PERFORMANCE OF KENAF FIBER REINFORCED CONCRETE

MASOUD RAZAVI

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil-Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > January 2013

To my beloved parents father and mother, Manoochehr Razavi and Shahla Mohammad zadeh To my brother, Mehrdad and Meisam

Thanks for your support and always there for me in happiness and sadness

.

I am very proud to have all of you ~~~~ Love you all ~~~~

ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many people, researchers, academicians, and practitioners. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my main thesis supervisor, Assoc. Prof. Dr. Abdul Rahman Mohd Sam, for encouragement, guidance, critics and friendship. I am also very thankful to my co-supervisors Assoc. Prof. Dr. Jamaludin Mohamad Yatim for their guidance, advices and motivation. Without their continued support and interest, this thesis would not have been the same as presented here.

I am also indebted to University Technology Malaysia (UTM) for funding my master study technicians in the Structures and Materials Laboratory of Faculty of Civil Engineering also deserves special thanks for their assistance in supplying the relevant literatures.

My fellow postgraduate students should also be recognised for their support. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to all my family members.

ABSTRACT

This experimental research presents a study on the mechanical properties of natural fiber reinforced concrete (FRC) which is made using the bast fibers of the kenaf plant. Appropriate mixture proportions and mixing procedures were tested to produce kenaf fiber reinforced concrete (KFRC) specimens with different chopped fiber volume fractions (0.5%, 1%, 1.5%, and 2%) and fiber lengths (10mm, 15mm, 20mm, 25mm, and 30mm). After finding the optimum percentage of the fiber volume fraction and fiber lengths several tests were conducted including workability, unit weight, compressive, flexural, and modified compressive tests of specimens were studied. Test results showed that the mechanical properties of KFRC are comparable to those of plain concrete control specimens, particularly when accounting for the effect of the increased w/c ratio is required producing workable KFRC. While KFRC increased the short term compressive strength of the specimens (7 days), it reduced the compressive strength of the specimens after 28 days. Further, KFRC generally exhibits more distributed cracking and higher flexural strength than plain concrete. This research indicated that KFRC is a promising 'green' construction material which could potentially be used in a number of different structural and non-structural applications.

ABSTRAK

Ujikaji ini menunjukkan kajian ke atas sifat mekanikal serat semulajadi konkrit bertetulang (FRC) yang dibuat menggunakan ciri gentian kulit tumbuhan kenaf. Campuran perkadaran dan prosedur bancuhan yang bersesuaian telah dibuat untuk menghasilkan spesimen konkrit bertetulang gentian kenaf (KFRC) dengan isipadu dan panjang serat yang berbeza (0.5%, 1%, 1.5%, dan 2%) dan panjang serat (10mm, 15mm, 20mm, 25mm, dan 30mm). Selepas mencari peratusan optimum isipadu gentian dan panjang gentian, beberapa ujian telah dijalankan termasuklah kebolehkerjaan, unit berat, mampatan, lenturan, dan ujian mampatan spesimen yang diubahsuai telah dikaji. Keputusan ujian menunjukkan bahawa sifat-sifat mekanikal KFRC adalah setanding dengan spesimen kawalan konkrit biasa, terutamanya apabila mengambilkira kesan peningkatan nisbah w / c yang diperlukan untuk menghasilkan kebolehkerjaan KFRC. Walaupun KFRC meningkatkan kekuatan jangka pendek mampatan spesimen (7 hari), ia mengurangkan kekuatan mampatan spesimen selepas 28 hari. Seterusnya, KFRC umumnya mempamerkan agihan keretakan yang ketara dan kekuatan lenturan yang lebih tinggi daripada konkrit biasa. Kajian ini menunjukkan bahawa KFRC adalah bahan binaan yang berpotensi digunapakai dalam beberapa aplikasi struktur yang berbeza.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	D	ECLARATION	ii
	D	EDICATION	iii
	A	CKNOWLEDGEMENTS	iv
	Α	BSTRACT	v
	A	BSTRAK	vi
	T	ABLE OF CONTENTS	vii
	L	IST OF TABLES	xi
	L	IST OF FIGURES	xiii
	L	IST OF SYMBOLS	xvii
	L	IST OF APPENDICES	xviii
1	INTI	RODUCTION	1
	1.1	Introduction	1
	1.2	Statement of the Problem	3
	1.3	Purpose of the Study	5
	1.4	Objectives	6
	1.5	Significance of the Study	6
	1.6	Scope of Study	7
2	LITI	ERATURE REVIEW	8
	2.1	Introduction	8
	2.2	Natural Fibres	9
	2.3	Characteristic of Natural Fibres	11

2.4	Natural Fibers	12
2.5	Kenaf	14
2.6	Bio Composites	16
2.7	Natural Fiber Reinforced Concrete	16
2.8	Fiber Volume Ratio	17
2.9	Fiber Length	17
2.10	Fiber Surface Modification	18
2.11	Moisture Content	19
2.12	Advantages and Disadvantages of Using FRP	20
	Composites as Internal Reinforcement	
2.13	Weight Comparison of Kenaf Fiber Reinforced	20
	Polymer Composite and Conventional Steel	
2.14	Kenaf Fiber Pretreatment and Characterization	21
2.15	Fiber Chemical Treatment	21
2.16	Modes of Failure	22
2.17	Flexural Failure	22
2.18	Diagonal Tension Failure	23
2.19	Shear Compression Failure	23
2.20	Conclusions	24
MET	HODOLOGY	25
3.1	Introduction	25
3.2	Laboratory Works	26
3.3	Materials	26
	3.3.1 Cement	27
	3.3.2 Aggregate	28
	3.3.3 Water	30
	3.3.4 Distilled Water	31
	3.3.5 Kenaf Fiber	32
	3.3.6 Sodium Hydroxide (NaOH)	32
	3.3.7 Steel Bar	33
3.4	Preparation of Kenaf Fiber	35
	3.4.1 Untreated Kenaf Fibers	35

3

	3.4.2	Chemical Treatment of Kenaf Fiber	37
		3.4.2.1 Treatment Process	37
	3.4.3	Second Time Cutting	38
3.5	Reinfo	orced Concrete Beam	39
	3.5.1	Fabrication of Kenaf Fiber Reinforced	39
		Concrete and Control Beams	
	3.5.2	Preparation of Formwork	40
	3.5.3	Preparation of Concrete	41
	3.5.4	Preparation and Fabrication of Steel	42
		Reinforcement	
	3.5.5	Strain Gauge	42
		3.5.5.1 Installation Strain Gauge for	43
		Concrete	
		3.5.5.2 Installation Strain Gauge for Steel	44
		Bar	
	3.5.6	Casting of Beams	45
	3.5.7	Curing	46
	3.5.8	KFRC Mixture Proportions and Mixing	46
		Procedure	
3.6	Experi	imental Program	48
	3.6.1	Slump Test	53
	3.6.2	Compressive Test	54
	3.6.3	Modulus of Elasticity and Poisson's Ratio of	54
		Concrete	
	3.6.4	Flexural Test for Prism	56
	3.6.5	Four-Point Bending RC beam Test	57
RESU	JLTS A	ND DISCUSSIONS	60
4.1	Introd	uction	60
4.2	Deter	mining Optimum Length of Kenaf Fibers in	60
	Concr	ete	
	4.2.1	Workability	60

4

Length 4.2.3 Compressive Strength 6 4.2.4 Unit Weight of Concrete Prisms Depended 6 Of Fiber Length	5
4.2.4 Unit Weight of Concrete Prisms Depended 6	
	0
Of Fiber Length	9
4.2.5 Flexural Strength 7	1
4.2.6 Modified Compressive Strength 7	5
4.3 Determining Optimum Volume Fraction of Kenaf 7	7
Fibers In Concrete	
4.3.1 Workability 7	7
4.3.2 Unit Weight of Concrete Depended of Fiber 7	'9
Volume Ratio	
4.3.3 Compressive Strength 8	2
4.3.4 Unit Weight of Concrete Depended of Fiber 8	5
Ratio	
4.3.5 Flexural Strength 8	7
4.3.6 Modified Compressive Strength 9	0
4.4 Compressive Strength for KFRC of Cylinders 9	3
4.5 Flexural Performance of KFRC Beams with 1% 9	5
Ratio And 20 mm Length of Kenaf Fiber (Treated	
and Untreated)	
4.5.1 Ultimate Load 9	5
4.5.2 Load-Deflection 9	7
4.5.3 Strain 9	9
4.5.3.1 Strain of Steel Bars 9	9
4.5.3.2 Strain of Concrete 1	00
5 CONCLUSION AND RECOMMENDATION 1	.02
5.1 Conclusions 1	02
5.2 Recommendations 1	03

110-112

LIST OF TABLES

TABLE NO	TITLE	PAGE
2.1	The Density and the Cost of Various Types of Fibres in Market	10
2.2	Chemical Composition of Various Types of Natural Fibres	11
2.3	Summarizes the Basic Properties of Various Natural Fibres	12
2.4	Advantages and Disadvantages of Natural Fiber	13
2.5	Density of Kenaf Fiber Reinforced Polymer Composite	20
	Compared to Steel	
3.1	General Chemical Composition of Ordinary Portland	28
	Cement	
3.2	Characteristic of Steel Bar	34
3.3	Mixture of Specimens	47
3.4	Characteristic of Specimens for Check Optimum Length of	50
	Kenaf	
3.5	Characteristic of Specimens for Check Optimum Kenaf	51
	Ratio	
3.6	Characteristic of Specimens for Check Optimum Kenaf	52
	Length and Ratio in Cylinder and Beam	
4.1	Workability of Fresh Concrete with Different Kenaf Fiber	61
	Lengths	
4.2	Unit Weight of Concrete Cubes with Different Length of	63
	Kenaf Fibers	
4.3	Compressive Strength of Kenaf Fiber with Different	66
	Length in Concrete Cubes	

4.4	Unit Weight of Concrete Prisms with Different Length of	69
	Kenaf Fibers	
4.5	Flexural Strength of The Concrete Prisms with Different	72
	Fiber Length	
4.6	Modified Compressive Strength Test of Concrete Prisms	75
	with Different Length of Kenaf	
4.7	The Workability of Fresh Concrete with Different Kenaf	78
	Fiber Volume Ratios	
4.8	Unit Weight of Concrete with Different Ratio	80
4.9	Compressive Strength of Kenaf Fiber with Different Ratios	82
	in Concrete Cubes	
4.10	Unit Weight of Concrete Prisms with Different Ratio	85
4.11	Flexural Strength of Prisms with Different Fiber Ratio	88
4.12	Modified Compressive Strength Test of Concrete Prisms	90
	with Different Kenaf Fiber Volume Fractions	
4.13	Compressive Strength Test of Concrete Cylinders	93
4.14	Ultimate Load of RC Beams	95
4.15	First Crack with Load And Value of Crack For Each Beam	97
4.16	KFRC Beam Deflection In Different Load.	98
4.17	Average Strain In Steel Bar	99

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
2.1	Natural Fibers Based on Their Group	9
2.2	Kenaf Fiber	15
3.1	Ordinary Portland Cement	27
3.2	(a) Coarse Aggregate (b) Fine Aggregate	30
3.3	Distilled Water Machine	31
3.4	Kenaf Fiber: (a) Its Plant, (b) Bast View, (c) Kenaf Fibers	32
3.5	Sodium Hydroxide (NaOH)	33
3.6	(a) Steel Bar 12 mm, (b) Steel Bar 6 mm	34
3.7	Water Retted Process	35
3.8	Untreated Kenaf Fiber	36
3.9	Treated Kenaf Fiber	37
3.10	Drying Kenaf Fiber in Room Temperature	38
3.11	Cut Kenaf	38
3.12	Cubes Sample Size (100mm \times 100mm \times 100mm)	40
3.13	Prisms Sample Size ($100mm \times 100mm \times 500mm$)	40
3.14	Cylinder Sample Size (100mm ×200mm)	41
3.15	Beam Sample Size (100mm ×130mm×2000mm)	41
3.16	Steel Reinforcements With Link Bars	42
3.17	Strain Gauge On The Concrete	44
3.18	Strain Gauge For Steel	45
3.19	Painting The RC Beams	46
3.20	Slump Test	53
3.21	Compressive Test of Concrete Cubes	54

3.23	Flexural Machine Test for Prism	56
3.24	Schematic Loading System of The RC Beams	58
3.25	Data Logger	59
4.1	Workability of Fresh Concrete with Different Kenaf Fiber	61
	Lengths	
4.2	Workability Of Fresh Concrete With Different Kenaf Fiber	62
	Lengths	
4.3	Unit Weight of Concrete Cubes with Different Length of	64
	Kenaf Fibers	
4.4	Average Unite Weight of Concrete with Different Length of	64
	Fiber	
4.5	Specimens of Concrete with Different Length of Fiber	65
4.6	Compressive Strength of KFRC with Different Length	67
4.7	Average Compressive Strength of KFRC with Different	68
	Length	
4.8	Failure of KFRC Cube with Different Fiber Length	68
4.9	Unit Weight of Concrete Prisms with Different Length of	70
	Kenaf Fibers	
4.10	Average Unite Weight of Concrete Prisms with Different	70
	Length of Fiber	
4.11	Specimens (Prisms) of Concrete with Different Length Of	71
	Fiber	
4.12	Flexural Strength of The Concrete Prisms with Different	73
	Fiber Length	
4.13	The Average Results of The Flexural Strength and The	74
	Flexural Test Specimens	
4.14	Specimens' Prisms With Different Length Of Fiber	74
4.15	Modified Compressive Strength Test of Concrete Prisms	76
	With Different Length of Kenaf	
4.16	Average Result of Modified Compressive Strength of KFRC	76
	with Different Fiber Length	
4.17	The Specimens (Prisms) with Different of Kenaf Length	77

3.22

4.18	The Workability of Fresh Concrete with Different Kenaf	78
	Fiber Volume Ratios	
4.19	The Specimens with Different Fiber Ratios	79
4.20	Unit Weight of Concrete with Different Ratio of Kenaf	80
4.21	Average Unite Weight of Concrete with Different Ratio of	81
	Fiber	
4.22	Specimens' Cubes of Concrete with Different Ratio of Fiber	81
4.23	Compressive Strength of KFRC with Different Ratios	83
4.24	Average Compressive Strength Of KFRC With Different	84
	Ratios	
4.25	Failure Cubes with Different Content after Compressive	84
	Test	
4.26	Unit Weight of Concrete Cubes with Different of Kenaf	86
	Fibers Ratio	
4.27	Average Unite Weight of Concrete Prisms with Different	86
	Ratio	
4.28	Specimens (Prisms) of Concrete with Different Fiber Ratio	87
4.29	Flexural Strength of Prisms with Different Fiber Ratio	88
4.30	Average Results of The Flexural Strength For Different	89
	Kenaf Fiber Ratio	
4.31	The Flexural Test Specimens for Different Kenaf Fiber	89
	Ratio	
4.32	Modified Compressive Strength Test of Concrete Prisms	91
	with Different Kenaf Fiber Volume Fractions	
4.33	Average Result of Modified Compressive Strength of KFRC	92
	with Different Fiber Ratios	
4.34	Specimens Modified Compressive Strength of KFRC with	92
	Different Fiber Ratios	
4.35	Result Concrete Cylinders Sample for Compressive Strength	94
	Test	
4.36	Concrete Cylinders Sample after Compressive Strength Test	94
4.37	Normal Concrete Beam	96
4.38	KFRC Beam 100% Section Treated	96

4.39	KFRC Beam 100% Section Untreated	96
4.40	KFRC Beam 50% Section Treated	96
4.41	KFRC Beam 50% Section Untreated	96
4.42	Load Versus Deflection Graph of The Beams	98
4.43	Average Strain Between All Beams	99
4.44	Strain in Tension Section	100
4.45	Strain in The Top of Beam	101

LIST OF SYMBOLS

l
l

LIST OF APPENDICES

A Beam DesignB Mixed Design

CHAPTER 1

INTRODUCTION

1.1 Introduction

It is known that concrete is a relatively brittle material. Reinforcement of concrete with randomly distributed short fibers may improve the toughness of cementitious matrices by preventing or controlling the initiation, propagation, or coalescence of cracks. It has been shown recently that by using the concept of hybridization with 2% fiber volume contents incorporated in a common cement matrix, the hybrid composite can offer more attractive engineering properties because the presence of one fiber enables the more efficient utilization of the potential properties of the composite. However, the hybrid composites studied by previous researchers were focused on cement paste or mortar. Therefore, the objective of this project is to determine systematically the basic characteristics of the five types of beam fiber-reinforced concretes with normal concrete combinations in terms of tensile tests.

In the past, natural fibres were used in early human civilization in fabric applications. High strength natural fibres like jute, cotton, silk and kenaf are used extensively and directly in one-dimensional products like lines, ropes and cloths. Others natural fibres like oil palm fibres, banana leaf fibres, and rice stalks fibres are residual agriculture product. They are usually disposed into land fill or disposed by open burning.

Environmental issues arise when these materials are in large quantities. Landfill method becomes not economical whilst open burning results air pollution and global warming. Until recent decade, there is an increasing interest on natural fibres reinforced polymer. The potential of natural fibres replacing synthetic fibres in composite is possible.

In general, natural fibres offer high specific properties, low cost, nonabrasive, readily available and environmental friendly where no synthetic fibres can surpass these advantages. These advantages attract scientists and technologists especially automobile industry to study on the behavior of the natural fibres and the characteristic of the natural fiber reinforced composites. However, certain drawbacks such as incompatibility with hydrophobic polymer matrix, the tendency to form aggregates during processing, poor resistance to moisture greatly reduce the potential of natural fiber composites in structural application. Therefore, a detail study on the characteristic of natural fiber composites in structural use.

Mechanical characterization of concrete reinforced with natural fibers investigated in this work to analyze the possibility of substitution by natural fibers. Kenaf fibers were used in this study. These fibers come from their specific products after they have prepared. As the natural fibers are agricultural waste, manufacturing natural product is, therefore, an economic and interesting option.

1.2 Statement of the Problem

As the 21st century, approaching there is a greater awareness of the need for materials in an expanding world population and increasing affluence. At the same time, there are aware that our landfills are filling up and our resources are getting deteriorate, our planet is being polluted, non-renewable resources will not last forever, the need on environmental friendly materials need to be taken into consideration.

Nowadays, many studies have been done to find another alternative for replacement the use of steels because of the expensive costs and high maintenances of the structure damaged by corrosion. Nevertheless, bio-product appears to have a great inhibit termites attack to provide good strength and stiffness of the materials. On the other hand, many bio-composites use renewable materials or fast-growing plant fibers. In turn, they are recyclable materials that are designed to decompose rapidly. Green materials have been developed and attract global attention around the world in recent years. One of the main materials that develop from this green materials currently used in green building and structure is bio-composites. Biocomposites are the combination of natural fibers or bio-fibers usually derived from plants or cellulose. Bio-fibers offer many advantages such as renewability, recyclability, biodegradability, low specific gravity and high specific strength [1]. Bio-composites are structural materials made from renewable resources that emerging as the replacement to fiber polymer bio-composites. Therefore, biocomposites significantly offer environmental benefits such as light weight. Good mechanical properties and resistance to corrosion.

The environmental issues examined are climate change, fossil fuel depletion, ozone depletion, human toxicity to air and water, eco-toxicity, waste disposal, water extraction, acid deposition, eutrophication (over enrichment of water sources), summer smog (low level ozone creation) and minerals extraction. This issue caused the increasing on carbon dioxide, CO_2 gaseous which creates harmful environment

and human health [2]. Furthermore, the emission produced by automobile could bring to the global warming and increasing in greenhouse effect. Bio-composites typically use natural binding agents to reduce the petrochemicals or other fossil-fuel products. Therefore, kenaf fibers have been introduced but still a lot of researches have to be done for improvements. Kenaf cultivation reveals that natural fibers could reduce the amount of carbon dioxide, CO₂ emissions. The duration for fibers harvesting is 4 to 5 months which is short term compare to other plants. Therefore, kenaf fibers tend to be more sustainable compare to glass fibers. Fiber reinforced polymer (FRP) based on glass, carbon and aramid were introduced and until now was applied to the area of construction such as buildings, bridges and pipelines. Glass fibers are produces from silica which is come from sea sand will arises another whole new problems. Sea sand will run out if been use continuously and the production of glass fiber requires high costs. Bio-fibers have many desirable performance qualities including high temperature resistance, excellent thermal insulation, sound-damping properties and corrosion resistance. Among the various bio-fibers, kenaf fibers were chosen because it is a good potential reinforcement in polymeric materials. Further research has to be done to develop the feasibility of kenaf fibers as reinforcement in structure in order to produce more economical biocomposites.

Cracked and weakened reinforced concrete beams will make the whole structures become unstable. Reconstructing or rebuilding the reinforced concrete beam is not the best way because it will increase the cost and time. By considering these factors, internally reinforcing the beam is a technique that currently adopted and developed in construction industry [3].

Nowadays, synthetic fiber reinforced polymers (FRP) such as carbon, glass, and aramid are commonly used for strengthening of RC structures due to their mechanical properties such as high modulus of elasticity, relative low extension coefficient, and corrosive resistance. However, these materials are expensive in terms of costs and material production. In addition they are also not biodegradable materials.

To overcome this problem, bio fibers were introduced to the industry. Bio fibers material offer many advantages such as renewability, recyclability, and biodegradability. From these advantages, it shows that bio fibers can help to promote the sustainability concept [4].

Natural fibers have become increasingly used in many applications not only because they are environmental friendly, but also because of their various desirable properties which include high specific strength and high specific stiffness. The use of natural fibers is highly beneficial because the strength and toughness of the resulting composites are greater than those of the unreinforced plastics. Moreover, cellulosebased natural fibers are strong, light, cheap, abundant, and renewable source. In recent years, natural fibers reinforced polymer materials are used in many applications such as automotive, sporting goods, marine, electrical, industrial, construction, and household appliances.

1.3 Purpose of the Study

Reinforced concrete structures have slowly gained the popularity in the construction industry. This is because it is far easier and it can save much more time compared to reconstructing the whole deteriorating structure. Initially, steel fibers are been used but some other problems might occurred such as corrosion and heavy weight.

However, other materials are sought to replace steel after it is found to corrode due to salt and chloride moisture exposure. Nowadays, composite materials act as an internal reinforcement are being used in construction industry. Bio composite materials are the combination of natural fibers with polymer matrices. In this study, kenaf fibers were used as an internal reinforcement as they are likely to be more eco-friendly. Other than that, bio composite can help to reduce the increasing cost of using petroleum-based material.

1.4 Objectives

The objectives of this project are:

- To study the effects of length and volume fraction of the kenaf fibers on the performance of the kenaf fiber reinforced concrete.
- ii) To study the effects of the optimum length and fiber volume fractions on the performance of the KFRC beams.
- iii) To study the effects of treated and untreated kenaf fibers on the mechanical performance of the reinforced concrete beams.

1.5 Significance of the Study

The finding of this study could develop green material by using natural fiber to produce bio composites. In order to maintain sustainability, natural fibers could be used since it is a renewable material.

On the other hand, this study can help to reduce the usage of steel and nonrenewable materials which participate in global warming. By using kenaf which only takes four months to grow, it will replace the use of non-biodegradable to environment sustainability.

1.6 Scope of Study

This study involves laboratory work such as compressive and flexural test. In this study, a total number of 85 samples produced for the test. Test specimens covering different fiber lengths (10mm, 15mm, 20mm, 25mm, and 30mm) of 1% fiber volume fraction and fiber volume contents (0.5%, 1%, 1.5%, and 2%) of optimum length. Thirty-three cube samples and thirty-three concrete prisms with different fiber content and length were employed to investigate the behavior of the materials under compressive and flexural test, respectively. Finally, nine cylinders and ten concrete beams with different fiber contents and configuration were produced. Compressive and flexural tests were carried out by using Universal Testing Machine.

REFERENCES

- Avramd, And Buhul (2010) Biodegradable Yarns For Weaves Used For Composite Materials. Buletinul Institutului Politehnic Din Iaşi Publicat De Universitatea Tehnică "Gheorghe Asachi" Din Iaşi Tomul LVI (LX), Fasc.
 Secńia Textile. Pielărie.
- [2] Liew, S.C (2008). Characterization of Natural Fiber Polymer Composites for Structural Application. Master of Civil Engineering. Universiti Teknologi Malaysia, Skudai.
- [3] Joshi, S.V., Drzal, L.T., Mohanty, A.K. and Arora, S. (2004). Are Natural Fiber Composites Environmentally Superior to Glass Fiber Reinforced Composites?. Composites Part A. 35 (2004), 371-376. Science Direct.
- [4] Karnani, R., Krishnan, M. and Narayan, R. (1997). Bio-fiber Reinforced Polypropylene Composites. Polymer Engineering Science. 37 (2), 476-482.
- [5] Bergman, Richard; Cai, Zhiyong; Carll, Charlie G.; Clausen, Carol A.;
 Dietenberger, Mark A.; Falk, Robert H.; Frihart, Charles R.; Glass, Samuel V.; Hunt, Christopher G.; Ibach, Rebecca E.; Kretschmann, David E.;
 Rammer, Douglas R.; Ross, Robert J.; Star. *Wood Handbook, Wood as an Engineering Material*. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: 508 p. 2010.

- [6] Nurulhuda M. A., (2008). The Tensile Properties of Pineapple Leaf Fiber as Polymer Composite Materials. Bachelor Degree, Universiti Teknologi Malaysia, Skudai.
- [7] Sellers Jr, T., Reichert N.A., Columbus E., Fuller M. and Williams K., 1999. Kenaf properties, processing and products. Mississippi State University, MS.
- [8] Zimmerman, JM, Losure NS.(1998). Mechanical properties of kenaf bast fiber reinforced epoxy matrix composite panels. J Advan Mater.
- [9] Technical Report TR-2101-ENV. (1999) Naval facilities engineering service center. Evaluation of bio-based industrial products for Navy and DOD use – phase I kenaf absorbent.
- [10] Zaveri, M.(2004) Absorbency characteristics of kenaf core particles, Master of Science, Department of Textile Engineering, North Carolina State University, USA.
- [11] Fageiri OM. (1983) Use of kenaf fibers for reinforcement of rich cement– sand corrugated sheets. Appropriate building materials for Low-cost housing. African region. In: Proceeding of a Nairobi symposium, Kenya; November 1983. p. 167–76.
- [12] Symington MC, Banks WM, West OD. (2009) Tensile testing of cellulose based natural fibers for structural composite applications. J Compos Mater 2009; 43 (9):1083–108.
- [13] Ramakrishna G. and Sundararajan T. (2005). Studies on the Durability of Natural Fibres and the Effect of Corroded Fibres on the Strength of Mortar. Cement & Concrete Composites. 27 (2005), 575 – 582. Elsevier.
- [14] Byoung-Ho Lee, Hyun-Joong Kim, and Woong-Ryeol Yu (2009).Fabrication of Long and DiscontinuousNatural Fiber Reinforced

Polypropylene Biocomposites and Their Mechanical Properties. Fibersand Polymers. 10 (1), 83-90.

- [15] Xue Y, Du Y, Elder S, Sham D, Horstemeyer M, and Zhang J. (2007) Statistical evaluation of tensile properties of kenaf fibers and composites.
 Department of Energy (DOE), Light-weighting materials, FY 2007 Progress Report. p. 431-439.
- [16] Joffe R, Andersons J, and Wallstrom L. (2003) Strength and adhesion characteristics of elementary flax fibers with different surface treatments. Composites: Part A 2003;34:603–12.
- [17] ACI Committee 544. State-of-the-art report on fiber reinforced concrete (ACI 544.1R-96). American Concrete Institute, Farmington Hills; 2002. p. 66.
- [18] Rashdi, A, Sapuan, S.M., Ahmad, M, and Khalina, A., (2009). Water Absorbtion and Tensile Properties of Soil Buried Kenaf FiberReinforced Unsaturated Polyester Composites. pp. 908-911. Elsevier.
- [19] Chew, W. K., (2009). The Use of Oil Palm Fiber Reinforced Polymer Composites as External Reinforcement For Reinforced Concrete Beam Strengthening. Bachelor Degree, Universiti Teknologi Malaysia, Skudai.
- [20] Rancines PG, and Pama RP. A study of bassage fiber-cement composite as low-cost construction materials. In: Proceeding international conference materials for developing countries. Bangkok; 1978. p. 191–206.
- [21] Mansur MA, and Aziz MA (1982), A study of jute fiber reinforced cement composites. Int J Cement Composite Lightweight Concrete 1982;4(2):75– 82.

- [23] Wells RA.(1982) Future developments in fiber reinforced cement mortar and concrete. Composites 1982:69–72.
- [24] Xue Li, Lope G.Tabil, Satyanarayan (2006), "Chemical Treatment of Natural Fibre for Use in Natural Fibre Reinforced Composites: A Review", J. Polym Environ.
- [25] Jayamol G, Sreekala M.S and Sabu T (2001), "A Review on Interface Modification and Characterization of Natural Fiber Reinforced Plastic Composites", Polymer Engineering and Science.
- [26] Swift DG, and Smith RBI.(1972) Sisal-cement composites as low-cost construction materials. Appropriate Technol 1979;6(3):6–8.
- [27] Yassin, S., (2008). Reinforced Concrete Design 1. Universiti Teknologi Malaysia.
- [28] Slowik, V., and Wittmann, F. H. (1992). "Influence of strain gradient on fracture energy." Proc., Int. Conf. on Fracture Mechanics of Concrete and Concrete Structures, FrerMCoS, Breckenridge, Co., 424–429.
- [29] ASTM standard C192/C192M 12, (2012) Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory 10.1520/C0192_C0192M-12.
- [30] ASTM C C469/C469M 10, (2010) Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression. 10.1520/C0469_C0469M-10.

[31] ASTM C651 – 11, (2011) Standard Test Method for Flexural Strength of Manufactured Carbon and Graphite Articles Using Four-Point Loading at Room Temperature. July 2011. 10.1520/C0651–11.