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ABSTRACT

Optimization method is widely used in mechanics and engineering, economics,

operations research and engineering controls. Various methods have been introduced

to solve the optimization problem and mostly it will get a local optimum. One of

the most commonly used method is the Newton-Raphson method. In this method,

there are some circumstances where it is unable to solve the optimization problem.

With the help of homotopy, the problems faced by the Newton-Raphson method can

be overcome and thus solve the optimization problem. Therefore, the aim of this

study is to investigate the Newton-Raphson method as the basis for the homotopy

optimization method for finding local minimum and also the global minimum. There

are several auxiliary homotopy functions that should be selected and this project

using the Newton Homotopy and Fixed-Point Homotopy. The ability for these two

functions are compared in solving optimization. To strengthen these findings, the

project is programmed using MATLAB to implement the Newton’s based Homotopy

Optimization Method. The four functions of univariate and multivariate are provided

for illustrative purposes. This project has succeeded to compare the ability of these

two auxiliary homotopy functions in solving global optimization method.
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ABSTRAK

Kaedah pengoptimuman digunakan secara meluas dalam mekanik dan

kejuruteraan, ekonomi, penyelidikan operasi dan kawalan kejuruteraan. Pelbagai

kaedah telah diperkenalkan untuk menyelesaikan masalah pengoptimuman dan

kebanyakannya ia akan mendapatkan optimum tempatan. Salah satu kaedah yang

paling biasa digunakan adalah kaedah Newton-Raphson. Dalam kaedah ini, terdapat

beberapa keadaan di mana ia tidak dapat menyelesaikan masalah pengoptimuman.

Dengan bantuan homotopi, masalah yang dihadapi oleh kaedah Newton-Raphson

boleh diatasi dan seterusnya menyelesaikan masalah pengoptimuman. Oleh itu,

matlamat kajian ini adalah untuk menyiasat kaedah Newton-Raphson sebagai asas

bagi kaedah pengoptimuman homotopi untuk mencari minimum tempatan dan juga

minimum sejagat. Terdapat beberapa fungsi tambahan homotopi yang perlu dipilih

dan projek ini menggunakan Newton homotopi dan Titik-Tetap homotopi. Keupayaan

untuk kedua-dua fungsi dibandingkan dalam menyelesaikan pengoptimuman. Untuk

menguatkan penemuan ini, projek ini diprogramkan menggunakan MATLAB untuk

melaksanakan kaedah pengoptimuman homotopi berasaskan Newton. Empat fungsi

univariat dan multivariat disediakan untuk tujuan ilustrasi. Projek ini telah berjaya

untuk membandingkan keupayaan kedua-dua fungsi tambahan homotopi dalam

menyelesaikan kaedah pengoptimuman sejagat.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Optimization theory is one of the oldest branches of mathematics. Rothlauf

(2011) wrote that with the emergence of computer around the 1940’s, the first

optimization method is solved using computer was introduced by Gauss which is the

Gaussian elimination method. In recent years, optimization has received enormous

attention and it is an active area in the field of operational research, computational

and applied mathematics. This is due to the rapid advances in computer technology,

for example in computer hardware component such as high-speed processors, large

capacity random-access memory (RAM) and others. Not forgetting the development

computer software application, we now have a variety of user-friendly software. For

example of the computer hardware, this research used quad-core processor that has

four independent actual central processing units (called “cores”), which are the units

that read and execute program instructions. Mathematical software used is MATLAB

R2011a where it is a high-level language and interactive environment for numerical

computation, visualization and programming.

Optimization studies the mathematical problem of minimize and maximize

a given objective function. It can be divided into unconstrained optimization and

constrained optimization. Therefore optimization is focusing on providing the best

possible solutions to systems described by the mathematical model.



2

Nowadays, optimization techniques are widely used in areas of industrial

operations, engineering design and control, business and financial management, data

analysis, medical imaging and treatment, to mention just a few. The people who work

in this area have always been interested to design optimization. For example, the

optimization is used to help make decisions in financial portfolio management where

the objective is to maximize profit, while a constraint is to keep a certain measurement

of investment risks below some given tolerable level. From this example, we can

model the problem into equations and plot the graph so that we can easily find the

maximum or minimum value. But in real-life problems, there are many variables

that are included and the situation cannot be formulated in linear form. Therefore

it usually has a large number of local minimum and maximum. Finding an arbitrary

local optimum is simply achieved by using local optimization methods. The general

criteria to find the local minimum is by setting the gradient equal to zero and Hessian

matrix is positive definite. But in global optimization there is no such general criterion

for declaring that global minimum has been reached. Therefore, finding the global

maximum or minimum of a function is a lot more challenging.

Finding a global minimizer of a function is one of the most interesting areas

in nonlinear problems. Determine the minimum point among the local minima in

the area interest is the goal of global minimization (Liberti, 2008). Method that first

used in global optimization is deterministic techniques, mostly based on the divide-

and-conquer principle. This was introduced in the late 1950’s with the advent of the

computers into the research environment. Stochastic techniques based on adaptive

random search appeared between the 1970’s and early 1980’s. The slow pace progress

in continuous global optimization due to computational method was very expensive at

that time until the 1990’s where computer hardware with the necessary power becomes

available. Since the beginning of the 1990’s, the optimization research community has

witnessed an explosion of papers, books, algorithms, software packages and resources

concerning deterministic and stochastic global optimization.
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1.2 Background of the Study

Global homotopy optimization methods have been developed to find all local

minimizers of a function (Diener, 1995); however, due to the amount of computation

required in these methods, they are typically only applicable to problems with a small

number of local minimizers. In case of any real life problems one should employ

global numerical methods to avoid initial value problems. Using numerical algorithms

to solve polynomial systems with tools originating from algebraic geometry is the main

activity in the so called Numerical Algebraic Geometry. This is a new developing field

for the crossroads of algebraic geometry, numerical analysis, computer science and

engineering. Homotopy continuation method is a global numerical method to solve

not only polynomial systems, but also a nonlinear system in general.

Many analytical approaches are local search that finds local minimum and

continues to the global minimum. In order to find global minimum, one needs to find

the local minimum first. Local search have the tendency to be stuck in local minima

because they greatly depend on initial solution. Therefore to find the global optimum,

researchers try to find tools or methods to help the local searches.

In this research, the local search method that used is Newton-Raphson method

(also known as Newton’s method). This method is a powerful technique due to the

basis for the most effective procedures in linear and nonlinear programming. Newton-

Raphson method used to find the local minimum and then injected into the homotopy

optimization method in order to find the global minimum.

1.3 Statement of the Problem

In this project, the homotopy optimization method is applied in solving

nonlinear unconstrained minimization problem. This study focused on examining

ability of the variants of homotopy function in optimization to locate the global

minimizer.
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1.4 Objectives of the Study

The main objectives of this study are:

(i) To determine the ability of Newton Homotopy and Fixed-Point

Homotopy in solving optimization problems.

(ii) To apply the properties of the homotopy optimization method to

locate the local extremum and then determine the global minimizer.

(iii) To run and solve optimization for one variable and two variable test

function by using MATLAB software.

(iv) To analyze the results of simulation.

1.5 Scope of the Study

In this study, the method used for optimization is the homotopy optimization

method. This method need any local minimization method to minimize the function.

Therefore the chosen method is Newton-Raphson method. The variants of homotopy

were focusing on Newton Homotopy and Fixed-Point Homotopy. Several test

functions were tested using the homotopy optimization method to optimize and locate

the local extremum and then determine the global minimum. By using MATLAB

R2011a, computer programming performed for the homotopy method and Newton-

Raphson method.

1.6 Significance of the Study

Usually Homotopy used to overcome divergence in Newton-Raphson method

for finding root. Therefore, this study is useful in applying homotopy in solving

optimization and examine the ability of the variants of homotopy function. The result

from this study can be references for future study in optimization.
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