INFLUENCE OF FLAKY AGGREGATE TOWARDS CREEP AND RESILIENT MODULUS ON ASPHALT CONCRETE 20

MOHD ZUL HANIF BIN MAHMUD

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil-Transportation and Highway)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JANUARY 2013

Specially dedicated to my beloved father and mother, Mahmud bin Doll and Begam binti Nebi and my family,

Nur Faezah, Bibi Sygena, Bibita, Mohammed Gupta, Mohd Faisal and Nur Aliah Bazilah

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and Most Merciful.

Alhamdulillah, praises to Allah for giving me the strength, patient, time and wisdom to complete this thesis. This long awaited moment seems like a dream to me. There have been many ups and downs while doing this project. Personally, I enjoyed the moment doing the data collecting and experiments. It seems like a huge challenge for me to choose the proper rock samples and doing the labs. I would give my sincere appreciation to my beloved family for believing in me to be who I am today.

My deepest appreciation goes to my supervisors, Dr. Haryati bte Yaacob and Dr. Ramadhansyah Putra Jaya for their guidance and help. Thank for all the criticism and shared experiences to help me prepare this thesis. I would also want to further my thanks to technicians of Highway and Transportation laboratories for their assistance and cooperation.

Last but not least, I would like to thank my friends that gave their support and ideas in this project and my time as a post-graduate student in UTM. May ALLAH reward all of them for their kindness and sincerity. All the helps and sacrifices from all parties are unforgettable and really appreciated. Hopefully one day, I may continue to my study to a higher level. InsyaAllah.

ABSTRACT

The aim of this paper is to investigate and evaluate the characteristics of flaky aggregate shapes that specifically towards creep and resilient modulus. The maximum allowable aggregate size selected specifically for this study is size 20 mm. In general, flakiness aggregates are being avoided in asphalt concrete mixture simply because these types of properties have significant influence of towards gradation and interlocking characteristic of the aggregate. Due to this significant influence of flaky aggregate, it is recommended that the proportion of flaky aggregate should be limited. Therefore, based on the Jabatan Kerja Raya (JKR) and Malaysian Standards (MS), it specified that the maximum allowable flakiness should be less than 25% in asphalt concrete mixture. This study is only focusing on asphalt concrete mixture that consists of 10%, 20% and 30% proportion of flaky aggregate. The objective of this study is to determine the relationship between resilient modulus against percentage of flaky aggregates in the asphalt concrete mixture. This study also looks on the influence different percentage of flaky aggregates towards dynamic creep properties in a mixture. Hence, several tests like Marshall Tests, Resilient Modulus test and dynamic creep test were conducted. Based on Marshall Tests, the optimum asphalt content obtained for 10%, 20% and, 30% was 5.6%, 5.7% and 5.8% respectively. The findings of this research are the value resilient modulus and stiffness modulus decreases as the amount of flaky aggregate increases.

ABSTRAK

Tujuan kertas kerja ini adalah untuk mengkaji dan menilai ciri-ciri bentuk batu baur yang berkeping khusus kepada daya tahan modulus dan rayapan. Saiz agregat maksimum yang digunakan dalam projek ini dipilih secara khusus adalah saiz 20 mm. Secara umum, batu baur perlulah dielakkan dalam campuran konkrit asfalt kerana batu baur mempunyai pengaruh yang signifikan ke arah penggredan dan sifat saling bertaut batu baur. Disebabkan oleh pengaruh ini, batu baur menjadi tidak stabil. Oleh itu, nisbah batu baur tidak stabil harus dihadkan. Berdasarkan kepada Jabatan Kerja Raya (JKR) dan Piawaian Malaysia (MS), penyerpihan maksimum yang dibenarkan hendaklah kurang daripada 25% dalam campuran konkrit asfalt. Kajian ini hanya memberi tumpuan kepada campuran konkrit asfalt yang terdiri daripada 10%, 20% dan 30% perkadaran batu baur berkeping. Objektif kajian ini adalah untuk menentukan hubungan antara daya tahan modulus terhadap peratusan batu baur yang berkeping dalam campuran konkrit asfalt. Kajian ini juga mengkaji pengaruh peratusan batu baur berkeping yang berbeza terhadap sifat dinamik rayap dalam campuran. Oleh itu, beberapa ujikaji seperti Ujian Marshall, Ujian Daya Tahan Modulus dan Ujian Rayapan Dinamik telah dijalankan. Berdasarkan Ujian Marshall, kandungan optimum asfalt yang diperoleh untuk 10%, 20%, dan 30% adalah masing-masing 5.6%, 5.7% dan 5.8%. Hasil kajian ini mendapati bahawa nilai daya tahan modulus dan kekakuan modulus berkurangan apabila jumlah batu baur yang berkeping bertambah.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE	
	TITL	Æ		
	DEC	LARATION	ii	
	DED	ICATION	iii	
	ACK	NOWLEDGEMENT	iv	
	ABSTRACT			
	ABS	ABSTRAK		
	TAB	TABLE OF CONTENTS		
	LIST OF TABLES			
	LIST OF FIGURES			
	LIST OF ABREVATIONS			
	LIST	OF APPENDIX	xiv	
1	INTF	RODUCTION	1	
	1.1	General	1	
	1.2	Problem Statement	2	
	1.3	Objectives of the Study	3	
	1.4	Scope of the Study	3	
	1.5	Significance of the Study	4	
2 LITE	RATU	RE REVIEW	5	
	2.1	Shapes of Aggregates	5	
	2.2	Influence of Aggregate Morphological Characteristics	5 6	

2.3	Marshall Mix Design	7
	2.3.1 Stability	8
	2.3.2 Flow	9
	2.3.3 Air Void	10
	2.3.4 Voids in Mineral Aggregate	11
	2.3.5 Void Filled with Asphalt	13
2.4	Resilient Modulus	14
	2.4.1 Previous Research on Resilient Modulus	16
2.5	Creep	17
		10
MET	HODOLOGY	18
3.1	Introduction	18
3.2	Methodology Flow Chart	19
3.3	Source and Type of Materials	20
	3.3.1 Aggregate	20
	3.3.2 Binder	20
3.4	Aggregate Properties Test	21
	3.4.1 Sieve Analysis	21
	3.4.1.1 Dry Sieve Aggregate (For Fine and Coarse Aggregate)	21
	3.4.1.2 Washed Sieve Analysis	22
	3.4.1.3 Gradation limits	24
	3.4.2 Specific Gravity	25
	3.4.2.1 Specific Gravity for Coarse Aggregate	25
	3.4.2.2 Specific Gravity for Fine Aggregate	26
	2.4 2.5 MET 3.1 3.2 3.3	2.3.1 Stability 2.3.2 Flow 2.3.3 Air Void 2.3.4 Voids in Mineral Aggregate 2.3.5 Void Filled with Asphalt 2.4 Resilient Modulus 2.4.1 Previous Research on Resilient Modulus 2.5 Creep METHODUCGY 3.1 Introduction 3.2 Methodology Flow Chart 3.3 Source and Type of Materials 3.3.1 Aggregate 3.3.2 Binder 3.4 Aggregate Properties Test 3.4.1 Sieve Analysis 3.4.1.1 Dry Sieve Aggregate (For Fine and Coarse Aggregate) 3.4.1.2 Washed Sieve Analysis 3.4.1.3 Gradation limits 3.4.2 Specific Gravity 3.4.2.1 Specific Gravity for Coarse Aggregate

	3.4.3	Flakiness Index Test	28
	3.4.4	Aggregate Impact Test	30
3.5	Aspha	It Physical Properties Test	32
	3.5.1	Penetration Test	32
	3.5.2	Softening Point Test	33
3.6	Marsh	all Mix Design	35
	3.6.1	Marshall Specimen	35
	3.6.2	Theoretical Maximum Density (Loose Mix)	37
	3.6.3	Determination of Optimum Asphalt Content	39
3.7	Mecha	anical Properties of Asphalt Concrete	40
	3.7.1	Resilient Modulus Test	41
	3.7.2	Dynamic Creep Test	43

4	RESU	LTS A	ND DATA ANALYSIS	46
	4.1	Introd	uction	46
	4.2	Mater	al Preparation	46
		4.2.1	Aggregate Gradation	47
		4.2.2	Specific Gravity and Water Absorption	48
		4.2.3	Aggregate Impact Value	49
	4.3	Deterr	nination of Marshall Properties	50
		4.3.1	Theoretical Maximum Density	50
		4.3.2	Optimum Asphalt Content	50
	4.4	Mecha	anical Properties Analysis	52
		4.4.1	Resilient Modulus	53
		4.4.2	Dynamic Creep	55

5	CON	NCLUSION AND RECOMMENDATION	57
	5.1	Introduction	57
	5.2	Conclusion	57
	5.3	Recommendations	58
REF	EREN	CES	59

63

APPENDIX

LIST OF TABLES

TABLE NO.

TITLE

PAGES

Table 2.0	Test and Analysis Parameters for Asphalt Concrete	7
Table 2.1	Factors Affecting VMA on Hot Mix Asphalt (HMA)	12
Table 3.1	Gradation limits for Asphalt Concrete 20	24
Table 3.2	Maximum Difference Allowable In a Penetration	33
Table 3.3	Design Asphalt Contents	35
Table 3.4	Test and Analysis Parameters for Asphalt Concrete	40
Table 4.1	Flaky Aggregate Gradation	48
Table 4.2	Specific Gravity and Water Absorption for Each	49
	Material	
Table 4.3	Aggregate Impact Value	49
Table 4.4	Effective Specific Gravity for different	50
	Percentage Flaky Aggregate	
Table 4.5	Optimum Asphalt Content for Different	51
	Portion of Flaky Aggregate	
Table 4.6	Verification Sample for Different Percentage	52
	of Flaky Aggregate	
Table 4.7	Resilient Modulus Values with Different Percentage	53
	of Flaky Aggregates	

LIST OF FIGURES

NO.OF FIGURE TITLE

PAGES

Figure 2.0	Aggregate Shape	6
Figure 2.1	Variation of Stability for Flakiness Indices	8
Figure 2.2	Variation of Flow for Flakiness Indices	9
Figure 2.3	Variation of Air Void for Flakiness Indices	11
Figure 2.4	Variation of Void in Mineral Aggregate for	13
	Flakiness Indices	
Figure 2.5	Variation of Void Filled with Bitumen for	13
	Flakiness Indices	
Figure 2.6	The relationship between Resilient Modulus	16
	and Flaky Aggregate Content	
Figure 3.0	Research Methodology Flow Chart	19
Figure 3.1	Thickness Gauge	29
Figure 3.2	Impact Testing Machine	31
Figure 3.3	Softening Point Test	34
Figure 3.4	Motorized Sieve Shaker	38
Figure 3.5	Resilient Modulus Test	42
Figure 3.6	Dynamic Creep Test	44
Figure 4.1	Aggregate Gradation Curve for AC 20	47
Figure 4.2	Resilient Modulus at 25°C with different	54
	percentage of Flaky Aggregate	
Figure 4.3	Resilient Modulus at 40°C with different	55
	percentage of Flaky Aggregate	
Figure 4.4	Stiffness Modulus values with different	56
	percentage of Flaky Aggregate	

LIST OF ABREVIATIONS

AASHTO	-	American Association of State Highway and
		Transportation Officials
AC20	-	Asphalt Concrete Wearing With 20 mm Nominal
		Maximum Aggregate Size
ASTM	-	American Society for Testing and Materials
AASHTO	-	American Association of State Highway and
		Transportation Officials
BS	-	British Standard
HMA	-	Hot Mix Asphalt
JKR	-	Jabatan Kerja Raya
MS	-	Malaysian Standard
TMD	-	Theoretical Maximum Density
VTM	-	Void Ratio in Mix
VFA	-	Void Filled Asphalt
VFB	-	Void Filled Bitumen
OAC	-	Optimum Asphalt Content
OBC	-	Optimum Bitumen Content
g	-	gram
mm	-	millimetre
KPa	-	KiloPascal
MPa	-	MegaPascal
Ν	-	Newton
°C	-	degree celcius
%	-	percent

LIST OF APPENDIX

APPENDIX NO. TITLE		PAGES	
Appendix A	Aggregate Size Distribution and Determination of Filler	64	
Appendix B	Aggregate Proportion Distribution for Flaky	65	
	Aggregate		
Appendix C	Specific Gravity and Water Absorption of	66	
	Coarse and Fine Aggregate		
Appendix D	Aggregate Impact Value for Asphalt Concrete 20	67	
Appendix E	Softening Point of Asphalt Cement	67	
Appendix F	Penetration of Bituminious Materials	67	
Appendix G	Theoretical Maximum Density	68	
Appendix H	Marshall Properties Test	70	
Appendix I	Resilient Modulus	76	
Appendix J	Marshall Properties Test	91	

CHAPTER 1

INTRODUCTION

1.1 General

Aggregates are one of the major materials that are used in any road constructions. Generally, testing the properties of aggregates is one of the major concerns in asphalt industry because aggregates testing will give information about that particular research, design or mixture in order to implement quality control in any constructions projects. The aggregates samples that are tested will represent and reflects the average quality of the entire mass of the materials. For this paper, the major focus is to evaluate on the influence of flaky aggregate in an asphalt concrete mixture in terms of mechanical properties.

The shapes of the aggregates play a significant influence towards the performance of asphalt pavements. There are many shapes of aggregates. It can be classified as round, cubical, flaky, elongated, irregular and etc. For road construction, the shapes of flaky aggregates are commonly undesirable and therefore the amount flaky aggregate should be limited. Research have indicates that aggregate testing towards the characteristic like particle size, shapes and texture will influence the performance and life span of the asphalt pavement (Brown *et al.* 1989). According

to the Malaysian Standards (MS 30) manuals, the amount of maximum flakiness allowed can be varies from 25 % to 30 % depending on the type of road layers. For asphalt concrete, the maximum amount of flaky aggregate allowed is 25%.

1.2 Problem Statement

Aggregate shapes play a significant role influencing the performance of asphalt concrete mixture since 95% of the composition of hot mix asphalt is consist by mineral aggregate. The shapes of the aggregates that are used in many constructions can be rounded, irregular, angular, flaky, elongated and also a combination of flaky and elongated. In most road construction, flaky and elongated aggregates are undesired shaped since these types of aggregate have higher chances to be broken once the road constructed and opened to public. Oduroh et al. (2000) described the orientation of the flaky and elongation shape of the aggregate in an asphaltic mixture creates lower resistance towards shear deformation and thus, creates problems like premature failure and decreasing the performance of the pavement.

It is understood that flexible pavement is the most common type of pavement used in the world. According to Satyakumar & Wilson (2009), most of the authorities used Marshall Tests to judge the mechanical properties asphalt mixture which is used in pavement design. They continue to explain that the value of Marshall Tests cannot be directly used in pavement design calculation due to the increase traffic demand and load. It is important to understand the mechanical properties to measure resistance to deformation and failure. One of the tests to measure flexibility of asphalt mixture is through Resilient Modulus (M_R) test. This test is being carried out using universal testing machine to understand the effectiveness of the elastic properties of the mixture of asphalt under repeated loading. Erol *et. al.* (2005) discussed in his study that by using a more irregular morphologies can improve the resilient modulus of the bituminous mixture. For this study, the second type of mechanical testing for asphalt pavement is creep test. This test is to measure time dependent deformation under constant compressive stress for the asphalt concrete mixture.

1.3 Objective of Research

The main aim of this research is to investigate the influence of different proportion of flaky shape aggregates in terms of mechanical properties for an asphalt concrete mixture for size 20 mm (AC 20). The objectives of this study are also listed below;

(i) To determine the relationship of different percentage of flaky aggregates towards the resilient modulus properties in an asphalt concrete mixture;

(ii) To investigate the influence different percentage of flaky aggregates towards dynamic creep properties in an asphalt concrete mixture.

1.4 Scope of Study

The scopes of study on this research are focusing on the influence flaky shape aggregates towards creep and resilient modulus for an asphalt concrete mixture. The scope of study is listed as follow;

i. This study is focused on asphalt concrete size 20 mm (AC 20);

- ii. This research involved different proportion of 10%, 20% and 30 % flaky shapes aggregate in an asphalt concrete mixture;
- iii. The scope of this study for this project are involved with the influence of exceeding the maximum allowable proportion of 25% of flaky shapes aggregate in an asphalt concrete mixture;
- iv. For this study, the laboratory tests that are conducted to obtain the objective of this research i.e. Marshall Tests, indirect tensile test and dynamic creep test.

1.5 Significance of Research

This study will help to develop an understanding toward the influence different shapes aggregates in an asphalt concrete mixture in Malaysia. Below are the other significant influences towards this research:

(i) To understand the behaviour of different proportion flaky shapes aggregate based on resilient modulus and stiffness modulus in an asphalt concrete mixture;

(ii) To assist in improving better understanding of proper shapes of aggregates in order to provide a more sustainable pavement development in Malaysia.

REFERENCES

- American Society for Testing and Materials (2004). ASTM C117: Standard Test Method for Materials Finer than 75-µm (No. 200) Sieve in Mineral Aggregates by Washing. Washington.
- American Society for Testing and Materials (2004). ASTM C127: Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. Washington.
- American Society for Testing and Materials (1997). ASTM C128: Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate. Washington.
- American Society for Testing and Materials (1992). ASTM C136: Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. Washington.
- American Society for Testing and Materials (1997). ASTM D5: Standard Test Method for Penetration of Bituminous Materials. Washington.
- American Society for Testing and Materials (1997). ASTM D36: Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). Washington.
- American Society for Testing and Materials (1992). ASTM D1559: Test Method for Resistance of Plastic Flow of Bituminous Mixtures Using Marshall Apparatus. Washington.

- American Society for Testing and Materials (1992). ASTM D2041: Standard Test Method for Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures. Washington.
- American Society for Testing and Materials (1982). ASTM D4123: Standard Test Method for Indirect Tension Test for Resilient Modulus of Bituminous Mixture. Washington.
- Baladi, G. Y. and Harichandran, R. S., "Asphalt Mix Design and the Indirect Test: a New Horizon," Asphalt Concrete Mix Design: Development of More Rational Approaches, ASTM STP 1041, W. Gartner, Jr. (ed.), American Society for Testing and Materials, Philadelphia, pp. 86-105, 1989.
- Barksdale, R. D., "Laboratory Evaluation of Rutting in Base Course Materials," Proceedings, Third International Conference on the Structural Design of Asphalt Pavements, Vol. 1, London, 1972, pp. 161–174.
- Brown E.R., McRae J.L., and Crawley A.B. (1989), Effect of aggregate on performance of bituminous concrete, ASTM STP 1016, Philadelphia, pp 34-63.
- Bruce A. C, Eugene L. S, David E. Newcomb, Benita L. C and Samantha Spindle (2000). The Effect of Voids in Mineral Aggregate (VMA) on Hot-Mix Asphalt Pavements. *University of Minnesota*. Minneapolis.
- Erol T., Pan T. & Samuel H.C. (2005). Investigation of aggregate shape effects on hot mix performance using an image analysis approach. *Department of Civil* and Environmental Engineering University of Illinois at Urbana-Champaign Urbana, Illinois
- Hamzah M.O, Jaya R.P., Prasetijo J., Khairun Aziz M.A., (2009). Modern Applied Science.

- Jahromi S.G. & Khodaii A. (2009). Comparing Factors Affecting Resilient Modulus in Asphalt Mixtures. *Journal of Scientia Iranica Civil Engineering* Vol. 16, No. 5, pp. 367-375.
- JKR (1988), Standard Specification for Road Work, Jabatan Kerja Raya Malaysia, Kuala Lumpur
- JKR (2005), Standard Specification for Road Work, Jabatan Kerja Raya Malaysia, Kuala Lumpur
- Kim J., Roque R. & Birgisson B. (2005). "Obtaining Creep Compliance Parameters Accurately from Static or Cyclic Creep Tests". *Journal of ASTM International*, Vol. 2, pp 179-199.
- Kok B.V., Yilmaz M., Turgut P., & Kuloglue N. (2011), Evaluation of mechanical properties of natural asphalt-modified hot mixture. *Int. J. Mat.* Res. 103.
- Oduroh, P.K., Mahboub, K.C., and Anderson, R.M. (2000) Flat and elongated aggregates in Superpave regime. *Journal of Materials in Civil Engineering*, 12, 124-130.
- Lees, G. (1964). "The measurement of particle elongation and flakiness: A critical discussion of British standard and other test methods." *Mag. of Concrete Res.*, 16(49).
- Mamlouk, S. M. and Ramsis, S. T., "The Modulus of Asphalt Mixtures An Unresolved Dilemma," Transportation Research Board (TRB), National Research Council, 67th Annual Meeting Proceedings, Washington, D.C., 1988.

Monismith C.L., Ogawa, Freeme J., (1975). Transport Res. Rec. Pg 537.

- Robert, F. L., Kandhal, P. S., Brown, E. R., Lee, D. Y. and Kennedy, T.W., "Hot Mix Asphalt Materials, Mixture Design, and Construction," *NAPA Education Foundation*, Lanham MD, pp. 502- 507, 1996.
- Saleh M. & Ji S. M. (2006). *Factor affecting resilient modulus*. University of Centerburg, Christchurch, New Zealand.
- Satyakumar M. & Wilson K.C., (2009). "Determination of Fundamental Properties of Sand Asphalt Mixes". 10th National Conference on Technological Trends (NCTT09), pp 204-209.
- Siswosoebrotho B.I., Ginting K., & Soedirdjo T.L., (2005). "Workability and Resilient Modulus of asphalt concrete mixtures containing flaky aggregates shape". *Journal of the Eastern Asia Society for Transportation Studies*, Vol. 6, pp. 1302 - 1312
- Sakthibalan D., (2009). "Influence of Aggregate Flakiness on Dense Bituminous Macadam & Semi Dense Bituminous Concrete Mixes". Indian Geotechnical Society Chennai Chapter.
- Seed, H.C., Chan, C. K., and Lee, C. E., "Resilient Characteristics of Subgrade Soils and Their Relation to Fatigue Failures in Asphalt Pavements," In Proceedings of the 1st International Conference on the Structural Design of Asphalt Pavements, University of Michigan, Ann Arbor, MI, 1962.
- Stephens, J. E., and Sinha, K. C. (1978). "Effect of aggregate shape on bituminous mix character." J. Assn. of Asphalt Paving Technologists, 47, 434–456.
- Zhang J., Brown E. R., Kandhal P.S & West R. (2005). "An Overview of Fundamental and Simulative Performance Tests". *Journal of ASTM International*, Vol. 2, pp 4-17.