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ABSTRACT 

 

 

 

 

 The Earth’s ionosphere, which is among the major error contributor in Global 

Positioning System (GPS), is sensitive to level of solar activities. During this study, 

the concern is on the peak of upcoming Solar Cycle 24 expected in May 2013, which 

will induce severe disturbance to the ionosphere. This phenomenon raises the 

question of how will this affect the equatorial ionosphere and real-time GPS 

positioning. This research helps to understand the geomorphology and climatology of 

equatorial ionosphere in the Malaysian sector. A combination of local and global 

GPS network with abundant data has been employed to map the Total Electron 

Content (TEC) of equatorial ionosphere over Malaysia. The results show that 

dynamic morphological characteristics of ionosphere induce spatially- and 

temporally-correlated errors to GPS positioning. A significant amount of these 

effects can be mitigated with Network-based Real-Time Kinematic (NRTK) 

technique by generating network correction. This network correction can be tuned to 

output dispersive correction in order to better model the ionospheric residuals. 

Dispersive correction approach has been implemented in ISKANDARnet NRTK 

system for NRTK service enhancement. Extensive tests conducted within 

ISKANDARnet coverage under undisturbed ionosphere condition found that 

dispersive correction approach outperformed conventional lump correction with: (i) 

mean improvement of 20% in ambiguity resolution success rate, (ii) positioning 

accuracy was two-fold better with all error components lay within ±10 cm, and (iii) 

21% improvement in mean ambiguity resolution validation ratio was achieved. 

However, imperfect ionospheric modelling due to rapid ionospheric irregularities 

leads to the need of establishing a near real-time ionospheric outburst monitoring 

system. Thus, the ISKANDARnet Ionospheric Outburst MOnitoring and Alert 

System (IOMOS) is developed to effectively quantify ionospheric disturbances, 

translate into indices and disseminate nowcast alert to users in near real-time. The 

IOMOS mainly serves as NRTK integrity monitoring system to ensure reliable 

NRTK solutions are delivered to users. It also functions as a near real-time space 

weather monitoring system to probe ionospheric perturbations. Overall, this research 

will ultimately benefit the GPS positioning and space weather communities. 
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ABSTRAK 

 

 

 

 

 Ionosfera bumi merupakan antara penyumbang selisih utama dalam Sistem 

Penentududukan Sejagat (GPS) sensitif kepada tahap aktiviti suria. Kajian ini 

berkisar tentang Kitar Suria ke 24 yang dijangka memuncak pada Mei 2013 akan 

menyebabkan gangguan teruk terhadap ionosfera. Fenomena ini menimbulkan 

persoalan bagaimana ia memberi kesan kepada ionosfera di kawasan khatulistiwa 

dan penentududukan GPS masa hakiki. Penyelidikan ini membantu pemahaman 

mengenai geomorfologi dan klimatologi ionosfera khatulistiwa di sektor Malaysia. 

Gabungan jaringan GPS tempatan dan global digunakan untuk memetakan 

kandungan total elektron (TEC) di Malaysia. Hasil menunjukkan bahawa sifat 

morfologi ionosfera yang dinamik memberi selisih ruang dan masa kepada 

penentududukan GPS. Sebahagian besar selisih ini dapat dikurangkan melalui teknik 

Jaringan Kinematik Masa Hakiki (NRTK) dengan menjana pembetulan jaringan. 

Pembetulan jaringan ini boleh dilaraskan supaya membentuk pembetulan serakan 

untuk memodelkan reja ionosfera dengan lebih baik. Pembetulan serakan ionosfera 

telah dilaksanakan dalam sistem NRTK ISKANDARnet untuk penambahbaikan 

sistem perkhidmatan NRTK. Ujikaji terperinci yang dijalankan dalam liputan 

jaringan ISKANDARnet semasa keadaan ionosfera yang tiada gangguan 

menunjukkan bahawa pendekatan pembetulan serakan ionosfera menandingi 

pembetulan gumpalan konvensional dengan: (i) purata penambahbaikan sebanyak  

20% dalam kadar penyelesaian ambiguiti, (ii) ketepatan penentududukan dua kali 

ganda lebih baik dengan semua komponen selisih dalam lingkungan ±10 cm, dan (iii) 

21% penambahbaikan dalam nisbah pengesahan bagi penyelesaian ambiguiti dapat 

dicapai. Namun demikian, permodelan ionosfera yang tidak sempurna disebabkan 

perubahan ionosfera yang pantas menimbulkan keperluan untuk menubuhkan sistem 

pemantauan letusan ionosfera masa hakiki. Justeru itu, Sistem Pemantauan dan 

Amaran Letusan Ionosfera (IOMOS) untuk ISKANDARnet dibangunkan dengan 

menghitung kuantiti gangguan ionosfera dalam bentuk indeks ionosfera dan 

menyebarkan amaran semasa kepada pengguna. IOMOS kini digunapakai sebagai 

sistem pemantauan integriti NRTK untuk memastikan hasil teknik NRTK boleh 

dipercayai untuk disalurkan kepada pengguna. IOMOS juga berfungsi sebagai sistem 

pemantauan cuaca angkasa pada masa hakiki untuk meneliti gangguan ionosfera. 

Secara keseluruhannya, hasil penyelidikan ini dapat memanfaatkan komuniti 

penentududukan GPS dan cuaca angkasa. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Motivation 

 

 

 In the last two decades, Global Positioning System (GPS) applications have 

been growing rapidly, proving the availability and reliability of the GPS. However, 

the GPS positioning accuracies are affected by different error sources. A major error 

source affecting GPS positioning accuracy are the propagation delays as signals pass 

through the ionosphere layers. This error source can be the dominant bias during 

periods of disturbed ionospheric conditions. These periods are usually characterised 

by a significant degradation of positioning accuracy, and reduction of receiver 

tracking performance. In particular, the ionospheric free electrons, quantified as 

Total Electron Content (TEC) are strongly affected by the number of the sunspots 

(Figure 1.1). During this study, the concern is on the onset of the next solar cycle, 

Solar Cycle 24 (Figure 1.2) which is underway after the past 11-year sunspot cycle 

in 2000/2001. This cycle’s peak, which is called solar maximum, is expected in May 

2013 (NOAA-SWPC, 2009). 
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Figure 1.1: Sunspots with Active Region 1520 on 16 July 2012. 

 

 

 

Figure 1.2: Sunspot Number Prediction (Hathaway, 2012). 
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 During this stage, the mean TEC value is expected to increase as shown in 

Figure 1.3. The green curve shows the interpolated (and 30-day predicted) mean 

TEC based on a least-squares collocation. In addition a 7-parameter trend function - 

extrapolated for one year - is plotted in yellow. The daily averaged mean TEC values, 

namely the zero-degree coefficients of the spherical harmonic expansion used to 

represent the global TEC, are indicated by black dots. As a result, the performance of 

(absolute and relative) positioning, navigation and timing will experience 

degradations during these periods of high ionospheric activity. Moreover, the GPS 

receiver may lose lock on phase and/or amplitude of the signal when local 

irregularities in electron contents are present in the ionosphere (Chen et al., 2008). 

Hence, these phenomena will have direct impact on GPS users in equatorial region 

since the size and variability of the ionospheric free electron density is usually the 

largest in this region (Odijk, 2002; Musa, 2007). 

 

 

Figure 1.3: Mean TEC value (After CODE, 2012). 
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1.2 Research Rationale 

 

 

 One possible approach to ameliorate GPS positioning accuracy is Network-

based Real-Time Kinematic (NRTK). In recent years, NRTK has been proven to be 

an efficient way to mitigate ionospheric effect (Lachapelle and Alves, 2002; Rizos, 

2002; Musa, 2007). This technique uses a network of GPS Continuously Operating 

Reference Station (CORS) to model the atmospheric (ionosphere and troposphere) 

conditions over the region of network coverage, and then to provide users with 

network corrections. Applying these corrections can reduce a substantial amount of 

spatially- and temporally-correlated errors related to atmospheric effects, thus 

improving the accuracy of the rover’s position. Moreover, GPS CORS which 

operates continuously supports the understanding of equatorial ionosphere and thus 

greatly helps ionospheric modelling in NRTK. 

 

 

 NRTK by nature is for atmospheric modelling enables the detection of local 

ionopheric irregularities. Ionospheric irregularities affect GPS users by degrading the 

quantity and quality of measurements; and in the case of NRTK, it worsen the 

quality of the network correction. Hence, disruption and rapid fluctuation in network 

correction may signify ionospheric disturbances. Subsequently, NRTK system 

administrator can inform roving users about potential positioning quality 

deterioration and/or expected difficulties in network positioning. As a sole 

university-based NRTK provider in the region, the Iskandar Malaysia CORS 

network (ISKANDARnet) is utilised as an operational platform for this research. 

Collectively, understanding and continuously monitoring the spatio-temporal 

variations of equatorial ionosphere together with delivering reliable NRTK 

correction can effectively quantify ionospheric disturbances and improving user 

positioning solution. 
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1.3 Research Aim and Objectives 

 

 

 The aim of this research is rooted in the concept of mitigating ionospheric 

residual and improving the performance of the NRTK with enhanced network 

correction and reliability assurance via ionospheric monitoring. Specific objectives 

to achieve the aim of this research are outlined below: 

 

i. To quantify equatorial ionosphere over Malaysia using GPS measurements. 

High-resolution TEC maps derived from GPS CORS are used to study both 

spatial and temporal variations of ionosphere. The magnitude of ionospheric 

error to GPS positioning is also investigated. 

 

ii. To implement dispersive network correction algorithm in ISKANDARnet 

NRTK system. 

The ISKANDARnet NRTK system is enhanced with implementation of 

dispersive network correction to better mitigate ionospheric effects. 

 

iii. To develop an ionospheric residual monitoring and alert system for 

ISKANDARnet. 

The ISKANDARnet Ionospheric Outburst Monitoring and Alert System 

(IOMOS) is developed and integrated with ISKANDARnet system. The 

IOMOS monitors the quality of NRTK correction and derives ionospheric 

outburst indicator as part of NRTK integrity monitoring. It also serves as an 

operational platform for space weather monitoring system. 
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1.4 Research Scopes 

 

 

Three limitations were identified during this research: 

 

i. The inter-distance between ISKANDARnet CORS is restricted since 

ISKANDARnet is a medium-scale CORS network in the equatorial region 

with maximum baseline length less than 50 km. 

 

ii. This research focused on dispersive component (ionospheric residuals) for 

NRTK correction enhancement and integrity indicator since ionosphere has 

rapid variations and contributes the largest error in GPS observables. 

However, the same approach can be applied for the non-dispersive part 

(troposphere) too. 

 

iii. The approach in this research is concentrated in the equatorial region; 

possible adaptation and test have not been considered for other regions. 

 

 

 

 

1.5 Research Strategy 

 

 

 In order to achieve research aim and objectives, the research approach for 

ionospheric residual modelling involves developing and implementing three 

components in ISKANDARnet processing core: (i) GPS ionoscope for quantifying 

equatorial ionosphere over Malaysia, (ii) dispersive network correction for 

enhancing NRTK correction, and (iii) NRTK integrity monitoring via IOMOS. The 

model for overall research approach and integral relationship between components 

are illustrated in Figure 1.4, respectively. 
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Figure 1.4: Model-based design and schematic design workflow of integral 

components for research approach. 
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The research was conducted in five phases: 

 

Phase I: Research Plan and Literature Review 

· Critical research planning and literature review were carried out to get detailed 

insight and research methodology. 

 

Phase II: Quantifying Ionosphere via GPS Ionoscope 

· GPS data from local and regional CORS were utilised to map TEC over 

Malaysia.  

· The magnitude of ionospheric error to GPS baseline was analysed. 

· First research objective is accomplished upon the completion of this phase. 

 

Phase III: NRTK Correction Enhancement 

· The current implementation of NRTK in ISKANDARnet system is clarified. 

· The algorithm to generate dispersive network correction is implemented. 

· Preliminary test and analysis were conducted to assess dispersive correction 

compared to conventional lump correction. 

· The second research objective is achieved from this phase. 

 

Phase IV: NRTK Integrity Monitoring 

· IOMOS is developed and implemented as NRTK integrity monitoring for 

ionosphere in ISKANDARnet system. 

· The algorithm and workflow of IOMOS are explained. 

· Test case and analysis are presented. 

· This phase fulfils the third research objective. 
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Phase V: Overall Performance Evaluation 

· The output of each component in research approach was integrated and 

undergone a performance evaluation. 

· Test campaigns were conducted in two modes: post-kinematic and NRTK to 

evaluate overall performance of ionospheric modelling. 

· Comparison between dispersive and lump corrections approach was analysed in 

ambiguity and position domain. 

· Conclusion and recommendation are drawn from results and analysis. 

 

 

 

 

1.6 Research Contributions 

 

 

The main contributions of this research can be summarised as follows: 

 

i. The morphology and climatology studies of equatorial ionosphere in 

bridging behavioural knowledge of ionosphere over Malaysia. 

Ionospheric studies via GPS ionoscope also facilitate the development of 

space-based industry in Malaysia, for example satellite-based navigation, 

surveillance and communication systems. The understanding of the 

ionosphere layers helps in modelling signal propagation for 

abovementioned space-based systems. More importantly, it can be useful 

for monitoring the incoming Solar Cycle 24, which is expected to reach 

maximum in May 2013.  

 

ii. Enhancing NRTK performance with implementation of dispersive 

network correction in ISKANDARnet NRTK processing core. Dispersive 
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correction provides better ionospheric residuals modelling, which in turn 

higher quality of NRTK corrections can be obtained. Consequently, 

precise positioning is reliably possible, especially during the period of 

disturbed ionosphere. 

 

iii. Development and implementation of IOMOS as NRTK integrity 

monitoring system and operational ionosphere probing system. IOMOS 

utilises ionospheric residuals to serve as ionospheric network integrity 

indicator without additional cost and fully covers the network. 

Ionospheric indicator is a useful tool to inform users about expected 

difficulties in NRTK positioning. It also provides statistical information 

on the expected size of residual ionospheric biases that affects positioning 

accuracy.  

 

 

 

 

1.7 Thesis Outline 

 

 

This thesis consists of six chapters and summarised as follows: 

 

Chapter 1 describes the motivation, rationale, and objectives of the research. The 

strategy for meeting these objectives are provided. Major contributions of this 

research are also highlighted. 

 

Chapter 2 investigates morphology and climatology of equatorial ionosphere over 

Malaysia. The methodology of estimating the ionospheric TEC values from GPS 

observables via combination of local and global GPS network is described. Spatial 

and temporal characteristics of ionospheric error are analysed. Information from this 
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chapter is applied as both a priori information and empirical observation for data 

analysis in subsequent chapters. 

 

Chapter 3 gives brief introduction about ISKANDARnet. The chapter examines 

algorithms used in ISKANDARnet software, and clarifies implementation method of 

dispersive correction in order to better model the ionospheric residuals. The chapter 

concludes with an initial test and analysis on the performance of dispersive 

correction. 

 

Chapter 4 presents the need of network integrity monitoring system. The chapter 

describes the development and implementation of IOMOS as ionospheric 

perturbation monitoring module in ISKANDARnet. The core components in IOMOS, 

i.e. IOX and IOT are introduced. Some case studies are included to verify the 

proposed system. 

 

Chapter 5 describes the design of the tests and analysis on the performance 

assessment of dispersive correction approach compared with conventional lump 

correction. Analysis on ionosphere condition via TEC maps and IOMOS during test 

duration is presented. Results from performance assessment conducted in both post-

kinematic and NRTK mode are presented. The efficiency of the proposed approach 

is discussed. 

 

Chapter 6 summaries major conclusions on main contributions of this research and 

make some recommendations for future research. 
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