PROFILING OF INORGANIC IONS IN SELECTED POST-BLAST PYROTECHNIC RESIDUES

LIEW CHOON YOONG

UNIVERSITI TEKNOLOGI MALAYSIA

PROFILLING OF INORGANIC IONS IN SELECTED POST-BLAST PYROTECHNIC RESIDUES

LIEW CHOON YOONG

A dissertation submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Forensic Science)

Faculty of Science Universiti Teknologi Malaysia

JANUARY 2013

To my beloved father and mother

ACKNOWLEDGEMENT

In preparing this dissertation, I was in contact with many people, researchers, academicians, and practitioners. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my main dissertation supervisor, Associate Professor Dr. Umi Kalthom Ahmad, for her encouragement, guidance, critics and friendship. I am also thankful to my co-supervisor, Supt. Shaikh Abdul Adzis Shaikh Abdullah, for his suggestions and advices. Without their continued support and interest, this dissertation would not have been the same as presented here.

I am also indebted to Ministry of Higher Education for funding my Master study via MyBrain 15 scholarship. My sincere appreciation also extends to the laboratory assistants of Universiti Teknologi Malaysia (UTM), particularly Madam Mariam Hasan, Mr. Mat Yasin Sirin from analytical laboratory C19-410. Mr. Mohd Nazri Zainal and Miss Siti Rafezah Mat Emin from forensic analytical laboratory C19-319 for their help and guidance.

My fellow colleagues should also be recognized for their support and assistance at various occasions. Their views and tips were useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to all my family members.

ABSTRACT

Pyrotechnic homemade explosives have emerged as a new threat to society. Analysis of explosive residues is useful in identification of explosives and establishing link to the perpetrators. The objectives of this study were to detect the selected inorganic ions in firework samples followed by the determination of chemical profiles. Six different types of firework samples were analyzed in this study. Inorganic ions of pre-blast and post-blast samples were analyzed using ion chromatography with conductivity detection. All targeted anions (F, Cl⁻, NO₂⁻, NO₃⁻, ClO_3^{-} , SO_4^{-2} , PO_4^{-3} and SCN^{-}) were successfully separated within 42 minutes using Metrosep A SUPP 5 column and NaHCO₃-Na₂CO₃ as the eluent. Calibration graph of targeted anions with good linearity ($r^2 > 0.9796$) were obtained with detection limits within range from 16 to120 μ g/L. Besides that, all targeted cations (Li⁺, Na⁺, NH4⁺, K⁺, Ca²⁺, Mg²⁺) were well separated within 24 minutes using Metrosep C 4 employing nitric acid-dipicolinic acid as the eluent. Good linearity (r²>0.9948) of calibration graph was obtained and detection limits was 31-171 µg/L. Anions (Cl⁻, NO_2^- , NO_3^- , ClO_3^- and SO_4^{2-}) and cations (Na^+ , NH_4^+ , K^+ , Ca^{2+} , Mg^{2+}) were detected in pre-blast firework samples. Concentration of NO_3^- , ClO_3^- and K^+ were the highest among detected ions in pre-blast samples. Magnesium ion which is a common element in fireworks was detected in all samples. In post-blast residues, targeted ions presence in pre-blast samples can still be detected but in lower concentration. There was significant reduction in NO_3^- and ClO_3^- concentration in post-blast residues. Concentrations of SO_4^{2-} are relatively higher compared to other anions detected in post-blast residues. Identification of fireworks cannot be based solely on chemical profile of post-blast residues as it is not fully accurate. However, presence of Ca²⁺ and Mg^{2+} in post-blast residues strongly suggest the used of pyrotechnic fireworks.

ABSTRAK

Bahan letupan piroteknik buatan sendiri telah timbul sebagai ancaman yang baru kepada masyarakat. Analisis sisa-sisa letupan adalah berguna dalam pengenalpastian jenis bahan letupan serta menentukan suspek yang terlibat. Tujuan kajian ini adalah untuk mengesan kehadiran anion dan kation tertentu yang terdapat dalam sampel bunga api diikuti dengan penentuan profil kimianya. Sebanyak enam jenis bunga api telah dianalisis dalam kajian ini. Ion-ion tak organik dalam sampel sebelum dan selepas letupan telah dianalisis dengan menggunakan ion kromatografi dengan pengesanan konduktiviti. Semua anion yang terpilih (F, Cl, NO₂, NO₃, ClO₃⁻, SO₄²⁻, PO₄³⁻ dan SCN⁻) telah berjaya diasingkan dalam masa 42 minit dengan menggunakan turus Metrosep A SUPP 5. Eluen yang digunakan ialah campuran NaHCO₃ dan Na₂CO₃. Graf penentukuran setiap ion mencapai garis lurus yang bagus (r²>0.9796) dan had pengesanan adalah dalam lingkugan 16-120 µg/L. Selain itu, kation (Na⁺, NH₄⁺, K⁺, Ca²⁺, Mg²⁺) telah diasingkan dalam masa 24 minit dengan menggunakan Metrosep C 4, eluen nitric asid-dipikolinik asid. Garis lurus setiap ion dalam graf penentukuran mencapai $r^2 > 0.9948$ dan had pengesanan ialah 31-171 μ g/L. Anion (Cl⁻, NO₂⁻, NO₃⁻, ClO₃⁻ and SO₄²⁻) dan kation (Na⁺, NH₄⁺, K⁺, Ca²⁺, Mg^{2+}) telah dikesan dalam sampel sebelum letupan. Kepekatan ion NO_3^- , ClO_3^- , and K⁺ adalah yang tertinggi di antara ion-ion yang dikesan dalam sampel bunga api sebelum letupan. Ion Mg²⁺ yang biasa terdapat dalam bunga api telah dikesan dalam semua sampel. Dalam analisis sisa-sisa letupan, ion-ion yang dikesan adalah sama seperti sampel sebelum letupan tetapi dengan kuantiti yang kurang dari asal. Kepekatan NO₃⁻ dan ClO₃⁻ berkurang dengan ketara dalam sisa letupan. Kepekatan relatif SO42- adalah lebih tinggi berbanding dengan anion yang lain. Pengenalpastian jenis bahan letupan berdasarkan profil kimia sisa-sisa letupan sahaja adalah tidak tepat. Bagaimanapun, kehadiran Ca²⁺ dan Mg²⁺ dalam sisa letupan telah mencadangkan penggunaan piroteknik bunga api.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	Х
	LIST OF FIGURES	xii
	LIST OF ABBREVIATIONS	xvii
	LIST OF APPENDICES	xix
1	INTRODUCTION	1
	1.1 Background of Study	1
	1.2 Statement of Problem	2
	1.3 Objectives	3
	1.4 Scope of Study	3
	1.5 Significance of Study	3
2	LITERATURE REVIEW	4
	2.1 Classification of Explosives	4
	2.2 Pyrotechnic	5

	2.2.1	Fuels	6
	2.2.2	Oxidizers	6
	2.2.3	Binders	7
	2.2.4	Other Additives	8
	2.2.5	Pyrotechnics Composition	8
	2.2.6	Delay Compositions	8
	2.2.7	Smoke Generating Compositions	9
	2.2.8	Light Generating Composition	10
	2.2.9	Noise Generating Composition	11
	2.2.10	Classification of Fireworks	12
	2.2.11	Types of Fireworks	12
		2.2.11.1 Shell	13
		2.2.11.2 Flying Spinner	14
		2.2.11.3 Roman Candle	15
		2.2.11.4 Fountain	15
		2.2.11.5 Rocket and Missile	16
2.3	Chemi	cal Analysis of Explosives	17
2.4	Analys	is of Inorganic Explosives	18
	2.4.1	Ion Chromatography	19
	2.4.2	Basic Components of IC	20
	2.4.3	Capillary Electrophoresis	21
EXP	PERIME	NTAL	23
3.1	Introdu	action	23
3.2	Chemi	cals and Materials	23
3.3	Appara	atus	24
3.4	Instrun	nentation	24
3.5	Proced	ure	24
	3.5.1	Preparation of Eluent	25
	3.5.2	Preparation of Suppressor	25
3.6	Pyrotec	hnic Samples Preparation	26
3.7	Pyrotec	hnic Sampling and Sample Extraction	26
3.8	Validati	ion of Pyrotechnic Profile	26

4	RES	SULTS AND DISCUSSIONS	28
	4.1	Selection of Target Analytes	28
	4.2	Separation of Inorganic Anions	28
	4.3	Separation of Inorganic Cations	29
	4.4	Calibration Graph and Detection Limits	29
	4.5	Reproducibility	32
	4.6	Profile of Pyrotechnic Samples	33
		4.6.1 Analysis of Fountain Type Firework	36
		4.6.2 Analysis of Shell Type Firework	40
		4.6.3 Analysis of Flying Spinner Type Firework	43
		4.6.4 Profile of Roman Candle Type Firework	47
		4.6.5 Profile of Missile Type Firework	50
		4.6.6 Profile of Rocket Type Firework	54
	4.7	Concentration Profile of Six Pyrotechnic Firework	
		Samples	58
	4.8	Validation of Pyrotechnic Profile	60
5	CON	NCLUSIONS AND SUGGESTIONS	64
	5.1	Conclusions	64
	5.2	Suggestions for Future Work	66
	REF	ERENCES	67
	Appe	endix	70

ix

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Common oxidizers used in pyrotechnics	7
2.2	Pyrotechnics delay compositions	9
2.3	Smoke generating compositions	11
2.4	Light generating compositions	11
2.5	Classification of fireworks based on United Nations explosives shipping classification system	13
3.1	Description of samples used in this study	27
4.1	Limit of detection and correlation coefficient (r^2) of each analyte in this study	33
4.2	Relative standard deviation of retention time for each analyte within-day and day-to-day	34
4.3	The concentration of target analytes in pre-blast sample and post-blast residues of FW-F-7C.	38

4.4	The concentration of target analytes in pre-blast and post blast FW-S-LB sample	42
4.5	The concentration of target analytes in pre-blast and post-blast FW-FS-P sample	45
4.6	The concentration of target analytes in pre-blast and post-blast FW-RC-MS sample	48
4.7	The concentration of target analytes in pre-blast and post-blast FW-M-SM sample	52
4.8	The concentration of target analytes in pre-blast and post-blast FW-R-WM sample	56

LIST OF FIGURES

FIGURES NO.	TITLE	PAGE
2.1	The structure of shell type firework	14
2.2	The structure of flying spinner	14
2.3	The structure of Roman candle fireworks	15
2.4	The structure of fountain type fireworks	16
2.5	The structure of missile type fireworks	17
2.6	Schematic diagram of suppressed ion chromatography	21
2.7	Schematic diagram of non-suppressed ion chromatography	21
2.8	Schematic diagram of capillary electrophoresis	22
4.1	Separation of standard anions (2 mg/L) on Metrosep A Supp 5 column	30
4.2	Separation of standard cations (1 mg/L) on Metrosep C4 column	31

4.3	Calibration graph of eight anions plotted using 1 to 5 mg/L concentration of standard solutions.	31
4.4	Calibration graph of six standard cations plotted using 0.2 to 2 mg/L concentration of standard solutions	32
4.5	Anionic IC chromatogram of blank measurement	35
4.6	Cationic IC chromatogram of blank measurement	35
4.7	Physical appearance of sample FW-F-7C	36
4.8	Concentration of analytes detected in pre-blast FW-F- 7C sample	38
4.9	Concentration of analytes detected in post-blast residues of FW-F-7C	39
4.10	IC chromatogram of target anions in pre-blast (a) and post-blast (b) residues of Sample FW-F-7C	39
4.11	IC chromatogram of target cations in pre-blast (a) and post-blast (b) of Sample FW-F-7C	40
4.12	Physical appearance of sample FW-S-LB	40
4.13	Concentration of analytes detected in pre-blast FW-S- LB sample	41
4.14	Concentration of analytes detected in post-blast residues of FW-S-LB	42

4.15	IC chromatogram of target anions in pre-blast (a) and post-blast (b) residues of Sample FW-S-LB	43
4.16	IC chromatogram of target cations in pre-blast (a) and post-blast (b) of Sample FW-S-LB	43
4.17	The physical appearance of Sample FW-FS-P	44
4.18	Concentration of analytes detected in pre-blast of FW- FS-P	45
4.19	Concentration of analytes detected in post-blast residues of FB	46
4.20	IC chromatogram of target anions in pre-blast (a) and post-blast (b) residues of Sample FW-FS-P	46
4.21	IC chromatogram of target cations in pre-blast (a) and post-blast (b) of Sample FW-FS-P	47
4.22	Physical appearance of Sample FW-RC-MS	47
4.23	Concentration of analytes detected in pre-blast sample FW-RC-MS	49
4.24	Concentration of analytes detected in post-blast residues of FW-RC-MS	49
4.25	IC chromatogram of target anions in pre-blast (a) and post-blast (b) residues of Sample FW-RC-MS	50
4.26	IC chromatogram of target cations in pre-blast (a) and post-blast (b) of Sample FW-RC-MS	50

4.27	Physical appearance of Sample FW-M-SM	51
4.28	Concentration of analytes detected in pre-blast FW-M-SM	52
4.29	Concentration of analytes detected in post-blast residues of FW-M-SM	53
4.30	IC chromatogram of target anions in pre-blast (a and post-blast (b) residues of Sample FW-M-SM	53
4.31	IC chromatogram of target cations in pre-blast (a) and post-blast (b) of Sample FW-M-SM	54
4.32	The physical appearance of Sample FW-R-WM	54
4.33	Concentration of analytes detected in pre-blast FW-R-WM sample	56
4.34	Concentration of analytes detected in post-blast residues of FW-R-WM	57
4.35	IC chromatogram of target anions in pre-blast (a) and post-blast (b) residues of Sample FW-R-WM	57
4.36	IC chromatogram of target cations in pre-blast (a) and post-blast (b) of Sample FW-R-WM	58
4.37	IC chromatogram of detected anions in Post-blast Unknown Sample	61
4.38	IC chromatogram of detected cations in Post-blast Unknown Sample	61

4.39	Concentration of analytes detected in unknown post-	
	blast residues	62
4.40	Concentration profile of analytes detected in (a) pre-	
	blast samples and (b) post-blast residues	63

LIST OF ABBREVIATIONS

ATM	-	Automated Teller Machine
DDW	-	Distilled deionised water
CE	-	Capillary Electrophoresis
C-4	-	Composition-4
FRDM	-	Fire and Rescue Department of Malaysia
GC	-	Gas chromatography
HPLC	-	High performance liquid chromatography
HMX	-	High-velocity military explosive
IC	-	Ion chromatography
IMS	-	Ion Mobility Spectroscopy
ND	-	Not detected
MS	-	Mass spectrometer
MYR	-	Malaysia Ringgit
PDA	-	Photodiode array
PETN	-	Pentaerythritol tetranitrate
RDX	-	Research Department Explosive
RMP	-	Royal Malaysia Police

-	Relative standard deviation
-	Standard deviation
-	Scanning electron microscope-Energy dispersive x-ray
	analyzer
-	Triacetone triperoxide
-	Thermal energy analyzer
-	Thin layer chromatography

- TNT Trinitrotoluene
- UV Ultraviolet

RSD

SD

SEM-EDA

TATP

TEA

TLC

VAAR - Vinyl acetate alcohol resin

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	Proceeding paper for ISPC 2012	70

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Pyrotechnics mixed explosives are often used in making homemade explosives. It emerges as a potential threat to public security as pyrotechnics such as fireworks can be easily purchased either legally or illegally. In recent years, improvised explosives mixed with pyrotechnic have been used by terrorists to increase the damage of explosion. Increasing cases involving pyrotechnic mixed homemade explosives in international and local have raised the awareness of law enforcers to study pyrotechnics components in depth (Ahmad *et al.*, 2011). According to Law of Malaysia Explosive Act 1958, explosive substance include any materials for making any explosive substance and any bomb, grenade, apparatus, machine, implement, or material used or intended to be used or adapted for causing or aiding in causing any explosion in or with any explosive substance and any part of such bomb, grenade, apparatus, machine or implement.

On 2nd of May 2010, a car bomb was found near the Times Square in New York. The car bomb was loaded with fireworks, fuel and fertilizer. The bomb was successfully defused and later a Pakistani suspect was arrested for investigation (The Star, 2010).

On 17th of April 2011, a bomb was detonated at a Nigeria hotel and wounded eight people during the presidential election. The bomb was later identified containing celebratory fireworks (The Star, 2011).

Homemade explosives cases have increased in Malaysia in recent years. In 2008, at Shah Alam and Puchong, three cases where explosives made from fireworks were used to blow up Automated Teller Machines (ATMs). Although the explosion caused damage to the machines, the thieves failed to get the cash. Among three attempts, only one successfully got away with MYR 30000 (The Star, 2008).

On 29th August 2010, a deadly firework explosive packed in a parcel was place in front of an apartment unit in Desa Tun Razak, Cheras. When a woman opened the parcel, it detonated. The woman was killed and another co-worker was badly injured. The explosive was identified as mixture of cannonball fireworks with kerosene (The Star, 2010).

Another case that happened on 9th January 2012, involved three homemade explosives that exploded in front of Jalan Duta court complex during an assembly by Datuk Seri Anwar Ibrahim's supporters. Four members of the public were injured while vehicles parked nearby suffered minor damage. The explosive was suspected of containing pyrotechnics and black powder (The Star, 2012).

1.2 Statement of Problem

Pyrotechnic composition is often used in homemade explosives. The lack of an explosive database hinders Royal Malaysian Police (RMP) when investigating explosion cases. RMP often faced difficulties when it comes to linking the explosives to its origin. Therefore, a research to develop explosive database is essential in order to fill the missing link for RMP investigation.

1.3 Objectives

This study embarks in the following objectives;

- i. To detect the presence of anions and cations in pre and post blast pyrotechnic fireworks samples.
- ii. To determine the chemical profile of pyrotechnic fireworks samples.

1.4 Scope of Study

This study focuses on the analysis of the constituent of pyrotechnic from pre blast and post blast source. Profiling of the pyrotechnic samples is based on the detecting of anions (F^- , Cl^- , NO_2^- , NO_3^- , ClO_3^- , SO_4^{2-} , PO_4^{3-} SCN⁻) and cations (Li^+ , Na^+ , NH_4^+ , K^+ , Ca^{2+} , Mg^{2+}) studied using ion chromatography. Common inorganic explosives such as nitrate, chlorate, sulfate, ammonium, and potassium are part of the study.

1.5 Significance of Study

This study can be used to help Royal Malaysia Police (RMP) and Malaysian Fire and Rescue Department (FRDM) in determining the type of explosives used in a bombing attack. Analysis of the explosive residues will provide valuable information regarding the substances that been used in making the explosives. This will eventually establish a link between the explosive and its perpetrators.

REFERENCES

- Agrawal, J. P. (2010). Pyrotechnics, in High Energy Materials: Propellants, Explosives and Pyrotechnics. Wiley-VCH Verlag GmbH & Co. Weinheim, Germany.
- Ahmad, U. K., Jamari, N. LA., Nagayah, S. (2012). Simultaneous Determination of Inorganic Ions in Post-Blast Residues using Capillary Electropheresis. *Malay J. Forensic Sciences 2012*: 16-25.
- Ahmad, U. K., Ong, S. T., Ghazali, M. F., Yew, C. H., Abdullah, M. K. (2011). Analysis of Anionic Post-blast Residues of Low Explosives from Soil Sample of Forensic Interest. *Malays J. Anal. Sci.* 15 (2): 213-226.
- Akhavan, J. (2004). Classification of Explosive Materials. *The Chemistry of Explosives*. (3th Ed). Royal Society of Chemistry. United Kingdom.
- Borch, T., & Gerlach, R. (2004). Use of Reversed-Phase High-Performance Liquid Chromatography Diode Array Detection for Complete Separation of 2, 4, 6trinitrotoluene Metabolites and EPA M8330 Explosives: Influence of Temperature and an Ion-Pair Reagent. J. Chromatogr. A, 1022, 83–94.
- Bradley, C. (2008). Types of Fireworks. Retrieved on April 21, 2012 from http://www.pyrouniverse.com/consumer/types.htm.
- Byall, E. B. (2001). Explosives Report 1998-2001 Detection and Characterization of Explosives and Explosive Residue: A Review. 13th INTERPOL Forensic Science Symposium, Lyon, France, October 16-19 2001.
- Caygill, J. S., Davis, F., Higson, S. P. J. (2012). Current Trends in Explosive Detection Techniques. *Talanta* 88: 14-29.
- Conkling, J. A. and Mocella, C. J. (2010). *Chemistry of Pyrotechnics: Basic Principles and Theory*. CRC Press Taylor & Francis Group. United State.
- Dicinoski, G. W., Shellie, R. A., Haddad, P. R. (2006). Forensic Identification of Inorganic Explosives by Ion Chromatography. *Anal. Lett.*, 39: 639-657.
- Dolan, J. W. (2003). Why Do Peaks Tail?LC troubleshooting. *LC.GC Europe September* 2003: 1-4.
- Fritz, J. S. and Gjerde, D. T. (2009). *Ion Chromatography*. Weinheim: Wiley-VCH. Germany.
- Gibbs, T. R., Baytos, J. F. (1980). LASL Explosive Property Data. University of California Press.

- Girard, J. E. 2007. Criminalistics: Forensic Science and Crime. Jones & Bartlett Learning. United State.
- Houck, M. M., Siegel, J. A. (2006). Fires and Explosions. *Fundamental of Forensic Science*. Elsevier.
- Johns, C., Shellie, R. A., Potter, O. G., O'Reilly, J. W., Hutchinson, J. P., Guilt, R. M., Breadmore, M. C., Hilder, E. F., Dicinoski, G. W., Haddad, P. R. (2008). Identification of Homemade Inorganic Explosives by Ion Chromatographic Analysis of Post-Blast Residues. J. Chromatogr. A, 1182 205-214.
- Kosanke, K. L., Dujay, R. C., Kosanke, B. J. (2006). Pyrotechnic Reaction Residue Particle Analysis. J. Forensic Sci 51, 296-302.
- Krausa, M., Reznev, A. A. (2004). Vapour and trace detection of explosives for antiterrorism purposes. Volume 167 of NATO science series: Mathematics, physics, and chemistry Volume 167 of NATO Science Series. Springer.
- Kuila, D. K., Chakrabortty, A., Sharma, S. P., Lahiri, S. C. (2006). Composition profile of low explosives from cases in India. *Forensic Sci. Int.*, 159 (2006) 127-131.
- Jamari, N. LA. (2012). Simultaneous Detection of Anions and Cations in Post-Blast Explosive Residues Using Capillary Electrophoresis. Master of Science Dissertation Report, Universiti Teknologi Malaysia, Skudai.
- McCord, B. R., Hargadon, K. A., Hall, K. E. and Burmeister, S. G. (1994). Forensic Analysis of Explosives Using Ion Chromatographic Methods. *Anal. Chim. Acta*, 288: 43-56.
- Miller, C. J., Elias G., Schmitt, N. C., Rae C. (2010). Identification of explosives from porous materials: Applications using reverse phase high performance liquid chromatography and gas chromatography. *Sens Imaging*, 11: 61-75.
- Moore, D. S. (2007). Recent Advances in Trace Explosion Detection Instrument. Sens Imaging 8: 9-38.
- Murray, S. G. (2000). Explosive: Military. *Encyclopedia of Forensic Sciences*. Elsevier United Kingdom. 764-767.
- Pacakava, V., Stulik, K. (1997). Capillary electrophoresis of inorganic anions and its comparison with ion chromatography. J. Chromatogr. A, 789:169-180.
- Russell, M. S. (2009). *The Chemistry of Fireworks*. Royal Society of Chemistry. United Kingdom.
- Saferstein, R. (2007). *Criminalistics: An Introduction to Forensic Science*. (9th Ed). New Jersey: Pearson Prentice Hall, Englewood Cliffs.

- Schafer, H., Laubli. M. and Dorig. R. (2003). Ion Chromatography: Theory, Columns and Eluent. Metrohm Monograph 8.014.5003. Metrohm AG, CH-9101 Herisau.
- The Star. Bomb Experts to Assist Cops Over Jalan Duta Blasts (January 18, 2012). Retrieved on March 26, 2012 from http://thestar.com.my/news/story.asp?file=/2012/ 1/18/nation/20120118200527&sec=nation.
- The Star. Bomb Goes Off at Nigerian Hotel After Vote, Eight Hurt (April 17, 2011). Retrieved on March 26, 2012 from http://thestar.com.my/news/story.asp?file =/2011/4/17/apworld /20110417211245&sec=apworld.
- The Star. NY Police Defuse Car Bomb in Times Square (May 2, 2010). Retrieved on March 26, 2012 from http://thestar.com.my/news/story.asp?file=/2010/5/2/worldupdates /2010-05-02T123037Z_01_NOOTR_RTRMDNC_0_-481584-1&sec=Worldupdates.
- The Star. Theives Blow Up ATM with Fireworks Bomb (October 14, 2008). Retrieved on March 26, 2012 from http://thestar.com.my/news/story.asp?file=/2008/10/14/nation /2270584& sec=nation.
- The Star. Woman Dies After Parcel Bomb Explodes in Cheras Apartment Blast (Updated) (August 29, 2010). Retrieved on 26 March 2012 from http://thestar.com .my/news/story.asp?file=/2010/8/29/nation/20100829123325&sec=nation.
- Tamiri, T. (2000). Explosives. Encyclopedia of Forensic Sciences. Elsevier. Jerusalem, Israel.
- U.S. Department of Transportation. (2012). Explosives (EX) Approvals. *Regulatory Guidelines for Shipping and Transporting Fireworks*.
- Vermeij, E., Duvalois, W., Webb, R., Koeberg, M. (2009). Morphology and composition of pyrotechnic residues formed at different levels of confinement. *Forensic Sci. Int.*, Volume 186, 68-74.
- Windelspecht, M. (2003). Groundbreaking Scientific Experiments, Inventions & Discoveries of The 19th Century. Greenwood Press.
- Yinon, J. (2000). Explosives. Handbook of Analytical Separations Vol.2: 603-616. Elsevier, Oxford, United Kingdom.
- Yinon, J. and Zitrin, S. (1993). Modern Methods and Applications in Analysis of Explosives. Chichester: John Wiley and Son.
- Zukas, J. A., Walters. W., Walters. W.P. (2002). *Explosive Effects and Applications*. Springer Berlin, Germany.