fuel	
	(Mt of CO ₂) (International Energy Agency, 2011)	3
1.3	Inventory of U.S. greenhouse gas emissions and sinks 1990-2006	
	(U.S Environmental Protection Agency, 2008)	4
2.1	Construction of composite curves (Linnhoff, 1998)	12
2.2	Using the hot and cold composite curves to determine the	
	energy targets (Linnhoff, 1998)	13
2.3	Pinch principle (Linnhoff, 1998)	13
2.4	Heat engines (Kemp, 2007)	21
2.5	Schematic diagram of	
	(a) a steam turbine	22
	(b) a gas turbine	22
	(c) reciprocating engines (Kemp, 2007)	22
2.6	Placement of heat engines	
	(a) above the pinch temperature	23
	b) below the pinch temperature	23
	(c) across the pinch temperature (Linnhoff, 1998)	23
2.7	Steam turbine (Smith, 2001)	25
2.8	Isentropic and non-isentroipic expansion processes in a	
	turbine (Smith, 2001)	26

2.9	A heat pump representation (Kemp, 2007)	28
2.10	Schematic diagrams of heat-pump systems (Kemp, 2007)	29
2.11	Placement of heat pumps	
	(a) above the pinch temperature	31
	(b) below the pinch temperature	31
	(c) across the pinch temperature (Linnhoff, 1998)	31
2.12	Estimation of the maximum and minimum temperature	
	for AHP (Bakhtiari et al, 2010)	32
2.13	Schematic of an absorption refrigeration system on a	
	pressure vs temperature diagram (IIT Kharagpur, 2002)	33
2.14	Pressure-Temperature-Concentration diagram for H ₂ O-LiBr	
	solution (Kharagpur, 2002)	36
2.15	Enthalpy–Temperature-Concentration diagram for	
	H2O-LiBr solution (Kharagpur, 2002)	37
2.16	Schematic diagram of H ₂ O-LiBr systems (IIT Kharagpur, 2002)	39
2.17	Schematic diagram for trigeneration	43
4.1	Summary of the SePTA procedure	79
4.2	Summary of trigeneration targeting procedure	80
5.1	Schematic diagram of solvent fractionation process	84
5.2	Detail schematic diagram for	
	(a) solvent fractionation	85
	(b) solvent olein concentration	86
	(c) solvent stearin concentration process.	87
5.3	Single stage AHP in H2O-LiBr phase equilibrium	
	diagram	128

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Example of stream data (Linnhoff, 1998)	11
4.1	Stream data for example 1 (Wan Alwi and Manan, 2010).	55
4.2	Stream data for example 1	56
4.3	Determination of hot and cold STEP streams	57
4.4	Heat cascade for utility targeting	59
4.5	Heat allocation	62
4.6	Heat cascade to determine the minimum utility targets.	64
4.7	SePTA Heat Allocation (SHA) for Example 2.	65
4.8	Final SHA with stream splitting for Example 2.	66
4.9	Utilities data (Sharifah and Manan, 2010)	67
4.10	Multiple utility targeting	68
5.1	Existing electric power, heating and cooling requirement	87
5.2	Stream data for	
	(a) solvent fractionation	88
	(b) solvent olein concentration	89
	(c) solvent stearin concentration processes, $\Delta T min = 10^{0} C$.	89
5.3	Determination of hot and cold STEPs for solvent fractionation	
	process.	90
5.4	Determination of hot and cold STEPs for solvent olein	
	concentration process.	93
5.5	Determination of hot and cold STEPs for solvent stearin	
	concentration process.	94

5.6	Net heat capacity flow and net enthalpy for	
	(a) solvent fractionation,	95
	(b) solvent olein concentration and	96
	(c) solvent stearin concentration processes.	97
5.7	Heat cascade for	
	(a) solvent fractionation,	98
	(b) solvent olein concentration and	99
	(c) solvent stearin concentration processes.	100
5.8	SePTA heat allocation for solvent fractionation process.	102
5.9	SePTA heat allocation for solvent olein concentration	
	process.	105-108
5.10	SePTA heat allocation for solvent stearin concentration	
	process.	109-111
5.11	Utilities data for solvent plant	112
5.12	Multiple utilities for solvent fractionation process	113
5.13	Multiple utilities for solvent olein concentration process	117-120
5.14	Multiple utilities for solvent stearin concentration process	121-123
5.15	Summary of electric power, and multiple utilities requirement	
	after AHP integration	124
5.16	Summary of economic evaluation for steam turbine	126
5.17	Heat load for AHP component	129
5.18	Summary of electric power, and multiple utilities requirement	
	after AHP integration	130
5.19	Summary of energy saving and energy penalty	130
5.20	Summary of annual cost saving, total installation cost and sin	ple payback
	period	131

LIST OF SYMBOLS

DH	-	Net enthalpy			
FCp	_	Heat capacity flowrate (kW/°C or MW/°C)			
h _L	_	Specific enthalpy of pure lithium bromide (kJ/kg)			
h _w	_	Specific enthalpy of pure water (kJ/kg)			
h _{w,liquid}	_	Specific enthalpy of liquid water (kJ/kg)			
h _{w,sup}	_	Enthalpy of superheated water vapor			
H^1	_	Liquid enthalpy (kJ/kg)			
H^{v}	_	Vapor enthalpy (kJ/kg)			
kW	_	Kilowatt			
M_L	_	Molecular weights of anhydrous lithium bromide (kg/kmol)			
M_{w}	-	Molecular weights of water (kg/kmol)			
m	-	Mass flow rate of refrigerant (kg/s)			
m _L	-	Mass of anhydrous lithium bromide in solution (kg)			
m _{ss}	-	Mass flow rate of strong solution (kg/s)			
m _w	_	Mass of a water in solution (kg)			
m _{ws}	_	Mass flow rate of weak solution (kg/s)			
n _L	-	Number of moles of anhydrous lithium bromide in solution (mol)			
n _w	_	Number of moles of water in solution (mol)			
Qa	-	Heat of absorption (kW)			
Qg	-	Heat of generation (kW)			
Qc	_	Heat of condenser (kW)			
Qe	_	Heat of evaporation (kW)			
Q _{Hmin}	_	Minimum hot utility requirement (kW or MW)			
Q _{Cmin}	_	Minimum cold utility requirement (kW or MW)			
S^1	_	Liquid entropies (kJ/kg)			
S^{v}	_	Vapor entropies (kJ/kg)			

Tc'	_	Cold streams shifted temperature (°C)
Th'	_	Hot streams shifted temperature (°C)
Ts	_	Supply temperature (°C)
Tt	_	Target temperature (°C)
Ts'	_	Supply shifted temperature (°C)
Tt'	-	Target shifted temperature (°C)
T-H profile	_	Temperature enthalpy profiles
ΔTmin	_	Minimum approach temperature (°C)
W	_	Work
Q	_	Heat
η_{isen}	_	Isentropic efficiency (%)
H_2O	_	Water
LiBr	_	Lithium bromide
NH ₃	_	Ammonia
ξ	-	Mass fraction
Х	_	Mole fraction
λ	_	Circulation ratio
ξss	_	Mass fraction of strong solution
ξws	_	Mass fraction of weak solutio

LIST OF ABBREVIATIONS

AHP	-	Absorption heat pump
CA	_	Cold stream above the pinch point
CC	_	Composite curve
CHW	_	Chilled water
COP	_	Coefficient of performance
CPU	_	Combined process and utility
Cum	_	Cumulative
CW	_	Cooling water
DT	_	Temperature intervals
EGCC	_	Extended grand composite curve
GCC	_	Grand composite curve
HA	_	Hot stream above the pinch point
HB	_	Hot stream below the pinch point
HEN	_	Heat exchanger network
HQCHW	_	High quality chilled water
H-S diagram	_	Enthalpy entropy diagram
LP	_	Linear programming
LPS	_	Low pressure steam
LR	_	Lagrangian relaxation
NPV	_	Net present value
NPW	_	Net present worth
PRV	_	Pressure reducing valve
PTA	_	Problem table algorithm
SePTA	_	Segregated problem table algorithm
SPB	_	Simple payback time
SPTA	_	Simple problem table algorithm

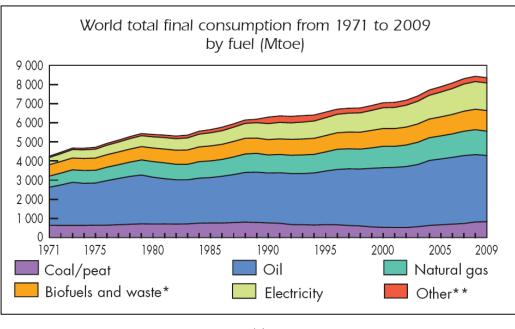
STEP	—	Streams temperature vs enthalpy plot
TCS	_	Tri-commodity simplex
TPES	_	Trigeneration Primary Saving
TW	_	Tempered water

LIST OF APPENDICES

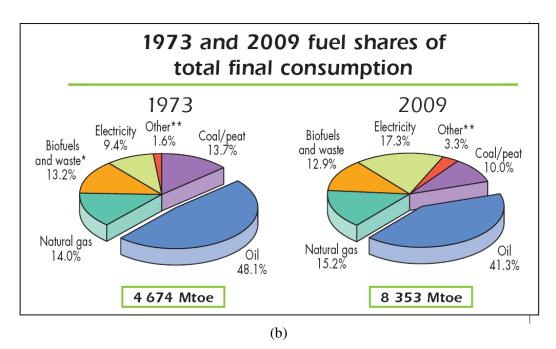
	п	D	T 7'	NT.	N	IX
Α	Р	Р	н.	N		I X.

TITLE

PAGE


А	SePTA	139
В	Pinch Analysis	141
С	Steam Turbine	151
D	Absorption Heat Pump	160

CHAPTER 1


INTRODUCTION

1.1 Introduction

Since the beginning of the industrial revolution in the 17th century, the growth in the world economy leads to the increased use of energy. It is reported that the fossil fuel consumption rose by 57 percent between 1973 and 2009. In 2009, the total worldwide energy consumption was 8353 Mtoe (million tones oil equivalent) with 67 percent derived from the combustion of fossil fuels (Figure 1.1) (International Energy Agency,2011).

(a)

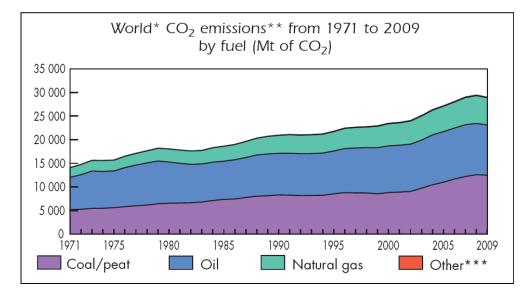
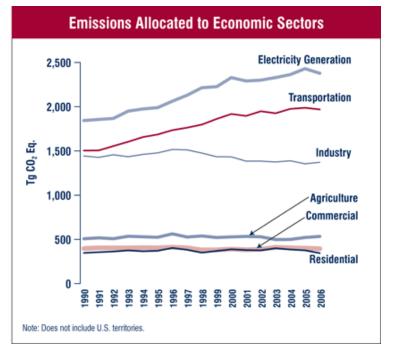


Figure 1.1: (a) Evolution from 1971 to 2009 of world total final consumption by fuel (Mtoe) and (b) 1973 and 2009 fuel shares of total final consumption (International Energy Agency, 2011)

The finite amount of fossil fuel coupled with therapid rate of fossil fuel consumption lead to fossil fuel depletion. The Energy Watch Group (EWG) reports that, the oil supply may be insufficient (Energy Watch Group, 2007) and non renewable energy


such as uranium resources would be exhaust within 70 years (Energy Watch Group, 2006). The International Energy Agency (EIA) also reported that the coal reserves are around 998 billon tonnes which could sustain the current production rate for 164 years. However, with 5% growth in consumption per annum, the coal reserve is only expected to last until the year 2051 (Energy Watch Group, 2007).

Increase in world energy consumption not only increases the rate of fossil fuel depletion, it also governs the greenhouse gas emissions to the atmosphere and subsequently causes global warming. The global carbon dioxide emission has increase by 107 percent between 1971 and 2009. In the year 2009, it has been recorded that the carbon emission was high as 29,000 metric tons of carbon (Figure 1.2) (International Energy Agency, 2011).

Figure 1.2: World carbon dioxide emissions from 1971 to 2009 by fuel (Mt of CO₂) (International Energy Agency, 2011)

The US Environmental Protection Agency (USEPA) presented the inventory of U.S greenhouse gas emissions and sinks based on the common economic sector (Figure 1.3). Its shows that, the emissions from the electricity generation produce the largest portion of greenhouse gas to the environment from year 1990 to 2006, followed by the transportation and industry sector. The agriculture, commercial and residential economic sectors emission only shows one quarter of the electricity generation sector.

Figure 1.3: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2006 (U.S Environmental Protection Agency, 2008)

The large quantity of green house gas emissions is causing serious global warming impacts. Over the last 50 years, the southern part of the Arctic region at northern hemisphere has experienced the temperature rise of between 1 °C to 3 °C. It was projected that global warming may cause an increase in average temperature of the earth by 0.74 ± 0.18 °C between early and by the end of 20^{th} century (Intergovernmental Panel on Climate Change, IPPC, 2007).

Reducing energy consumption can contribute towards reducing global warming. Since the industry is the main sector causing the greenhouse gas emissions, it becomes important for industries to look for effective technologies to reduce energy consumption as well as harmful environmental emissions. Over the past 20 years, pinch analysis has been used as a tool for the optimal design of heat, power, water, mass, hydrogen recovery networks (Natural Resources Canada, 2008). Heat pinch analysis, which is the oldest pinch analysis application, provides tools for maximizing heat recovery and minimizing the demand for external utilities using graphical techniques such as the Composite Curves (CCs) and numerical techniques such as the Problem Table Algorithm (PTA) (Linnhoff & Flower, 1978; Linnhoff *et al.*, 1982; Linnhoff-March Limited, 1992; Smith, 1995; Kemp,

2007). In determining the energy targets and the pinch points, the PTA is typically preferred to drawing the CCs because of its advantages in terms of accuracy and speed, and due to its amenability to computer programming.

To date, there has been an increased interest on the use of energy-efficient tool such as cogeneration as well as trigeneration systems. Cogeneration system refers to the combined production of electrical and thermal energy by utilization of the same fuel. Trigeneration, on the other hand have the additional advantage of generating cooling energy apart from electrical and thermal from utilization of the same fuel. To enhance the energy savings potential, pinch analysis tools such as the Grand Composite Curve (GCC) which is generated from the PTA has been used for process integration with trigeneration systems (Calva *et al.*, 2005 and Marinova *et al.*, 2007).

1.2 Problem Background

The PTA is an efficient and popular alternative for CCs as it uses algebraic/numerical calculations which are more accurate and exact. The minimum approach temperature (ΔT_{min}) in PTA ensures a minimum driving force, and hence, feasible heat exchange between hot and cold streams in a given temperature interval range. The PTA approach essentially lumps the hot and cold streams enthalpy and cascades the net heat surplus or deficit to intervals at lower temperatures. However, due to this lumping process, the PTA does not fully show the individual hot and cold streams heat cascade profile. Hence, PTA cannot guide individual "process to process" or "process to utility" streams matching.

The GCC generated from PTA is unable to show the individual hot and cold streams heat cascade profile, and also unable to guide the individual "process to process" or "process to utility" streams matches. Thus, heat engines and heat pumps position cannot be exactly pinpointed to process and utility streams. In addition, most of the trigeneration system configuration selections are based on the economic analysis without considering the overall process, it may cause higher energy requirements than the theoretical minimum requirements even though with the low investment cost and higher revenue.

Most of the works on mathematical programming and commercial software for trigeneration problems such as Cycle Tempo, Linear programming (LP), Lagrangian Relaxation (LR)-Based Algorithm and matrices modeling are mainly focusing on the trigeneration system selection and optimization. However, these techniques are difficult to set up and master.

1.3 Problem Statement

Global climate change has raised public concern and focus towards the reducing energy consumption and as well as harmful environmental emissions. These issues have increased the need for energy-efficient systems. Process integration to reduce the consumption energy and to produce the cost-effective minimum resource utilization network becomes important. Integrating a trigeneration system to a process can further reduce the consumption of energy. A systematic numerical pinch analysis technique that can provide designers with a good visualisation tool is therefore required for process integration of a trigeneration system to help achieve energy savings.

The process integration problem is summarized as follows:

Given a set of thermal data consisting of hot and cold streams for a process; specified power as well as refrigeration requirements, the problem involves finding an optimal scheme for integrating a trigeneration system with a process. The Segregated Problem Table Algorithm (SePTA) has been developed to simultaneously perform energy targeting, pinch point determination and optimal integration of the trigeneration system with individual processes at specific temperatures and corresponding heat loads. Finally, the savings derived from the scheme generated using SePTA and the one generated using current approach for integration of heat engine and heat pump will be compared.

1.4 **Objective**

The objective of this research is

- to develop a new numerical pinch analysis tool called the Segregated Problem Table Algorithm (SePTA) for simultaneous energy targeting and optimal process integration.
- to apply the new technique to a trigeneration system.

1.5 Scope of Research

The scope of this work include:

- Analysis of state-of-art technique for energy targeting based on numerical pinch analysis
 This involves analysis of the current approaches on their advantages and disadvantages as well as limitation. The research gap and potential area of improvement are highlighted.
- 2. Procedure development

This involves the development of new systematic algebraic/numerical technique for simultanoues energy and pinch point targeting. With this new procedure, individual stream matching can be visualized. It can be used to pinpoint the exact process and utility stream matches on top of targeting the multiple utility loads and levels.

- Procedure testing
 The new systematic design procedure proposed in this research will be applied to
 industry case study.
- Analysis of the state-of-art technique for process integration with trigeneration It involves analysis of the previous work on process integration with trigeneration systems, their advantages, disadvantages, limitations and the research gaps.
- 5. Analysis of heat pumps and heat engines individually This involves individual integration of heat engines and heat pumps with palm oil process. This approach is used to compare the energy savings between the trigeneration system with the individual heat pumps and heat engines.
- 6. Development of a procedure for optimal integration of a process with a trigeneration system

A new systematic integration technique between a process and a trigeneration systems is established. The segregated problem table analysis technique is used for the first time to perform energy targeting and simultaneously integrate a trigeneration system with a process to maximize heat recovery, cooling duty recovery as well as power generation.

1.6 Research Contributions

The main contribution of this research include:

1. A new technique for simultaneous targeting and design of integrated energy networks

A new numerical tool for simultaneous energy targeting called Segregated Problem Table Algorithm (SePTA), which is able to show heat cascade profile across temperature intervals for continuous individual hot and cold streams and perform SePTA heat allocation (*SHA*).

- 2. A tool within SePTA to pinpoint the exact process and utility stream matches on top of targeting the multiple utility loads and levels. Thus, heat engines and heat pumps position can be exactly pinpointed to process and utility streams.
- 3. Implementation of SePTA for the first time on a palm oil process that involves a trigeneration system with heating, power generation, and chiller systems.

REFERENCES

- Aspen Systems Corporation. (2000). Combined Heat & Power: A Federal Manager's Resource Guide [Brochure]. Rockville : Aspen Systems Corporation.
- Andre, L. H. C., and Eduardo, M. Q. (2009). An Extension of The Problem Table Algorithm for Multiple Utilities Targeting. *Energy Conversion and Management*. 50(4), 1124–1128.
- Bakhtiari, B., Fradette, L., Legros, R., and Paris, J. (2010). Retrofit of Absorption Heat Pumps into Manufacturing Process: Implantation Guidelines. *The Canadian Journal of Chemical Engineering*.88(5), 839-848.
- Bertsson, T., and Feng, X. (1996). Critical COP for An Economically Feasible Industrial Heat Pump Application. *Applied Thermal Engineering*. 17(1)93-101.
- Calva, E.T., Nunez, M.P. and Toral M.A.R. (2005). Thermal Integration of Trigeneration Systems. *Applied Thermal Engineering*. 25(7), 973-984.
- Carvalho, M., Lozano, M.A., and Serra, L.M. (2012). Multicriteria synthesis of trigeneration systems considering economic and environmental aspects. *Applied Energy*. 91(1), 245–254.
- Chicco, G. and Mancarella, P. (2007). Trigeneration Primary Energy Saving Evaluation for Energy Planning and Policy Development. *Energy Policy*. 35(12), 6132-6144.
- Chicco, G. and Mancarella, P. (2008). Matrix Modelling of Small-scale Trigeneration Systems and Application to Operational Optimization. *Energy.* 34(3), 261-273.

- Colonna, P. and Gabrielli, S. (2003). Industrial Trigeneration using Ammonia–Water Absorption Refrigeration Systems (AAR). *Applied Thermal Engineering*. 23(4), 381-396.
- Costa, A., Bakhtiari, B., Schuster, S., and Paris, J. (2009). Integration of Absorption Heat Pumps in A Kraft Pulp Process for Enhanced Energy Efficiency. *Energy*. 34(3), 254–260.
- Costa, A., Jean, P., Towers, M., Browne, T. (2007). Economics of Trigeneration in A Kraft Pulp Mill for Enhanced Energy Efficiency and Reduced GHG Emissions. *Enegry.* 32 (4), 474-481.
- Costa, A.L.H. and Queiroz, E.M. (2008). An Extension of the Problem Table Algorithm for Multiple Utilities Targeting. *Energy Conversion and Management.* 50(4), 1124–1128.
- Energy Information Administration (2007). *International Energy Outlook*. [Brochure]. Washington: Energy Information Administration.
- Energy Watch Group (2006). *Uranium Resources and Nuclear Energy*. [Brochure]. Ottobrunn: Energy Watch Group.
- Energy Watch Group (2007). *Coal: Resources and Future Production*. [Brochure]. Ottobrunn: Energy Watch Group.
- Ghaebi, H., Karimkashi, S. and Saidi, M.H. (2012). Integration of an absorption chiller in a total CHP site for utilizing its cooling production potential based on R-curve concept. *International Journal of Refrigeration* 35(5), 1384-1392.
- Gorsek, A., and Glavic, P. (2003). Process Integration of A Steam Turbine. *Applied Thermal Engineering*. 23(10), 1227-1234.
- Ilkka, H., Pekka, R., Nousiainen, T., Hakala, J., Manninen, J., Soderman, J., Aittomaki, A., Makinen, A., and Ahtila, P. (2009). Optimisation of The Cooling Systems in Industry in CHP Production. *Process Integration, Modelling and Optimization for*

Energy Saving and Pollution Reduction. 10-13 May 2009. Rome: The Italian Association of Chemical Engineering.

- Indian Institute of Technology Kharagpur (IIT Kharagpur). (2002). *HVAC Handbook*.India: Indian Institute of Technology Kharagpur.
- Intergovermental Panel on Climate Change (2007). *Climate Change2007: The Physical Science Basis.* [Brochure]. Paris: Intergovermental Panel on Climate Change.
- International Energy Agency (2011). 2010 Key World Energy Statistics. [Brochure]. Paris: International Energy Agency.
- Kemp, I. C. (2007). Pinch Analysis and Process Integration. A User Guide on Process Integration for the Efficient Use of Energy. (2nd ed). UK: IChemE.
- Linnhoff, B., & Flower, J. R. (1978). Synthesis of Heat Exchanger Networks. *AIChE Journal*. 1978; 24, 2 parts.
- Linnhoff, B., Townsend, D. W., Boland, D., Hewitt, G. F., Thomas, B. E. A., Guy, A. R., Marshland, R. H. (1982). User Guide on Process Integration For the Efficient Use of Energy. Rugby, U.K. : IChemE.
- Linnhoff-March Limited (1992). *Process integration: Part I (a)*. Knutsford, UK: Linnhoff-March Limited.
- Linnhoff March (1998). Introduction to Pinch Technology. England: Linhoff March.
- Marinova, M., Espejel, E.M., Bakhtiari, B., & Paris, J. (2007). A New Methodology for The Implmentation of Trigeneration In Industry. *Proceedings of the1st European Conference on Polygeneration.Technologies and Applications*. 16-17 October. Spain, Universitat Rovira i Virgili, 333-351.
- Wan Alwi, S.R., and Manan, Z.A. (2012). A New Tool For Simultaneous Targeting And Design Of Heat Exchanger Networks. *Computer Aided Chemical Engineering*. 31(-), 1547-1551.

- Nabeel, K. Abbood, Zainuddin, A.Manan, Sharifah, R. Wan Alwi (2012). A combined numerical and visualization tool for utility targeting and heat exchanger network retrofitting. Journal of Cleaner Production 23(1), 1-7.
- Natural Resources Canada, Pinch Analysis: For the Efficient Use of Energy, Water and Hydrogen, Natural Resources Canada, ISBN: 0-662-34964-4. http://cetcvarenness.crscan.gc.ca (Assessed on 5 February 2008), 2003.
- Rong, A. and Lahdelma, R. (2005). An Efficient Linear Programming Model and Optimization Algorithm for Trigeneration. *Applied Energy*. 82(1)40-63.
- Rong, A., Lahdelma, R., and Luh, P. B. (2008). Lagrangian Relaxation Based Algorithm for Trigeneration Planning With Storages. *European Journal of Operational Research.* 188 (1), 240–257.
- Smith, R. (1995). Chemical Process Design. New York: McGraw Hill Inc.
- Wan Alwi, S.R and Manan, Z.A. (2010). STEP A New Graphical Tool for Simultaneous Targeting and Design of Heat Exchanger Network. *Chemical Engineering Journal*. 162(1), 106-121.
- Smith, J.M., Ness, H.C.V., Abbott, M.M. (2001). Introduction to Chemical Engineering Thermodynamic. (6th ed). Singapore: McGraw-Hill Companies.
- Salama, A.I.A. (2005). Numerical Techniques for Determining Heat Energy Targets in Pinch Analysis. Computers and Chemical Engineering. 29 (8), 1861–1866.
- Salama, A.I.A. (2006). Determination of The Optimal Heat Energy Targets in Heat Pinch Analysis Using A Geometry-based Approach. *Computers and Chemical Engineering*. 30 (4), 758–764.
- Salama, A.I.A. (2009). Numerical construction of HEN composite curves and their attributes. *Computers and Chemical Engineering*. 33 (1), 181-190.
- Tokos, H., Pintaric, Z.N., and Glavic, P (2010). Energy saving opportunities in heat integrated beverage plant retrofit. *Applied Thermal Engineering*. 30 (1) 36–44.

- U.S. Environmental Protection Agency (2008). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1900 – 2006. [Brochure]. Washington: U.S.: Environmental Protection Agency.
- Zaliha, O., Chong, C.L., Cheow, C.S., Norizzah, A.R., Kellens, M.J. (2004) .Crystallization Properties of Palm Oil by Dry Fractionation. *Food Chemistry*. 86 (2), 245–250.