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ABSTRACT

Malaysia is very fortunate to be free from natural disaster such as earth quake,

volcano and typhoon. Unfortunately, the most severe natural disaster experiencing in

Malaysia is flood. The probability of flood may occur had been increase due to the

climate change and global warming that happened in Malaysia throughout the year.

One of the major factor that contribute to flood is the heavy rainfall or maximum

rainfall. Hence, in this study, mathematical analysis had been performed by studying

the rainfall pattern of the past years and predict the future pattern. Ulu Sebol station

situated in Johor was chosen as the rainfall data station since Johor is one of the state

that experienced the worst flood in the year 2006. Accuracy plays an important role in

choosing the forecasting techniques in order to make prediction of the future rainfall

data. But, before forecasting can be made, estimation of the model parameter must

be done. In this thesis, an approach that combines the Box-Jenkins methodology for

ARIMA model and Genetic Algorithm (GA) had been introduced as a new approach

in estimating the parameter and forecasting. A total of 127 series of data had been

used in this study starting from January 2000 and these data were classified as monthly

maximum rainfall data. MINITAB 16 computer package was used in analyzing the

data and for the development of Box-Jenkins model. Meanwhile, JAVA was used

in estimating the parameter of Box-Jenkins model by using Genetic Algorithm. The

accuracy of the results were measured by concerning the minimum Mean Absolute

Percentage Error (MAPE). By using MINITAB 16, ARIMA(0,1,1) was chosen as the

best model that fits to the data. The best estimate of theta given by MINITAB is θ =

0.9857 with MAPE 0.6526. By adopting GA in searching the best parameter value,

GA gives an outstanding performance with the best estimate of theta is 0.3427 and

MAPE with 0.5416. Hence, Genetic Algorithm was proven to work well in estimating

the parameter of Box-Jenkins model.
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ABSTRAK

Malaysia bertuah kerana bebas daripada bencana alam seperti gempa bumi,

gunung berapi dan taufan. Malangnya, bencana semulajadi yang paling teruk dialami

di Malaysia ialah banjir. Kebarangkalian banjir berlaku meningkat disebabkan

perubahan iklim dan pemanasan global yang berlaku di Malaysia. Antara faktor

yang menyumbang kepada banjir ialah hujan lebat. Analisis secara matematik telah

dilakukan dengan mengkaji corak hujan pada tahun-tahun lalu dan meramalkan corak

hujan pada masa hadapan. Stesen Ulu Sebol, Johor dipilih sebagai stesen pengambilan

data hujan kerana Johor merupakan salah satu negeri yang mengalami banjir terburuk

pada tahun 2006. Ketepatan memainkan peranan penting dalam memilih teknik

ramalan untuk membuat ramalan data hujan. Walaubagaimanapun, sebelum ramalan

dibuat, penganggaran nilai parameter bagi model tersebut mesti dilakukan. Pendekatan

yang menggabungkan kaedah Box-Jenkins untuk model ARIMA dan Algoritma

Genetik telah diperkenalkan dalam menganggar parameter dan peramalan. 127 siri

data telah digunakan dalam kajian ini bermula dari Januari 2000 dan data ini telah

diklasifikasikan sebagai data maksimum hujan mengikut bulan. Pakej komputer iaitu

MINITAB 16 telah digunakan untuk menganalisis data dan pembangunan model Box-

Jenkins. JAVA telah digunakan dalam menganggar parameter bagi model Box-Jenkins

dengan menggunakan Algoritma Genetik. Ketepatan keputusan bergantung kepada

nilai minima purata peratusan kesilapan mutlak (MAPE). Dengan menggunakan

MINITAB 16, ARIMA (0,1,1) telah dipilih sebagai model terbaik yang sesuai dengan

data hujan ini . Anggaran terbaik theta yang diberikan oleh MINITAB adalah θ =

0.9857 dengan MAPE sebanyak 0.6526. Algoritma Genetik terbukti memberikan

prestasi cemerlang dalam mencari nilai parameter dengan anggaran terbaik theta

adalah 0.3427 dan nilai minima kesilapan sebanyak 0.5416. Algoritma Genetik

terbukti berkesan dalam menganggar parameter untuk model Box-Jenkins.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In a real world problem, forecasting is very significant in many type of

organizations and the need of forecasting is increasing since predictions of future

events must be incorporated into the decision making process. According to Bowerman

and O’Connell (1993), predictions of future events and conditions are called forecasts

and the act of making such predictions is called forecasting. In other word, forecasting

plays an important role as it is needed to determine when an event will occur so

that appropriate actions can be taken (O’Donovan, 1983). One such application

are in business. In many events and situations, forecast is require such as in

marketing departments, finance, production scheduling and others (Bowerman and

O’Connell, 1993).

Forecasting are normally divided into two types namely Qualitative forecasting

methods and Quantitative forecasting methods. The choice of forecasts method to

be used depends on the availability of data and predictability of the quantity to be

forecasted. Qualitative forecasting methods generally use the opinion of experts

to predict future events (Makridakis et al., 1998). This methods also used to

predict changes in historical data patterns. As referred to Bowerman and O’Connell

(1993), there are several common qualitative forecasting methods that have been used
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such as subjective curve fitting, Delphi method and time independent technological

comparisons.

On the other side, Quantitative forecasting methods involve the use of

information of the historical data in an attempt to predict the future values

(Makridakis et al., 1998). Generally speaking, Quantitative forecasting methods can

be categorized into two main parts namely causal models and time series models

(O’Donovan, 1983). Causal models assume that the factor to be forecasted exhibits

a cause. The aim of this model is to discover the form of the relationship and use it

to forecast future values. Causal models give advantage especially in business world

since they allow the management to evaluate the effect of various alternative policies

(Bowerman and O’Connell, 1993).

For time series models, historical data are very valuable since the data will

be used to identify the model. There are various type of time series models. One

of them is Box-Jenkins model. This model is also known as Autoregressive Moving

Average(ARMA). Suitable model is chosen from this class of model and it will be

used for forecasting based on the study of the data. As compared to causal models,

time series models has advantage in the sense when conditions are expected to remain

constant (Bowerman and O’Connell, 1993).

In the last decades, imitating living things in solving optimization problems

seems to be very popular among scientists and researchers. The father of the original

Genetic Algorithm, John Holland invented the method in 1960 and it was then

developed at University of Michigan in 1970 with his colleagues (Mitchell, 1996).

The idea of Genetic Algorithm is to use the power of evolution to solve optimization

problems.

According to Sivanandam and Deepa (2007), Holland proposed Genetic

Algorithm as a heuristic method based on ”survival of the fittest” and this method

is very useful tool for search and optimization problems. Recently, Genetic Algorithm
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received most attention and become popular because of their potential in solving

complex problems. Apart from that, this method is widely used to solve many

problems including scheduling and sequencing, reliability design, vehicle routing and

others (Gen and Cheng, 1997). In past few years, exploration into forecasting and

parameter estimation by using Genetic Algorithm has also increases.

1.2 Background Of Study

The method for forecasting, G.E.P. Box and G.M Jenkins introduced in 1960

and this method is widely known as Box-Jenkins method. According to Hoshmand

(2009), there are five main factors why Box- Jenkins method is more suitable for

the purpose of forecasting. Firstly, Box-Jenkins methodology is very suitable for any

data patterns such as combination of a trend, random fluctuation and seasonal factors.

Besides that, this method is able to identify the best model when there is given a set

of data. Next, Box-Jenkins approach can handle with complex data patterns using

relatively well specified rules. Fourth, statistical measurement can be used to test the

reliability of forecasts. Lastly, Box-Jenkins is chosen instead of other forecasting

methods because Box-Jenkins methodology does not make assumptions about the

number of terms used in the models or the relative weight given to them.

In general, there are two main types of Box-Jenkins models namely seasonal

and non-seasonal Box Jenkins models. Non-seasonal models consist of three main

models, which are; Autoregressive models (AR), Moving Average model (MA) and

Mixed Autoregressive Moving Average (ARMA). Box and Jenkins proposed a method

known as Box-Jenkins methodology to ARIMA models. ARIMA model stands for an

integration between AR and MA model.

Box-Jenkins is very popular for forecasting variety type of problems. The

strength of this method is that it can be applied to any type of time series pattern.

One of the early researches is in 1982 where this method is used to forecast U.S
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Merchandise Exports. This study used both seasonal and non seasonal Box-Jenkins

models (Dale and Bailey, 1982). Not only that, Lin et al. (1986) also trying to used

Box-Jenkins approach to predict Louisiana’s prison population. The result shows that

the predictions are quite close to the actual values and sufficiently adequate to meet the

needs of the correctional system for short-term planning.

Genetic Algorithm is an adaptive heuristic search based on evolutionary ideas.

It simulates the survival of the fittest among individuals over consecutive generation

for solving a problem. Basically, there are many other techniques that can be used for

optimization problem. Genetic Algorithm is chosen instead of other methods because

it gives bundle of benefits. Firstly, it is more robust. Even though there is changes

in the inputs, Genetic Algorithm do not easily break.Besides that, GA are parallel

as compared to other algorithms. Next, according to Sivanandam and Deepa (2007),

the advantages of Genetic Algorithm are it is easy to discover global optimum, easily

modified for different problems, the problem has multi objective functions and others.

Other than that, it is noticed that most of the algorithms can only search the solution

in one direction in a time. Meanwhile, GA can explore in various directions in a time.

For example, if solution cannot be found or the path turn to be dead end, they can be

eliminated and continue work using other paths that have possibilities to give optimal

solution (Bajpai and Kumar, 2010).

According to Sivanandam and Deepa (2007), there are four major differences

that exist between Genetic Algorithm and other conventional optimization techniques.

One of them is Genetic Algorithm works with the coding of solution set and not

with the solution itself. Not only that, this method differs from conventional

optimization techniques in the way that it uses a population of solutions in each

iteration (Deb, 2001). Besides that, GA uses fitness function for evaluation rather

than derivatives. Lastly, Sivanandam and Deepa (2007) also noted that Genetic

Algorithm use probabilistic transition operates compared to conventional methods that

uses deterministic transition operates.
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1.3 Problem Statemant

The main issue in Box-Jenkins modeling is the study of model parameter. The

problem is, in estimating the parameter of Box-Jenkins model, it is a difficult task.

The parameters in Box-Jenkins model are hard to estimate due to the large number of

possible solutions. For non-seasonal model, the parameters that need to be estimated

are φ and θ. Meanwhile, there are four parameters involve in seasonal model namely

φ, θ, Φ and Θ. Nevertheless, this study will only focus on non-seasonal model which

is ARIMA. The values of φ and θ are between 0 and 1.

There are many approaches that can be used to estimate the parameters such as

Least Square Estimation, (LSE) and Maximum Likelihood Estimation (MLE). But,

current predictions does not guarantee a good solution. Hence,this study explore

the use of operational research tool namely Genetic Algorithm in estimating the

parameters of Box-Jenkins model.So, Genetic Algorithm will be used in this research

in searching the best value of φ and θ. Apart from that, this values will be used for

finding the forecast accuracy.

1.4 Research Objectives

The objectives of this research are:

(i) To estimate the parameters in Box-Jenkins model by using Genetic

Algorithm.

(ii) To define the best parameter estimate.

(iii) To implement the above model in forecasting the rainfall data.
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1.5 Scope Of Study

The scope can be divided into three parts namely Box-Jenkins, forecast

accuracy and Genetic Algorithm. For Box-Jenkins model, the research focus on

ARIMA model since the data is non seasonal type data. The data will be collected

from Department of Irrigation and Drainage Malaysia. There are 127 data and this

data will be divided into two which are in-sample data and out-sample data. 115 data

from in-sample data will be used to formulate the model and the balance data, which

is out-sample data is used for calculating forecast accuracy.

Forecast accuracy plays an important role in order to ensure that the model that

is chosen is the best model. There are number of ways to calculate forecast accuracy

such as Mean Square Error (MSE), Mean Absolute Error (MAE), Mean Percentage

Absolute Error (MAPE) and others. This study will only focus on MAPE method and

the formula is as below:

MAPE =
100%

n

n∑
i=1

∣∣∣∣At − Ft

At

∣∣∣∣ , (1.1)

where

n = number of data,

At = Actual values,

Ft = Forecast values.

For Genetic Algorithm, this study will only use one point crossover as the

operation and Roulette Wheel selection is chosen for the selection method. Four

different population size will be used in this study which are 30, 50, 80 and 100.

Besides that, empirical test will be used for the crossover probability and the values

are 0.5, 0.7 and 0.9.
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1.6 Significance Of Study

This research helps to improve the forecast accuracy. Other than that, the major

contribution in this research is the implementation of Genetic Algorithm in estimating

the parameters of Box-Jenkins model. The performance of Genetic Algorithm is

important since it will be convenient to the government sector to predict floods.

1.7 Thesis Structure

This project consists of five chapters. This chapter includes the introduction,

background of study, problem statement, research objectives, scope and the

significance of the study. The next chapter will discuss the related works on Box-

Jenkins demand, parameter estimation using Box-Jenkins, Genetic Algorithms demand

and parameter estimation using Genetic Algorithms. Chapter 3 will briefly explain on

how this study will be conducted. The implementation of Box-Jenkins and Genetic

Algorithms in solving the problem will be discussed in detail in chapter 4. Chapter 5

will include the conclusion and suggestion for further research.
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