MECHANICAL BEHAVIOR OF SAND-TIRE CHIPS MIXTURE UNDER MONOTONIC LOADING

CHEW YUN LIEH

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JANUARY 2013

To my beloved family and friends

ACKNOWLEDGEMENT

First of all I wish to express my sincere appreciation to my supervisor Prof. Dr. Aminaton binti Marto from the Faculty of Civil Engineering, Universiti Teknologi Malaysia for her information, valuable guidance and precious time in helping me to complete this Master Degree Project report. Her strong understanding in Geotechnical Engineering is very helpful in providing me a full understand on my Master Degree Project.

I wish to express my deepest gratitude to all the laboratory technicians in the Faculty of Civil Engineering, UTM who are very dedicated and helpful in assisting me during my laboratory works.

Last but not least, the moral supports and concerns from my family and friends are well acknowledged. Without the support and encourage from them completion this project would not be possible. I am so thankful to have them in supporting all the way through this project work.

ABSTRACT

The volume of used tire in the world is increasing tremendously every year due to the increase in population. With the increasing volume of used tire, it causes environmental and financial burden towards many regions all around the world. This volume of used tire will occupy landfills and may cause fire or provide breeding ground for mosquitos. Therefore used tire had been implemented into geotechnical engineering to create a sustainable future. In order to implement used tire in geotechnical engineering application a full understanding of the mechanical properties of used tire is required. This study aims to investigate the mechanical behavior of sand-tire chips mixture with 30% and 50% tire chips content under monotonic loading using triaxial test at confining pressure of 100, 200 and 300kPa. As the percentage of tire chips increased the cohesion tends to increase but decrease the friction angle. The shear strength of sand-tire chips mixture increased with the addition of tire chips are added into sand until a vicinity percentage of 30% and beyond that it tend to decrease. This is due to the addition of tire chips tend to behave more as a mass with sand inclusions rather than a reinforced soil. Besides that when the sizes of tire chip increased the shear strength tend to increase. Principally this is due to the friction between the sand and tire chips are reduced. When tire chips content increased elastic modulus has a tendency to decrease as a result of tire chip is an effective energy absorbent material. It is also observed that as the when confining pressure increase, the elastic modulus tends to increase.

ABSTRAK

Setiap tahun isipadu tayar yang digunakan dalam dunia semakin meningkat dengan pesat disebabkan oleh peningkatan dalam jumlah penduduk. Dengan jumlah yang semakin meningkat, ia merupakan satu beban kepada alam sekitar dan kewangan di seluruh dunia. Jumlah tayar yang tidak digunakan akan memenuhi tapak pelupusan dan boleh menyebabkan kebakaran atau menjadikan kawasan pembiakan nyamuk. Dengan itu tayar terpakai telah digunakan dalam bidang kejuruteraan geoteknikal untuk mewujudkan masa depan yang mampan. Untuk melaksanakan tayar terpakai dalam aplikasi kejuruteraan geoteknikal, pemahaman yang penuh pada sifat-sifat mekanikal tayar terpakai adalah amat diperlukan. Kajian ini bertujuan untuk menyiasat kelakuan mekanikal pasir-cip tayar dengan 30%, 50% kandungan cip tayar campuran cip di bawah pembebanan monotonic menggunakan ujian tiga paksi pengukuran tersalir pada tekanan mengurung 100,200 dan 300 kPa. Apabila peratusan cip tayar meningkat perpaduan akan cenderung meningkat tetapi mengurangkan sudut geseran. Kekuatan ricih pasir tayar cip campuran meningkat apabila cip tayar ditambah ke dalam pasir sehingga 30% dan melebihi itu ia cenderung untuk mengurang. Ini adalah disebabkan oleh penambahan cip tayar bertindak lebih sebagai jisim. Selain itu apabila saiz cip tayar meningkat kekuatan ricih cenderung pun akan meningkat. Ini adalah disebabkan geseran antara pasir dan serpihan tayar telah dikurangkan. Apabila kandungan cip tayar meningkat elastik modulus mempunyai kecenderungan untuk mengurangkan akibat cip tayar adalah bahan tenaga berkesan penyerap. Diperhatikan juga apabila tekanan mengurung meningkat tekanan modulus elastic juga cenderung untuk meningkat.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	X
	LIST OF FIGURES	xii
	LIST OF ABBREVIATIONS	xvi
	LIST OF SYMBOLS	xvii
	LIST OF APPENDICES	xviii

1.0	INTRODUCTION		
	1.1	Background of study	1
	1.2	Problem statement	2
	1.3	Objectives	3
	1.4	Scope of Study	3

2.0	LIT	ERATURE REVIEW	4
	2.1	Introduction	4
	2.2	Properties of Tire	4

	2.2.1 Physical Characteristic	4
	2.2.1.1 Physical Appearance	5
	2.2.1.2 Specific Gravity	5
	2.2.1.3 Gradiation	7
	2.2.2 Mechanical Characteristic	8
2.3	Properties of Sand	17
	2.3.1 Physical Characteristic	17
	2.3.1.1 Physical Appearance	18
	2.3.1.2 Specific Gravity	18
	2.3.1.3 Gradiation	18
	2.3.1.4 Relative Density	20
	2.3.2 Mechanical Characteristic	20
2.4	Properties of Tire Chips-Sand Mixture	22
	2.4.1 Physical Characteristic	22
	2.4.1 Mechanical Characteristics	24
	2.4.1.1 Shear Strength	24
	2.4.1.2 Elastic Modulus	36
	2.4.1.3 Types of Failure	47
2.5	Utilization	48
	2.5.1 Highway and Earthwork Application	48
	2.5.2 Landfill Application	50

3.0	МЕТ	HODO	LOGY	51
	3.1	Introd	uction	51
	3.2	Litera	ture Review	52
	3.3	Sampl	e Collection	53
	3.4	Labor	atory Experiment	53
		3.4.1	Particle Size Distribution	54
		3.4.2	Specific Gravity	55
		3.4.3	Relative Density	55
	3.5	Conso	lidated Undrained Test	56
		3.5.1	Sample Preparation	59
		3.5.2	Procedure of Consolidated Undrained Test	59

3.5.3	Main Test	60
3.5.5	Elastic Modulus	62

4	RES	ULT AND DISCUSSION	63
	4.1	Introduction	63
	4.2	Physical Characteristic	63
		4.2.1 Grain Size Distribution	64
		4.2.2 Specific Gravity	65
		4.2.3 Relative Density	65
	4.3	Mechanical Characteristic	66
		4.3.1 Effect of Tire Chips Content	66
		4.3.2 Effect of Tire Chips Size	79
	4.4	Elastic Modulus	81
	4.5	Failure Mode	86
5	CON	ICLUSION & RECOMMENDATION	90
	5.1	Conclusion	90
	5.2	Recommendations	91

REFERENCES

92

APPENDICES

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Effect of tire content on the maximum dry unit weight of	6
	bauxite residue sand-tire mixture	
2.2	Shear strength of tire chips and shreds from	16
	triaxial testing	
2.3	Shear strength of different size tire shreds	17
2.4	Description and average grain sizes according to	
	USCS (ASTM-D2487-93)	19
2.5	Results of triaxial test on sand-tire shred	28
2.6	Results of triaxial test on sand-tire shred	29
2.7	Results of triaxial test on sand-tire shred	33
2.8	Waste tire, sand and waste tire-sand mixtures	
	shear strength parameters	36
2.9	Typical elastic parameters	39
2.10	Specimen parameters and soil properties	41
2.11	Specimen parameters and soil-rubber mixture and	48
	rubber properties	
3.1	Laboratory experiment	53
4.1	Magnitude of Cu and Cc for sand and tire chips.	64
4.2	Specific gravity sand and tire chips	65
4.3	Minimum and maximum density for sand and sand	
	with tire chips mixture	66
4.4	Shear strength for sand	71
4.5	Shear strength for 30% tire chips + 70% sand	73
4.6	Shear strength for 50% tire chips + 50% sand	75
4.7	Shear strength for sand, sand-tire chips mixture	
	at 30% tire chips, 50% tire chips mixture at confining	

pressure of 300kPa	78
Shear strength for sand-tire chips mixture at 10% tire	
chips and 10% tire powder content at confining pressure	
of 200kPa	81
Elastic modulus for sand, 70% sand + 30% tire chips and 50% sand + 50% tire chips at confining pressure of 100,200 and 300kPa	86
	pressure of 300kPa Shear strength for sand-tire chips mixture at 10% tire chips and 10% tire powder content at confining pressure of 200kPa Elastic modulus for sand, 70% sand + 30% tire chips and 50% sand + 50% tire chips at confining pressure of 100,200 and 300kPa

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
2.1	Grain size distribution curve of 4mm tire grain and	
	750μm tire powder	7
2.2	Photographs of the 4mm tire grains and	
	750μm tire powder	8
2.3	Volume variation and deviatoric stress on various type	
	of tire shred at 75kPa confining pressure	10
2.4	Sample of raw material and selected circular chips	11
2.5	Sample of tire chips	12
2.6	Volume variation and deviatoric stress on tire shred at	
	3 confining pressure	13
2.7	Volume variation and deviatoric stress on tire shred at	
	3 confining pressure	14
2.8	Stress-strain response and volume change character of	
	tire chips under triaxial loading	15
2.9	Grain size distribution of sand	19
2.10	Stress-strain response and volumes change character of	
	sand under triaxial loading	21
2.11	Effect of tire content on the maximum dry unit weight	
	of bauxite residue sand- tire mixtures	22
2.12	Variation of minimum density with rubber percentages	23
2.13	Results of triaxial test on sand-tire grains mixture at	
	confining pressure of 250kPa	25
2.14	Results of triaxial test on sand-tire powders mixture at	
	confining pressure of 250kPa	26

2.15	Effect of tire shred on shear strength parameters of	
	sand-tire shred mixtures	27
2.16	Result of tests on tire shred-sand mixture with the	
	content of 38% and 60%	29
2.17	Deviator stress and volumetric strain of the tire	
	chips-sand mixture for different tire content	31
2.18	Failure modes in triaxial tests: a) tire chips only-	
	horizontal distribution, b) tire chips-sand mixture	
	with 15.2% tire content	32
2.19	Deviator stress and volumetric strain of the tire chips-sand	
	mixture for different tire content	33
2.20	Specimens at the end of the tests	34
2.21	Stress-strain relationships for: (a) perfectly elastic	
	material, (b) plastic and elastic/plastic material, (c)	
	typical 'brittle' soil, (d) typical 'ductile' soil	37
2.22	Derivation of Young's modulus from non-linear	
	stress-strain relationships: (a) tangent modulus,	
	(b) initial tangent modulus, (c) secant modulus,	
	(d) correction to point of origin	38
2.23	Grain size distribution of the sand	40
2.24	Granular rubber material	41
2.25	Triaxial test of sand at confining pressure 50kPa	42
2.26	Triaxial test of sand at confining pressure 100kPa	42
2.27	Triaxial test of sand at confining pressure 150kPa	42
2.28	Triaxial test of 25% rubber + 75% sand mixture at	
	confining pressure 50kPa	44
2.29	Triaxial test of 25% rubber + 75% sand mixture at	
	confining pressure 100kPa	44
2.30	Triaxial test of 25% rubber + 75% sand mixture at	
	confining pressure 150kPa	44
2.31	Triaxial test of 50% rubber + 50% sand mixture at	
	confining pressure 50kPa	45
2.32	Triaxial test of 50% rubber + 50% sand mixture at	
	confining pressure 100kPa	45

2.33	Triaxial test of 50% rubber + 50% sand mixture at	
	confining pressure 150kPa	45
2.34	Triaxial test of granular rubber at confining	
	pressure 50kPa	46
2.35	Triaxial test of granular rubber at confining	
	pressure 100kPa	46
2.36	Triaxial test of granular rubber at confining	
	pressure 150kPa	46
2.37	Modes of failure in compression test specimens:	
	(a) plastic failure (b) brittle failure and	
	(c) intermediate type	47
2.38	Summary of recycling and disposal options for scrap tires	50
3.1	Flow chart	52
3.2	A set of sieve.	54
3.3	Small pyknometer.	55
3.4	Vibrating table	56
3.5	Water de-airing system	55
3.6	Consolidated undrained test	58
4.1	Grain size distribution for sand and tire chips.	64
4.2	Mohr circle for sand	67
4.3	Mohr circle for 70% sand + 30% tire chips	68
4.4	Mohr circle for sand $50\% + 50\%$ tire chips	68
4.5	Effect of tire chips on shear strength parameters of	
	sand-tire chips mixture	69
4.6	Shear-stress and pore water pressure response .	70
4.7	Shear-stress and pore water pressure-stress response	
	on 70% sand + 30% tire chips	72
4.8	Shear-stress and pore water pressure-strain response	
	on 50% sand + 50% tire chips mixture	74
4.9	Shear-stress and pore water pressure-strain response	
	on sand and sand-tire chips mixture at confining	
	pressure 300 kPa	77

4.10a	Shear-stress and pore water pressure-strain response			
	on sand-tire chips mixture at 10% tire chips and			
	10% tire powder at confining pressure of 200 kPa	80		
4.11	Elastic modulus for sand	82		
4.12	Elastic modulus for 70% sand + 30% tire chips	83		
4.13	Elastic modulus for 50% sand + 50% tire chips	84		
4.14	Elastic modulus for sand and sand-tire chips mixture	85		
4.15a	Failure mode for pure sand	87		
4.15b	Failure mode for 70% sand $+$ 30% tire chips	87		
4.15c	Failure mode for 50% sand + 50% tire chips	88		
4.15d	Failure mode for 90% sand $+$ 10% tire chips	88		
4.15e	Failure mode for 90% sand + 10% tire powder	89		

LIST OF ABBREVIATIONS

AS		Australia Standard
ASTM	-	American Society of Testing & Materials
BS	-	British Standard
CU	-	Consolidated Undrained
USCS	-	Unified Soil Classification System

LIST OF SYMBOLS

e _{max}		maximum density
e _{min}		minimum density
G_s	-	Specific gravity
D	-	Diameter
S	-	Shear strength
С	-	Cohesion intercept
Φ	-	Angle of internal friction
6_1	-	Major principle stress
6_2	-	Intermediate principle stress
б ₃	-	Minor principle stress
C_u	-	Coefficient of uniformity
Cc	-	Coefficient of curvature
$\mathbf{E}_{\mathbf{v}}$	-	Volumetric strain
Ea	-	Axial strain
б'	-	Effective pressure
Е	-	Elastic modulus

xviii

LIST OF APPENDICES

APPENDIX	TITLE	PAGES
А	Specific gravity	94
В	e _{max} and e _{min}	95
С	Grain size distribution	96
D	Consolidated undrained test	98

CHAPTER 1

INTRODUCTION

1.1 Background of Study

The volume of used tire in the world is increasing tremendously every year due to the increased in population and this cause a major environmental problem. A large volume of used tire will occupy the crowded landfills and may cause fire or provide a breeding ground for mosquitos. Therefore action that had been taken by European Union in banishing the disposal of tires in landfills through the directive 1991/31/EC which applies to all the European Union countries. This directly promotes recycling of used tire in civil engineering and mainly geotechnics due to the advantages of lightweight, high vibration absorption, high elastic compressibility, high hydraulic conductivity and temperature isolation. Currently sand-tire chips mixture is widely used as lightweight material for the embankment body, as backfill of retaining wall, drainage layer, thermal or vibration insulation layer and reinforcement layer (Foose *et al.*, 1996, Pisarczyk, 2002).

Many researches had been conducted on the fundamental engineering properties of sand-tire chips mixture such as compaction characteristics, compressibility, permeability, shear strength, modulus of elasticity and poisson's ratio. Rao and Dutta (2006) studied the admixture of sand-tire chips in varying size and content. They concluded that as the content of the tire chips in sand increase the shear stress will indeed increase. Shahin *et al.* (2011), Zornberg *et al.* (2004), Lee *et al.* (2005) and Balachowski (2007) studied the mechanical properties of tire chips-

sand mixture on triaxial tests analyzing the shape of the tire, tire content on the sand at different confining pressure and sand density. They found out that the maximum shear strength of the mixture is close to 35% of tire shred content.

Waste tire should be fully utilized in various sizes from the point of view of environmental. However the costs of cutting waste tire into various sizes also play an important role. It can be seen that additional costs are required to make tire in certain dimensions. Ghazavi and Sakhi (2005) studied on the influence of optimized tire shreds on shear strength parameters of sand. They reported that shred contents, shred width, shred aspect ratio for a given width, compaction and normal stress are influencing factors on shear strength of the mixtures. Dilation indeed occurs during shearing stage especially at high tire content and more compaction. Besides that they also reported that the optimization of aspect ratio of shred with the width of 2-4cm tends to increase the friction angle by 25%.

1.2 Problem Statement

In many industrialized country waste tire had been causing an enormous problem towards waste management engineer. Due to tire do not decompose, the way of disposing it have a tendency to pose a threat to the public health and also the environment for example occupying large volumes in already crowded landfills, waste tire storage can be a dangerous risk and waste tire dumps provide the breeding ground for vermin, rats and mosquitos (Gotteland, 2005). Indeed tire can be implemented into geotechnical and geo-environmental due to the unique properties for example durability, strength, resiliency and high friction resistance. All this are significant value for geotechnical design in improving weak shear strength soil. Besides that waste tire can also be substituted to virgin construction materials that are nonrenewable (Zornberg, 2004).

REFERENCES

- Ahmed. I. (1993). Laboratory Study on Properties of Rubber Soils. Purdue University, Indiana, Joint Highway Research Project, Report No.FHWA/IN/JHRP-93/4.
- Ahmed. T. and Lovell. C. W. (1995). Rubber soils as lightweight geomaterial.
- American Society for Testing and Materials. *Test for Relative Density of Cohesionless Soils*. ASTM D2049-69.
- Anbazhagan. P., Mamatha. M. (2011). Laboratory Characterization of tyre crumbs soil mixture for developing low cost damping materials. *International Journal of Earth Science and Engineering* ISSN 0974-5904, Volume 04, No 06 SPL, pp.63-66.
- Balachowski. L. and Gotteland. P. (2007). Characteristics of tyre chips-sand mixture for triaxial tests. *Hydro-Engineering and Environmental Mechanics*, Vol.54 (2007), pp. 25-36.
- Benda. C. C. (1995) Engineering Properties of Scrap Tires Used in Geotechnical Applications. Report No.95-1. Vermot Agency of Transportation, Montpelier, VT.
- Braja M. Das. (1999) Fundamental of Geotechnical Engineering, Thomson learning.
- British Standard Institution (1990). *Methods of Test for- soils for civil engineering purposes*, BS1377-1990: Part 1,2,4,7.
- Edincliler. Ayse. (2008). Utilization of Waste Tires for Geotechnical Applications as Lightweight Materials.
- Erol. G., Ali. K. E. (2009). Mechanical properties of granular rubber-sand determine by triaxial test. 2nd International Conference on New Development in Soil Mechanics and Geotechnical Engineering.

- Foose. G. J., Craig. H. B. and Boscher. P. J. (1996). Sand reinforcement with shredded waste tires. *Environmental Geotechnical report No.93-3*.
- Ghazavi. Mahmoud. And Sakhi. Masoud. Amel. (2005). Influence of Optimized Tire Shreds on Shear Strength Parameters of Sand. International Journal of Geomechanics.
- Gotteland. P., Lambert. S., Balachowski. L. (2005). Strength characteristics of tyre chips-sand mixtures. *Studia Geotechnica et Mechanica*. 27 (1-2), 55-66.
- Hazarika. H., Hyodo. M. and Yasuhara. K. (2010). Tire chips mixture as preventative measure against liquefaction. *Geoshanghai 2010 International Conference*.
- Head.K.H. (2009). Manual of Soil Laboratory Testing Volume 1: Soil Classification and Compaction Tests, (3rd ed.) Whittles Publishing.
- Head.K.H. (2009). *Manual of Soil Laboratory Testing Volume 2: Permeability Shear Strength and Compressibility tests*, (3rd ed.) Whittles Publishing.
- Head.K.H. (2009). Manual of Soil Laboratory Testing Volume 3: Effective stress tests, (3rd ed.) Whittles Publishing.
- Lee. K. M. (2003). Lightly cemented scrap tire chips as LGM for construction of earth structure. MAStec 2003-Material Division of the Hong Kong Institute of Engineers.
- Lee. J. H., Salgado. R., Bernal. and Lovell. C. W. (1999). Shredded tires and rubber sand as lightweight backfill. *Journal of geotechnical and geoenvironment engineering*.
- Mavroulidou. M., Etan. O. and Suntharalingam. M. (2009). Mechanical properties of granulated tyre rubber-sand mixture. *11th International Conference on Environmental Science and Technology*.

Muni Budhu. (2007). Soil Mechanics and Foundation, (2nd ed.) John Wiley & Sons.

Reddy. Krishna. R (2001) Properties of different size scrap tire shreds: Implications on using as drainage material in landfill cover systems. *The Seventeenth*