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ABSTRACT 

 

 

 

 

Reinforced concrete beams are designed to resist bending due to applied moments; 

however it is equally important to design them for shear in order to avoid sudden 

failure due to shear forces. This paper aims at studying the effectiveness and 

feasibility of the use of independent bent-up bars systems as shear reinforcement. 

The proposed systems are to replace the conventional stirrups and stand alone as 

shear reinforcement. The effect of different parameter involved in the shear 

phenomenon were reviewed in order to better understand the behavior of reinforced 

concrete beams when exposed to shearing forces. For verification, a beam with 

conventional stirrups was used as a control specimen to which the results obtained 

were compared. As was expected, all the proposed systems provided better shear 

resistance than the control; beam, this can be seen by the maximum loads at which 

they failed, the less cracks formed in the shear spans and by the type of failure where 

they all failed in bending except for specimen B6. B1 failed at load 220 kN, this 

beam was the control beams reinforced in shear with R6-50mm links. B2, B3, B4, 

B5 and B6 failed at 245kN, 230kN, 230kN, 240kN and 240kN, respectively. 

Specimen B2 was reinforced with least amount of shear reinforcement of all the 

specimens, about 20 percent less than the control specimen, yet showed the highest 

resistance and the highest ductility where it failed at load 240kN and a maximum 

deflection of 24.51mm. Similarly specimen B4 failed at 230 kN and had relatively 

high ductility where the maximum deflection occurred at failure was 21.71mm. On 

the other hand B3, B5 and B6 still provided more shear resistance than the control 

beam, however showed very low ductility where the beams failed at maximum 

deflections of 10.5mm, 9.91mm and 10.22mm, respectively. All in all, independent 

bent-up bar systems are effective in resisting shear and hence; should be used on 

their own and not only if combined with stirrups. 
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ABSTRAK 

 

 

 

 

Rasuk konkrit bertetulang direkabentuk untuk merintangi lenturan disebabkan 

perletakkan momen; walaubagaimanapun kepentingannya sama pada rekabentuk 

ricih dalam mengelakkan kegagalan mendadak disebabkan daya ricih. Kajian ini 

bertujuan mengkaji keberkesanan dan kebolehlaksanaan penggunaan sistem bar 

bengkok atas bebas sebagai tetulang ricih. Kesan parameter yang berbeza juga 

terlibat di dalam fenomena ricih dikaji semula dalam usaha memahami kelakuan 

ricih pada rasuk konkrit bertetulang. Rasuk tetulang pugak konvensional telah 

digunakan sebagai specimen kawalan dimana hasil keputusan yang didapati telah 

dibandingkan. Seperti yang telah dijangkakan, kesemua sistem yang telah 

dicadangkan menyediakan rintangan ricih yang lebih baik daripada kawalan; rasuk, 

ini dapat dilihat pada beban maksimum kegagalan berlaku, keretakkan terbentuk 

berkurangan pada rentangan ricih dan dimana kesemuanya gagal dalam lenturan 

kecuali specimen B6. B1 telah gagal pada beban 220 kN, rasuk ini adalah rasuk 

bertetulang kawalan dengan ricih R6-50mm tetulang pugak. B2, B3, B4, B5 and B6 

telah gagal pada 245kN, 230kN, 230kN, 240kN dan 240kN. Spesimen B2 dengan 

tetulang ricih yang paling sedikit, kira-kira 20 peratus kurang daripada sepesimen 

kawalan, menunjukkan rintangan dan kemuluran tertinggi dimana kegagalan berlaku 

pada beban 240kN dan pesongan maksimum sebanyak 24.51mm. Spesimen B4 gagal 

pada 230kN dan mempunyai kemuluran agak tinggi dimana pesongan maksimum 

berlaku pada 21.71mm. Sebaliknya B3, B5 dan B6 masih menyediakan lebih 

rintangan ricih daripada rasuk kawalan, walau bagaimanapun menunjukkan 

kemuluran yang terendah dimana rasuk gagal pada pesongan maksimum 10.5mm, 

9.91mm dan 10.22mm. Secara kesimpulannya, penggunaan sistem bar bengkok atas 

bebas adalah berkesan dalam merintangi ricih dan ia sepatutnya digunakan sendiri 

dan bukan sahaja dikombinasikan dengan tetulang pugak ricih.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background  

 

 

Beams are designed to resist deflection due to applied moment; however this 

is not adequate because there are other failures that are more dangerous than flexural 

failure. Shear failure or more properly termed as “Diagonal Tension Failure” is one 

example of those failures that could lead to the collapse of the beam if it is not 

designed properly to resist the applied shear stress. 

 

 

The beam is designed first for flexural resistance, and then checked if it is 

requiring the design of special shear reinforcement. The check is dependent on the 

shear stress applied compared to the shear capacity of the section before considering 

the shear reinforcement. The main goal of the design is to make sure that the beam 

fails in flexural before shear. 

 

 

There are two types of inclined cracks in reinforced concrete beams: flexural 

shear cracking and web shear cracking. The web shear cracking occurs at the point 

when the principal tensile stresses exceed the concrete tensile strength. On the other 
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hand, the flexural cracking occurs when the shear and tensile stresses exceed the 

tensile strength of the concrete. The web shear cracks usually occur near the 

supports, while the flexural cracking occur, while the flexural cracks occur in the 

mid-span where the moment is maximum, in simply supported beams for example. 

 

 

In reinforced concrete beams with no shear reinforcement, the shear strength 

is provided by the aggregate interlocking, the shear stress in the beam compression 

zone, and the dowel action resulting from the flexural longitudinal reinforcement [15].  

It is generally practiced to neglect all the factors except for the concrete stress, the 

reason is that the effect of the other factors is relatively small. 

 

 

In reinforced concrete beams with shear reinforcement, the shear strength is 

provided by all of the factors mentioned earlier in addition to the shear reinforcement 

that provided resisting shear stress to the cracking stress. Shear reinforcement when 

present in RC beams allows for maximum utilization of tension reinforcement, and 

permits a ductile failure mode rather than sudden and dangerous. 

 

 

 

 

1.2 Problem Statement 

 

 

The use of bent-up bars for shear reinforcement has not been so popular due 

to the difficulty of fabrication. However the combination of vertical shear links and 

bent-up bars has been used, it was not so common. In accordance with the design 

codes BS8110 and EC2, the bent-up bars require anchorage length that is dependent 

on the diameter of the bars to be used, in some cases; the anchorage could go through 

the concrete cover and project to the outside. In addition, the use of bent-up bars 

means less reinforcement is provided to resist shear and worries occur that it will not 

provide the needed shear capacity. This study will study the feasibility of using an 

independent bent-up bars system than can be fabricated and installed in a much 
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easier manner than the one in practice. Furthermore, the bent-up bars to be provided 

will have insufficient anchorage lengths in order to study if the shear capacity 

provided is adequate. The main purpose of this study is to foresee if the design shear 

capacity can be provided by the bent-up bars alone without the vertical shear links.  

 

 

 

 

1.3 Objectives of the Study 

 

 

The main objectives of the study are as follows: 

 

 

I. To investigate the effectiveness of using independent bent-up bars systems as 

shear reinforcement in rectangular beams. 

II. To study the effectiveness of bent-up bars with insufficient anchorage length 

for shear reinforcement. 

III. To compare the different proposed shear reinforcement alignments to a 

conventionally reinforced concrete beam. 

 

 

 

 

1.4 Scope of the Study 

 

 

Six rectangular reinforced concrete beams are going to be cast and test for the 

effectiveness of the proposed shear reinforcement alignments. All the beams are 

going to have the same size and the same longitudinal reinforcement and only differ 

in the shear reinforcement. 
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