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ABSTRACT 

 

 

 

 

The Korteweg-de Vries (KdV) equation is a nonlinear partial differential 

equation has nonlinearity and dispersion effects. The balance between these effects 

leads to a wave propagation that is soliton solution.  It propagates without changing 

it‟s shape.  The purpose of this research is to obtain the multi solitons solutions of 

KdV equation up to six-solitons solutions.  The Hirota‟s bilinear method will be 

implemented to find the explicit expression for up to six-solitons solutions of KdV 

equation.  Identification of the phase shift that makes full interactions happens at 

𝑥 = 0  and 𝑡 = 0  for each multi soliton solution of KdV equation. The Maple 

computer programming will be used to produce the various interactive graphical 

outputs for up to six-solitons solutions of KdV equation.   
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ABSTRAK 

 

Persamaan Korteweg de-Vries (KdV) adalah persamaan terbitan separa tak 

linear yang mempunyai kesan tak linear dan penyelerakan.Keseimbangan antara 

kesan ini membawa kepada perambatan gelombang iaitu penyelesaian soliton.  

Gelombang merambat tanpa berubah bentuknya. Tujuan kajian ini adalah untuk 

mendapatkan penyelesaian multi soliton bagi persamaan KdV sehingga penyelesaian  

enam soliton.  Kaedah Hirota bilinear akan diguna pakai untuk mencari penyelesaian 

eksplisit bagi penyelesaian sehingga enam-soliton dalam persamaan KdV.  

Identifikasi anjakan fasa ketika interaksi penuh berlaku pada 𝑥 =0 and 𝑡 =0 bagi 

setiap penyelesaian multi soliton persamaan KdV.  Pengaturcaraan komputer, 

MAPLE akan digunakan untuk menghasilkan pelbagai paparan grafik yang interaktif 

bagi penyelesaian sehingga enam-soliton dalam persamaan KdV.    
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CHAPTER 1 

 

INTRODUCTION 

 

This chapter gives an explanation about introduction of solitary wave.  Besides, 

this chapter discusses the background and the problem statement of study.  Next, it will 

explain the objective of study and the scope of study. 

 

1.1 Preface 

 

In 1834, a famous hydrodynamic John Scott Russell was described the solitary 

wave from his first observation while he was riding his horse along a canal near 

Edinburgh.  He had renamed this solitary wave phenomenon and called it “the wave of 

translation”.  He concluded the solitary wave speed depends on the amplitude or height 

of wave. 

 

On the other hand, he contends that his discovery about solitary wave was a real 

revelation.  But, at that time his enthusiasm not interest by many people to explore the 

solitary wave phenomenon more detail.  About more than 100 years, the discovery of 

solitary wave was beheld by mathematician and physician to realize the importance of 

John Scott Russell discovery.   
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In year 1895, John Scott Russell‟s theoretical understanding has been studied by 

Diederik Johannes Korteweg and his PhD student, Gustav de Vries.  They have derived 

an equation that related with John Scott Russell‟s theoretical understanding. This 

equation named same as they name which is Korteweg de–Vries equation. It also called 

as the KdV equation.  The feature of the KdV equation is the speed of solitary wave 

proportional to their amplitude.  Thus, the higher amplitude of solitary wave will move 

faster than the shorter solitary wave (Daoxious &Peyrard, 2006). 

 

In 1965, the famous America physicist, Norman Zabusky and the physicist, 

Martin Kruskal were published the numerical solution that discovered the solitary waves 

to maintain the shape after the interaction occurred.  They also invented the term 

„soliton‟ because the solitary waves have unchangeable property as the collision of 

particles.  In generally, this term has been accepted and correctly revealed the substance 

of the solitary waves.   

 

The mathematician and physician have given a lot of effort in the solitary wave 

field such as fluid dynamics, elementary particles physics, plasma physics and others.  

Thus, these efforts generate a few of nonlinear evolution equation such as Korteweg de-

Vries (KdV) equation, Sine-Gordon equation, KadomtsevPetviashvili (KP) equation and 

other equation that have been developed from the KdV equation (Chaohao, 1995). 

 

1.2 Background of Study 

 

Since 1965, Norman Zabusky and Kruskal discovered the important behaviour of 

soliton by computation.  The numerical studies of nonlinear waves have developed 

widely and appear as one of the active branches of numerical analysis.  There exist three 

main numerical methods are finite difference method, finite element method and spectral 

method. 
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As mentioned above, we found many researchers had done various investigations 

on the KdV equation.  The KdV equation can model the dynamics of solitary waves.  

This equation is a nonlinear, dispersive and non-dissipative equation which has soliton 

solutions.  The standard form of the KdV equation can be written as 

 

                                                 𝑢𝑡 + 𝛼𝑢𝑢𝑥 + 𝛽𝑢𝑥𝑥𝑥 = 0                                              (1.0) 

 

where𝑢 𝑥, 𝑡  refers to the elongation of the wave at place,𝑥 and at time, 𝑡.  The term 𝑢𝑡  

describes the move frame of the wave.  Besides,𝛼𝑢𝑢𝑥 is the nonlinear term which the 

wave propagates with a speed proportional to 𝛼𝑢.  The𝛽𝑢𝑥𝑥𝑥  term generates dispersive 

broadening that can exactly compensate the narrowing caused by nonlinear term under 

the proper condition.  The variables 𝛼and 𝛽 are parameter or constant coefficient.   

(Kolebaje & Oyewande, 2012). 

 

Thus, in this research will investigate the analytical solution of KdV equation by 

using Hirota‟s bilinear method for multi-solitons.  The KdV equation that will be used in 

this research is 

 

𝑢𝑡 + 𝑢𝑢𝑥 + 6𝑢𝑥𝑥𝑥 = 0 

 

where𝛽 equal six.  Six is the constant coefficient. 

 

In years 1971, a Japanese researcher, Hirota developed a new direct method for 

constructing the multi-solitons solution of KdV equation.  He also derived an explicit 

expression of multi-solitons solutions.  This new direct method is called the Hirota‟s 

bilinear method. The Hirota‟s method is effective and fastest way to produce the results 

of KdV equation solution for multi-solitons (Matsuno, 1984). 

 

 



4 
 

1.3 Statement of Problem 

 

The Korteweg-de Vries (KdV) equation is a nonlinear partial differential 

equation that can be solving numerically and analytically.  To obtain the solutions of the 

KdV equation is not easy.  In this research, we need to observe the soliton ladder of 

solutions.  Then, to get the two, three, four, five and six-solitons solutions by using 

Hirota‟s bilinear method, here we find to produce the permutation parameters of 

solitons.  The two, three, four, five and six-solitons solutions are difficult and 

complicated to calculate manually. So, we need to use the computer programming tools 

to derive the f function and produce the various interactive graphical outputs for up to 

six-solitons solutions of KdV equation.  

 

1.4 Objectives of  Study 

 

In this research, we focus on three main objectives of the research.  There are 

 

a) Solving the KdV equation by using the Hirota‟s bilinear method.  

b) Obtainingthe multi-solitons solutions and the graphical outputs of KdV 

equation forup to six solitons. 

c) Analysing the conservation laws of mass, momentum and energy for one 

soliton solution of KdV equation. 

 

1.5 Scope of Study 

 

In this research, we consider the KdV equation which is written as below  

 

   𝑢𝑡 + 𝑢𝑢𝑥 + 6𝑢𝑥𝑥𝑥 = 0. 
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We wish to investigate the solutions of KdV equation up to six-solitons by using 

the Hirota‟s bilinear method.  The various graphical outputs of up to six-solitons 

solutions will be studied. 

 

1.6 Significance of Study 

 

Mainly, this research will discuss more about the multi-solitons solutions of KdV 

equation up to six-solitons.  The Hirota‟s bilinear method will be used to obtain these 

solutions of KdV equation.  Soliton or also known as solitary wave growth in broad field 

such as shallow and deep water waves, fibre optics, protein and DNA, magnet, bions, 

and biological models.   

 

The KdV equation is a nonlinear, dispersion and non-dissipation equation which 

has the soliton solutions.  The nonlinear effect and dispersion effect gives important 

roles in various fields such as tsunamis phenomenon.  The balancing between 

nonlinearity and dispersion effects in the KdV equation important to make the waves 

maintain their shape after a collision occurs. 

 

For instance, the balance between the effects of nonlinearity and dispersion show 

why the tsunamis spread out their waves after travelling a long distance along the beach 

with different depth of sea.  The travelling of tsunamis waves behaving as a solitons and 

its can be modelled as a KdV equation.  Then, this research problem will help us to solve 

certain problem in tsunamis phenomenon. 

 

Through this research, we will able to obtain solitons ladders for up to six-

solitons of KdV equation by using Hirota bilinear method.  Besides, we will able to 

verify the conservation laws of mass, momentum and energy for multi-solitons solutions 
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of KdV equation.  In addition, we also able to see symmetrical patterns in soliton 

solutions due the permutation of f function.  
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