Position Control for Motorized Belt Driven Table

KHAIRUL ANUAR BIN SIDEK

A project report submitted in partial fulfillment of the requirements for the award of degree of Master of Engineering (Electrical – Mechatronics and Automatic Control)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > January 2013

To my parents who instilled the love of knowledge in me, for my elder brothers who lead by example and gave me inspirations, to my younger sisters who believed in me, and to my beloved wife and children for their love, understanding and sacrifices along our journeys.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and appreciation to my respectable supervisor, Professor Dr. Mohd. Fua'ad bin Haji Rahmat, for his encouragement and continuous support in completing this project. This project would not be as successful without his continuous guidance, support and constructive criticism.

I am also very thankful to MARA and German-Malaysian Institute for their financial support. And to my bosses, IE Department Head, Ms. Jamilah Md. Ali and AMT Section Head, Mr. Syed Nizam Syed Idris for their permission to use the conveyor system in this project, and also for their supportive nature throughout the course of this project.

To my office colleagues and classmates, thank you for all the contributions, may it be small or large, because all of them accumulated into a very meaningful contribution in this project. Thru small talks and discussions, I had improved my knowledge which in turn improved the outcome of this project.

To my family, special thanks for their understandings, inspirations and sacrifices which gave me the drive to successfully complete this project in due time.

Lastly, to all that had assisted me in any respect during the completion of this project, I pray that may Allah bless all of you, and may success be with you.

ABSTRACT

A belt driven system is more cost attractive than a screw-driven system, but the problem with elasticity makes the positioning of a belt driven table inaccurate. An FL controller with frictional and elasticity compensator was proposed to be a better controller than a conventional PID. An existing conveyor system complete with the motor driver was used in this project. Using PRBS input, the input output data was gathered and the parametric model of the conveyor was identified by MATLAB SID Toolbox. The model was then used to develop the conventional PID controller, the proposed FL controller and also frictional and elasticity compensator, in Simulink environment by simulation. The developed controllers were then implemented physically to control the conveyor. Data was gathered and compared for the evaluation of positional tracking and end-point controlling performances. For positional tracking, a conventional PID controller shows the best performance in hardware implementation, but for end-point positioning, the FL controller with compensator showed the better performance in both simulation and hardware implementation than the conventional PID controller. The FL controller with compensator could improve the performance of equipment which requires only the end-point positioning control such as vision inspection machine, insertion machine and cutting machine significantly.

ABSTRAK

Sebuah sistem pacuan tali sawat adalah lebih menarik dari segi kos dibandingkan dengan sebuah sistem pacuan skru, tetapi masalah yang disebabkan oleh keanjalan dan geseran menyebabkan pengawalan kedudukan sistem pacuan tali sawat tidak tepat. Pengawal "FL" dilengkapi pemampas geseran dan keanjalan telah dicadangkan sebagai pengawal yang lebih baik daripada pengawal "PID" konvensional. Sistem penghantar yang telah tersedia lengkap dengan pemacu motor telah digunakan. "PRBS" signal telah digunakan sebagai input, data input output telah dikumpulkan dan model berparameter untuk sistem penghantar telah dikenalpasti. Model ini kemudiannya telah digunakan untuk membangunkan pengawal "PID" konvensional, pengawal "FL", dan juga pemampas geseran dan keanjalan, dalam persekitaran "Simulink" secara simulasi. Perlaksanaan sebenar sistem-sistem pengawalan kemudiannya dijalankan dengan menggunakan kekotak "I/O" dari "Real-Time Windows Target Toolbox". Data telah dikumpulkan dan perbandingan telah dibuat untuk menilai pengawal kedudukan yang terbaik. Bagi perlaksanaan perkakasan sebenar, pengawal "PID" konvensional telah menunjukkan prestasi terbaik bagi pengawalan penjejakan berterusan, tetapi, bagi kawalan kedudukan titik akhir, pengawal "FL" dilengkapi pemampas geseran dan keanjalan telah menunjukkan mutu pengawalan yang terbaik. Pengawal "FL" dilengkapi pemampas geseran dan keanjalan ini boleh meningkatkan prestasi dari segi ketepatan bagi peralatan yang hanya memerlukan kawalan titik akhir kedudukan seperti mesin pemeriksaan secara visual, mesin penyisipan dan juga mesin pemotong dengan ketara.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
DF	CCLARATION	ii
DF	EDICATION	iii
AC	CKNOWLEDGEMENTS	iv
AB	STRACT	v
AB	STRAK	vi
TA	BLE OF CONTENTS	vii
LI	ST OF TABLES	x
LI	ST OF FIGURES	xi
LI	ST OF ABBREVIATIONS	XV

1	INTRO	INTRODUCTION		
	1.1	Project Background	1	
	1.2	Problem Statement	2	

1.3	Project Objectives	2
1.4	Project Scope	2
1.5	Project Report Outline	3

2 LITERATURE REVIEW

2.1	Introduction	4
2.2	System Model	5

2.3 System		Identification Review	
	2.3.1	Steps in System Identification	8
	2.3.2	Pseudo Random Binary Signal	10
2.4	PID C	ontroller	17

21

3 METHODOLOGY 23

3.1	Experimental Setup		23
	3.1.1	Data Acquisition Card	24
	3.1.2	Sensor	25
3.2	System	Identification	25
3.3	PID Co	ontroller Design	27

4

3.4	Fuzzy Logic Controller Design	28
3.5	Compensator Design	30
3.6	Real Time Implementation	31
	3.6.1 Simulink Real-Time Windows Target	32
	3.6.2 Setup and Configuration	33
3.7	Summary of Chapter 3	34

RESULT	IS AND ANALYSIS	36
4.1	Introduction 36	
4.2	Model Estimation and Validation	36
4.3	PID Controller	39
4.4	Fuzzy Logic Controller	44
4.5	Compensator	49
4.7	Data Comparison	54
	RESUL ⁷ 4.1 4.2 4.3 4.4 4.5 4.7	 RESULTS AND ANALYSIS 4.1 Introduction 36 4.2 Model Estimation and Validation 4.3 PID Controller 4.4 Fuzzy Logic Controller 4.5 Compensator 4.7 Data Comparison

5	CONC	57	
	5.1	Conclusions 57	
	5.2	Future Work 58	

REFERENCES

60

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Feedback configuration of LFSR	12
2.2	Three inputs "exclusive or" truth table.	13
2.3	Effect of Increasing K_p , K_i and K_d in a Closed Loop	
	System	19
2.4	K_p , K_i and K_d values based on Ziegler-Nichols tuning	
	method	20
4.1	Main FL Controller Rules Table	45
4.2	Compensator Rules Table	51
4.3	Simulation and Experimentation Results	55

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Block diagram of a motorized system.	6
2.2	The conveyor load model	6
2.3	The nominal model of the motorized belt driven table	7
2.4	Steps in System Identification	9
2.5	LFSR functionality	11
2.6	LFSR functionality with more than two feedback inputs	14
2.7	Autocorrelation function of PRBS signal	15
2.8	Autocorrelation function of periodic white noises	16
2.9	Power spectral density of a PRBS signal	16
2.10	PID controller in a closed loop system	18
2.11	Components of a Fuzzy Logic Controller	21
3.1	Conveyor Used in the Experiment	23
3.2	Driver requirements	24
3.3	TTL to 24VDC Signal Converter	25
3.4	PRBS Signal Generator Using Simulink	26

3.5	PID Controller via Simulink	27
3.6	FIS Editor Window	28
3.7	Membership Function Editor Window	
3.8	Rules Editor Window	29
3.9	Fuzzy Logic Controller Via Simulink	30
3.10	Compensator via Simulink	
4.1	Simulink Model for the Input-Output Data Acquisition	37
4.2	Input Signal Time Plot	38
4.3	Output Signal Time plot	38
4.4	System Identification Validation	39
4.5	PID Controller Simulation	40
4.6a	PID Controller Simulation Data with Sine Wave Input	40
4.6a	PID Controller Simulation Data with Square Wave Input	41
4.7	PID Controller Hardware Implementation Using I/O	
	Blocks	42
4.8a	PID Controller Experimentation Data with Sine Wave	
	Input	43
4.8b	PID Controller Experimentation Data with Square Wave	

43

Input

4.9	Main Controller FIS Editor	44	
4.10a	Error Membership Functions 44		
4.10b	Change of Error Membership Functions 4		
4.10c	Torque Reference Membership Functions 4		
4.11	FL Controller Simulation 4		
4.12a	FL Controller Simulation Data with Sine Wave Input		
4.12b	FL Controller Simulation Data with Square Wave Input		
4.14a	FL Controller Experimentation Data with Sine Wave		
	Input	48	
4.14b	FL Controller Experimentation Data with Square Wave		
	Input	49	
4.15a	Torque Reference Membership Functions	50	
4.15b	Change of change of Positional Error Membership		
	Function	50	
4.15c	Torqe Reference Compensator Membership Function	50	
4.16	Compensator Simulation Model	51	
4.17a	Compensator Simulation Data with Sine Wave Input	51	
4.17b	Compensator Simulation Data with Square Wave Input	52	
4.18	Compensator Hardware Implementation Using I/O Blocks 5		
4.19a	Compensator Experimentation Data with Sine Wave Input	53	

4.19b	Compensator Experimentation Data with Square Wave	
	Input	54
4.20	RMSE and MaxAE of PID Controller, FL Controller and	
	FL Controller Using Sine Wave Input.	56
4.21	RMSE and MaxAE of PID Controller, FL Controller and	
	FL Controller Using Square Wave Input.	56

LIST OF ABBREVIATIONS

DAQ	-	Data Acquisition
FIS	-	Fuzzy Inference System
FL	-	Fuzzy Logic
LFSR	-	Linear feedback shift register
MaxAE	-	Maximum Absolute Error
MLS	-	Maximum Length Sequence
PC	-	Personal Computer
PID	-	Proportional – Integral – Derivative
PRBS	-	Pseudo random binary signal
QRB	-	Quadratic residue binary
QRT	-	Quadratic residue ternary
RMSE	-	Root Mean Squared Error
S	-	Standard Deviation
SID	-	System Identification
TPB	-	Twin prime binary

CHAPTER 1

INTRODUCTION

1.1 Project Background

Motorized tables are widely used in the industry today. The usage ranged from machine tools, electronic assembly and laboratory automation [1]. Examples of applications such as microscopy, CNC engraver/router, automatic testing/calibration, pick and place, automatic dispensing, semiconductor inspection, pc board drilling and plastic fabrication require high accuracy and good repeatability.

The drive system is one of the most critical components in a positioning system [2]. There are two most used systems, a screw driven system and a belt driven system. A screw driven system may consists of lead screws or ball screws. Screw driven systems have higher positioning accuracies but are very expensive to setup and maintain [2]. A belt driven system in the other hand is a much cheaper alternative. Besides offering a lower cost it also offers higher speed and much longer travel [2]. One of the problems with belt driven systems is the difficulties in controlling their position. These difficulties arise from nonlinearities within the system, such as belt flexibility, stretch, vibration, backlash, friction, loads change, delays and other nonlinearities [1], [2]. Since the cost advantage is very attractive, various controllers were developed by researchers to address these aforementioned problems.

1.2 Problem Statement

It was established that belted system for motorized table system is desirable due to its lower cost and higher linear speed achievable than ball screw system. The cost of the belting system could be as low as 30% of the cost of a ball screw system [3]. But the elasticity of the belt combined with Coulomb friction of the system caused inaccuracies in table position [4]. Therefore, a controller which can address the elasticity and Coulomb friction problem to improve positional accuracies is desired. It was proposed that a Fuzzy Logic Controller coupled with a friction and elasticity compensator can overcome the aforementioned problems.

1.3 Project Objectives

The objectives of the project are:

- i. To design a positional controller using PID controller and FL controller.
- ii. To overcome the issues of friction and elasticity by using compensator.
- iii. To simulate the system and validate the result via experiment.

1.4 Project Scope

This project focused on a flat belt conveyor system with DC motor which equipped with an existing driver, in a laboratory scale experiment which was readily available in the PLC laboratory of the German-Malaysian Institute. A mathematical model derived from fundamental laws will be used as the basis for its system identification using MATLAB System Identification Toolbox. The design stage of the controllers utilized MATLAB Simulink environment. The hardware implementation of the controllers was by Advantech PCI-1716 data acquisition card with PC running Simulink Real-Time Windows Target executable acted as the controllers. Then the performance of the FL controller and frictional and elasticity compensator were compared against the developed PID controller.

1.5 Project Report Outline

Chapter one served as the introduction to the project, stating its objectives and also scope of work. Chapter two introduced the theory involved in this project and also literature that has been reviewed. Chapter three elaborates on the methodology including the equipment used in this project. Chapter four is where the results including the controllers developed and analysis on the positional accuracies are discussed. The conclusion and possible future work of the project are presented in chapter five.

REFERENCES

- W. Li and X. Cheng, "Adaptive High Precision Control of Positioning Tables -Theory and Experiments," *IEEE Transactions on Control Systems Technology*, vol. 2, no. 3, pp. 265-270, 1994.
- [2] M. A. El-Sharkawi and Y. Guo, "Adaptive Fuzzy Control of a Belt-Driven Precision Positioning Table," in *IEEE international Electric Machines and Drives Conference IEMDC'03*, Madison, Wisconsin, 2003.
- [3] W. Li and M. Rehani, "Modeling and Control of A Belt-Drive Positioning Table," in *Proceedings of the 1996 IEEE IECON 22nd International Conference* on Industrial Electronics, Control, and Instrumentation, 1996.
- [4] M. A. El-Sharkawi and A. S. Kulkarni, "Intelligent Precision Position Control of Elastic Drive System," *IEEE Transactions on Energy Conversion*, vol. 16, no. 1, pp. 26-31, 2001.
- [5] Y. Yildiz and A. Sabanovic, "Nero Sliding Mode Control of Timing Belt Servo System," in *AMC*, Kawasaki, Japan, 2004.
- [6] A. Wahyudie and T. Kawabe, "Characterization of All Robust PID Controllers for Belt Conveyor System via Corrected Polynomial Stabilization," *Research Reports on Information and Electrical Engineering of Kyushu University*, vol. 15, no. 1, pp. 13-18, March 2010.
- [7] M. F. Rahmat, "Introduction to System Identification," *System Identification & Parameter Estimation Lecture Note*, 2007.
- [8] T. Sodestrom and P. Stoica, System Identification, Herfortshire: Prentice Hall International (U.K) Ltd., 1989.
- [9] H. J. Zapernick and A. Finger, Psedo Random Signal Processing Theory and Application, Chichester: John Wiley & Sons Ltd., 2005.
- [10] A. H. Tan and K. R. Godfrey, "The Generation of Binary and Near Binary

Pseudorandom Signals: an Overview," *IEEE Transaction on Instrumentation and Measurements*, vol. 51, no. 4, pp. 583-588, 2002.

- [11] M. F. Rahmat, "Pseudo Random Binary Sequences," in System Identifification & Paramameter Estimation Lecture Note, UTM Skudai, 2007.
- [12] J. G. Ziegler and N. B. Nichols, "Optimum Settings for Automatic Controllers," *Transaction ASME*, vol. 64, p. 759, 1942.
- [13] A. O'Dwyer, "PI and PID Controller Tuning Rules: an Overview and Personal Perspective," in ISSC 2006, Dublin Institute of Technology, 2006.
- [14] A. O'Dwyer, Handbook of PI and PID Controller Tuning Rules, 2nd ed., London: Impreal College Press, 2006.
- [15] I. H. Altas and A. M. Sharaf, "A Generalized Direct Approach for Designing Fuzzy Logic Controllers in MATLAB/Simulink GUI Evironment," *International Journal of Information Technology and Intelligent Computing*, vol. 1, no. 4, 2007.
- [16] L. Ljung, System Identification User's Guide 2012b, Natick, MA: The MathWorks, Inc, 2012.
- [17] A. El-Bakly, A. Fouda and W. Sabry, "A Proposed DC Motor Sliding Mode Position Controller Design using Fuzzy Logic and PID Techniques," in 13th International Conference on Aerospace Sciences & Aviation Technology, ASAT 13, 2009.
- [18] MathWorks, Real Time Windows Target User's Guide R2012b, Natick, MA: The MathWorks, Inc., 2012.