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ABSTRACT 

 

 

 

 

Available Transfer Capability (ATC) is a measure for assessing the capability 

between different areas of the power systems which are governed by non-linear power 

flow equations. ATC contains different complicated parts. Total transfer capability 

(TTC) and two margins; transmission reliability margin (TRM) benefit margins 

(CBM) are the main parts which have to be considered for accurate calculation. This 

report conducts the ATC evaluation with the main part, TTC, by a continuation power 

flow algorithm (CPF). CPF is an attractive method for non-linear equations and 

specially is used as the solution to power flow equations due to its capability for 

solving the power flow algebraic equations at the bifurcation nose point. CPF 

algorithm has been compared with other types for power flow equation solution 

algorithms and obtained based on its superior characteristics over them. Integration of 

wind farms into the IEEE 30-bus test system at a different location was successfully 

done. non-dispatchable generation impacts on ATC value has been checked by 

considering the probabilistic method for wind turbine power output, while both 

thermal and voltage system limitations have been applied. Results show that, available 

transfer capability is dramatically declined by considering these power system 

limitations. In addition, integrating of the wind farm into the test system has increased 

the power system loading parameter and similarly ATC. It was shown that by 

changing the location of injected wind power into the power system, ATC is changed. 

This change firmly depends on the voltage profile level of the connected bus into the 

wind farm and also weather conditions in the wind farm.  
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ABSTRAK 

 

 

 

 

Krupayaan pemindahan penyadiaan (ATC) adlah pengiraan untuk 

mengenalpasti keupayaan perbezaan antara kawasan dalam system kuasan samaada 

linear dan bukan linear aliran kuasa persamaan. ATC mempuuyai perbezaan bahagian 

yang rumit. TTC dan TRM dan CBM adalah bahagian utama yang perlu 

mensenalpasti ATC melalui TTC yang mana mengunakan CPF algoritma. CPF adalah 

kaedah yang menarik untuk bukan linear persamaan dan dikhususkan dala persamaan 

aliran kuasa disebabkan oleh kaedah ini sesuai dalam persamaan graf PV leuskuy CPF 

algoritma telah dibandingkan deusan kaedah lain. Menssunakan kebun angina dalam 

IEEE 30 bus system telan Berjaya dilakukan kesan keatas ATC telah diperiksa 

mensgunakan kaedank ebaranskalian kuasa turbin angina dan turut mengambilkira had 

maksima voltan dan haba dalam system kuasa. Keputusan menunjukkan ATC barjaya 

dihapuskan melalui system kuasa kadar had maksima. Hal ini menunjukkan melalu 

pertukaran tempat kuasa angina dalam system kuasa, ATC belah berelban. Perabahan 

ini bergantung pada profil paras voltan dalam perhubuagan titik beban kepada kebun 

ansin dan bergantung pada keadaan cuaca dalam kebun angin. 
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CHAPTER 1

INTRODUCTION

1.1 Overview

Now a day’s electrical markets have taken some steps to deregulate the 

power system environment to make the system more competitive and reliable. As a 

result, customers have an enough opportunity to select between different suppliers 

subject to price and reliability [1]. According to deregulated structure, electrical 

systems should use the maximum capability of the transmission line system to fulfill 

deregulation goals. Relevant to this idea, transfer capability of Transmission lines 

has been an interesting issue for several years. In the context of transmission open 

access, there is a need for flexible use o f power grids in order to allow a non- 

discriminatory access o f generators and loads to the transmission system. 

Environmentally, construction of new transmission lines would be a problem for 

many governments, which persuade electrical companies to work on increasing the 

transmission line capability instead of constructing new transmission lines. In 

isolated or radial electrical systems, capability calculation would be an easy task, 

because voltage drop and thermal rating should be considered. When the system 

changes to interconnected system, other important issues should be considered. 

There are several parameters in the interconnected system that we should consider 

for capability calculation; which are divided into the following issues:

• Voltage limits
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• Stability limits

• Thermal limits [2]

Generally, one o f the famous parts in capability calculation is calculation of 

available transfer capability (ATC) which is a very efficient way to get the accurate 

capability. ATC is divided into the several parts including Total Transfer Capability 

(TTC), Transfer Capability Margin (TRM), and Cost Benefit Margin (CBM). Each 

part considers several electrical system parameters and by considering all parts, ATC 

would be calculated in the best way.

1.2 Background of Study

For several years capability was an interesting subject among the researchers, 

and several methods and parameters have been issued. In 1996 the North American 

electric reliability council (NERC) issued the paper regarding to ATC definition and 

determination which is the first reference to formalized ATC definition. Latter 

several journals and papers have been published relating to the ATC calculation 

based on different methods and algorithms. Also NERC distinguished between the 

exact definition o f capability and capacity in the power system. Capability is a 

transmission parameter which is related to the stability, voltage, and also thermal 

limits and it is a directional measure which means the capability of transferring 

power from Area A to Area B is not equal to capability o f transferring power from 

Area B to Area A. On the other hand, capacity just related to the thermal rating and 

direction is meaningless for capacity. Capability also should be checked time by time 

or frame by frame because its constraints will change over time, as it is shown in the 

Figure 1, where totals transfer capability (TTC) varies. It could change based on the 

power system condition and also constraints and it is the main reason for checking 

the ATC periodically.
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Figure1 Total transfer capability changes in different time frames.

ATC is a measure of the transfer capability remaining in the physical 

transmission network for further commercial activity over and above already 

committed uses [3]. Mathematically, ATC = TTC -  TRM -  Existing Transmission 

Commitments (including CBM). Total Transfer Capability (TTC) is the amount of 

electric power that can be transferred over the interconnected transmission network 

in a reliable manner based on all the specific conditions. Transmission Reliability 

Margin (TRM) is the secure operation of the interconnected transmission network to 

accommodate uncertainties in system conditions and finally Capacity Benefit Margin 

is the access to the generation o f interconnected systems to meet generation 

reliability requirements [3].
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1.3 Statem ent of Problem

Today, with the introduction o f new technologies, electrical generation has 

improved and renewable energies like wind turbine, solar cell, and etc. become 

popular in the electrical system. These energies are clean and help our environment a 

lot, but these types of generations have a big problem. These types o f generation are 

known as the non-dispatch generation. This weakness is due to the wind speed and 

sunshine fluctuation which can effect on the output power of generation. In the ATC 

world, this phenomenon could cause a huge impact on ATC calculation and also 

makes our algorithm more complicated. On the other hand, several algorithms have 

been introduced for calculating the ATC by different authors. They analyze and 

compare all methods to find the best one. Lastly, risks associated with the different 

system operating conditions for calculating the ATC would be considered to evaluate 

the renewable-energy influences upon electrical system risks.

1.4 Objective

This study contains three main objectives, which are outlined below:

a) Analysis of Available Transfer Capability (ATC) and total transfer 

capability (TTC) algorithms for finding the proper methods to 

calculate of TTC and ATC.

b) Understand the characteristics of non-dispatchable generation, wind 

and solar-energy systems, and how they impact the ATC calculation.

c) Develop a framework to evaluate the ATC considering risks 

associated with various system operating conditions, particularly 

those related to non-dispatched renewable generation.
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1.5 Significance of the Study

Although the major portion of electricity generates by conventional 

generation station, but due to the fuel costs and environmental issues, development 

of non- dispatchable generation’s farms are in the first priority of the industrialized 

countries in the power generation aspect. ATC analysis is one o f the important 

aspects of those countries whom have been replacing non-dispatchable energy with 

conventional generation type. System Characteristics in each country define ATC 

calculation algorithm method, which can affect calculation and analysis time 

duration. Countries like Norway and England with long distance between generation 

and load have special characteristics in voltage stability issues, and their stability 

would be on the edge when non-dispatchable specially marine and wind turbine's 

farms form approximately more than 25% of the energy sector. This study shows the 

effect of appropriate method for ATC calculation in these countries.

1.6 Scope of Project

This study is simulated by using the IEEE 30-bus system. ATC algorithm is 

formed by means of Matlab Software. The algorithm includes drawing the 

appropriate P-V curve for specified, calculating the maximum lambda in that bus, 

calculating the voltage of other bus respects to the maximum lambda, inserting the 

line flow and voltage constraints, specifying the participating factor for distributed 

generation, inserting wind turbine into the system, and finally calculating the ATC 

and its risk over the system.
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1.7 Project report Outline

This project report consists o f six major parts, which could be categorized as

below:

1. Introduction in which provides and prepares the outline of ATC 

study and also the overall background of the non-dispatchable 

generation of the power systems.

2. L iterature  review in which I took a critical look at the existed 

literature for making the comparison between methods to calculate 

the TTC and find the best method for specified power systems. Also 

parameters for implementing distributed slack have been analyzed 

and eventually the literature regarding wind turbine impacts on ATC 

calculation has been studied.

3. Theoretical Analysis refers to the mathematical part of this project 

report. Several equations have been used to justify our calculation and 

used algorithm. In this section, I will show the different steps of 

continuation power flow mathematically. An approach to getting 

transmission line flow and with the . Distributed slack 

bus has been evaluated and its equation with participation factor 

consideration has been shown. To continue, mathematical models of 

wind turbines and wind speed have been defined. And finally, the 

equation regarding ATC was represented.

4. M ethodology starts with an introduction and continues by 

introducing the Power System Tool (PSAT) and then modelling 

power system data in the PSAT. Finally, three main scenarios 

introduce for IEEE 30-bus test system.

5. Result and discussion which conduct the result of three scenarios in 

the previous chapter and will discuss about these results in the 

separate parts.

6. Conclusion and recommendation which refer to conclude the 

overall results and a look for future tasks.
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