INFUENCE OF DIAGONAL REINFORCEMENT WITH SPIRAL STIRRUPS ON SHEAR CAPACITY OF COUPLING BEAM IN SHEAR WALL

OMAR ABDULRAZZAQ TAHA

A project submitted in partial fulfillment of the requirements for the of the degree of Master of Engineering (Civil-Structure)

> Faculty of Civil Engineering Universiti Technologi Malaysia

> > JANUARY 2013

DEDICATION

To my beloved father and mother

To my wife and children

To my brother and sisters

To my friends

I thank you to much for supporting me

AKNOWLEDGEMENT

Firstly, I thank Allah for his blessings that enabled me to my project.

In preparing this project, I was in contact with many people, researchers, and practitioners. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my main project supervisor, Associate Professor Dr. Ramli Abdullah, for encouragement, guidance, critics and friendship. Without their continued support and interest, this project would not have been the same as presented here.

I am also intended to Universiti Teknologi Malaysia (UTM) for funding my master study. Librarians at UTM, and My study could not have been carried out smoothly without the assistance and co-operation from the technicians in the laboratories at the faculty of civil engineering. Special thanks to technical staff at the laboratory for their experience and help.

The most appreciation and gratitude goes to my parents in their graves who they were waiting the day of graduate and There are no suitable words can express my sincere thanks to my wife and my children, to my brother and sisters and to all my friends which they support me.. Sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is possible to list all of them in this limited space.

ABSTRACT

Concrete core-walls are penetrated by vertical families of openings for doors to stairs, lifts and other spaces. These openings separate the core as a whole into a number of sub-cores linked by coupling-beams being the residual strips of concrete core-wall above and below openings. The (span/depth) ratio of these beams is determined by non-structural considerations and usually well into the 'deep beam' range prone to brittle behavior. This paper presents the results of tests of three coupling beam specimens in which the influence of three types of shear reinforcement were studied. All specimens were of the same dimensions and provided with different types of shear reinforcement. In order to investigate the contribution of various types of shear reinforcement, one specimen was provided with diagonal bars confined by spiral stirrups, and the second one provided with diagonal bars without stirrups, and the third one provided with the steel plate. All fixed vertically from one side and let the second side free to the top and the load was applied to the top portion of coupling beam. The performances of coupling beam were measured in terms of crack development and drifts, failure mode and ultimate load. The results of the coupling beam reinforced with diagonal bars and spiral stirrups showed high resisting of shear capacity comparing with other specimens, and coupling beam with diagonal reinforcement only showed high performance same as to that with spiral stirrups, and the third specimen of coupling beam with steel plate showed weak performance to dissipate the shear stresses.

ABSTRAK

Teras dinding teras konkrit ditembusi olehbukaan-bukaan menegakuntuk pintu ke tangga, lif dan ruangan-ruangan lain. Bukaan-bukaan ini memisahkan teras secara menyeluruh ke dalam beberapa sub-teras yang dihubungkan oleh rasuk gandingan yang menjadi jalur sisa teras dinding konkrit di bukaan-bukaan atas dan bawah.Nisbah (rintangan/ketebalan) rasu kini ditentukan menggunakan pertimbangan bukan struktur dan selalunya sesuai bagi julat 'rasuk dalam' yang cenderung kepada sifat kerapuhan.Kajian ini membentangkan keputusan ujian tiga spesimen rasuk gandingan di mana pengaruh tiga jenis tetulang ricih dikaji. Semua spesimen adalah dengan dimensi yang sama dan dikenakan jenis tetulang ricih yang berbeza. Untuk menyiasat sumbangan pelbagai jenis tetulang ricih tersebut, satu spesimen telah disediakan dengan bar pepenjuru terkurung oleh lingkaran rakap, dan yang kedua disediakan dengan bar pepenjuru tanpa lingkaran rakap, manakala yang ketiga disediakan dengan plat keluli. Semua dipasang secara menegak dari satu sisi dan bahagian kedua dibiarkan bebas ke atas dan beban telah dikenakan ke bahagian atas rasuk gandingan. Prestasi rasuk gandingan diukur dari segi perkembangan rekahan dan hanyutan, mod kegagalan dan beban muktamad. Keputusan rasuk gandingan yang diperkukuhkan dengan bar-bar pepenjuru dan lingkaran rakap menunjukkan rintangan kapasiti ricihan yang tinggi berbanding dengan spesimen lain, manakala rasuk gandingan dengan tetulang pepenjuru hanya menunjukkan prestasi tinggi yang sama dengan rakap pilin, manakala spesimen ketiga rasuk gandingan dengan plat keluli menunjukkan prestasi lemah bagi menghilangkan tegasan ricih.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLS OF CONTENTS	vii
	LISTS OF TABLES	Х
	LISTS OF FIGUER	xi
	LIST OF SYMBOLES	xiii
1	INTRODUCTION	1
	1.1 Background of study	1
	1.2 Problem statement	2
	1.3 Aim and objective	2
	1.4 Scope of study	3
	1.5 Significant of study	3
2	LITERATURE REVIEW	4
	2.1 Introduction	4
	2.2 Structural Wall Lateral Force Resisting System	8
	2.2.1 Coupled core walls	8
	2.2.2. Energy Dissipation Behavior	9
	2.2.3. Coupling Beam Geometry	11
	2.3. Diagonally Reinforced Concrete Coupling Beam	14

		2.3.1 Geometry	14
		2.3.2 Detailing and Energy Dissipation Behavior	17
	2.4	Confinement and deep beam theory	19
		2.4.1. Concrete confinement	19
		2.4.2. Deep beam theory	21
3	EXP	ERIMENTAL INVESTIGATION	24
	3.1.	Introduction	24
	3.2.	Design of Experiment	24
	3.3.	The Material	32
		3.3.1. Concrete	32
		3.3.2. Steel Reinforcement	33
	3.4.	Preparation of Test Specimen	34
	3.4.	Formwork	34
	3.5	Casting and curing	35
	3.6	Compression test	36
	3.7	Test setup	39
	3.8	Test instrument	40
	3.9	Testing procedure	41
4	TEST	T RESULTS	43
	4.1	Introduction	43
	4.2	Coupling beam (control specimen) CP	44
		4.2.1 Cracking behavior of specimen during test	44
		4.2.2 Shear force beam drift response	45
		4.2.3 Shear distortion response	46
	4.3	Coupling beam CP3	47
		4.3.1 Cracking behavior of specimen during test	47
		4.3.2 Shear force beam drift response	48
		4.3.3 Shear distortion response	49
	4.4	Coupling beam	50
		4.4.1 Cracking behavior of specimen during test	50
		4.4.2 Shear force beam drift response	51
		4.4.3 Shear distortion response	52

5	ANA	ANALYSIS AND DISCUSSION	
	5.1	Introduction	56
	5.2	Shear resistant	56
	5.3	Shear distortion behavior	59
6	CON	NCLUSION AND RECOMMENDATIONS	62
	6.1	Conclusions	62
	6.2	Recommendation	63
RE	FEREN	CES	64
API	PENDIX	ΧA	66
API	PENDIX	K B	72

LIST OF TABLES

TABLE NO.	TITLE	PAGE

3.1	details of steel reinforcement for SP1	27
3.2	concrete compressive strength	38
4.1	(span/depth) ratio for coupling beam	55
4.2	load failure and mechanism according to ACI 318	55

TITLE

FIGURE NO.

2.1.a	Damage observed after the 1964 Alaska earthquake	
	Demonstrated	5
2.1.b	Conventional detailing	5
2.2.a	Diagonal reinforcement with dowels and Reinforcement at	
	Beam wall interface	6
2.2.b	Diagonal reinforcement with dowels and Reinforcement at	
	Beam wall interface	7
2.2.c, d	Conventional reinforcement with dowels and diagonal	
	reinforcement at Beam-wall interface	7
2.3	Plan view of core wall system	8
2.4	Elevation view of coupled core wall	9
2.5	Plastic hinges in coupling beam 10	
2.6	Diagonally reinforcement coupling beam 12	
2.7	Intersecting groups of diagonal bars placed symmetrically	
	about the Mid-span of the coupling beam	15
2.8	Shears along construction joints and shear or bond failure along	
	Lapped splices or anchorage.	18
2.9	Congested steel in the coupling beam 19	
2.10	Strut and tie model 23	
3.1	The specimen set up 26	

PAGE

3.2	Details of diagonal reinforcement with spiral stirrups	
3.3	Details of diagonal reinforcement without stirrups	
3.4	Details of steel plate in coupling beam	
3.5	Preparing of form work	
3.6	Mixer supplying concrete	
3.7	Casting and covering with polythene sheet	
3.8	The specimens painted with white paint	
3.9	Concrete cube	
3.10	Concrete cube test in DARTEC machine	37
3.11	Experimental setup	39
4.1	Concrete compressive results	44
4.2	Shear failure for specimen CP2	47
4.3	Shear failure in beam	
4.4	Shear failure and crushing beam	
4.5	Overall maximum drifts and ultimate load for all specimens	53
4.6	Overall maximum drifts for all specimens	54
4.7	Overall maximum ultimate loading	54

LIST OF SYMBOLS

fck	-	Compressive strength for concrete
fyk	-	Tensile stress for steel
Vn	-	Total shear capacity for the coupling beam
Vsd	-	Shear capacity for diagonal bars
Vs	-	Shear for steel links
Vc	-	Shear of concrete
¢	-	Angle of diagonal bars
Acw	-	Area for concrete
Vns	-	Shear capacity for steel plate
М	-	Moment
V	-	Shear capacity for the section

CHAPTER 1

INTRODUCTION

1.1 Background of study

A building cannot bear the load of lateral forces, internally (volumetric change or restrain thermal movement) or externally (wind, seismic, water, soil). Therefore, lateral force resisting system is crucial for a structure. A typical system comprises of lateral bracing, structural walls, or movement frame. Utilization of wall to wrap the building core and act as lateral force resisting system is a common practice in construction. The surrounding walls open the floor plans and reduced the obstructions at the building envelope. This will minimize the requirement of using other lateral load resistant. Well designed structural walls can create an efficient resisting system and concurrently satisfying other functional requirements.

Though the wall resisting system can be considered perfect, it still has one limitation. The rigidity of the system can be decreased by perforation on walls like the existence of doors, windows or any large openings. For that reason, the capacity of the perforated shear wall must be increased. The attempt made is by coupling two walls as single unit. Depicted the mean coupling wall, the coupled core wall system is like a simple frame: wall piers on either side of the opening act as columns while the header acts as beam. This design let the wall piers to only act during the lateral force event.

1.2. Problem statement

Limitation in core wall resisting system has led to a new design where the core walls are coupled in order to increase the performance of the perforated shear wall. As said earlier, the coupled system is like a simple frame with an advantage to allow the wall piers to act mainly in tension or compression. This study aims to increase the efficiency of the coupling beam in dissipating the generated and gathering shear stresses.

1.3. Aim and Objective

In general, this study aims to increase the shear capacity of the coupling beam by using different type of reinforcement represented by diagonal reinforcement with spiral stirrups. The aim was achieved with the following objectives:

- i. To evaluate the ability of spiral stirrups to prevent pulling out of diagonal bars.
- ii. To measure the shear capacity in coupling beams.
- iii. To verify the rotation of beams.

1.4. Scope of study

The scopes of this study are:

- a) Three reinforced concrete coupling beam were used as specimen in the experimental investigation to meet the research purpose.
- b) The size of each specimen was identical; shear wall (1000 length x 500 width x 200 thick) and coupling beam (800 mm length x 500 mm width x 200 mm thick).
- c) Shear wall was provided with the same amount of main reinforcement but different for coupling beam.
- d) The beams were fixed horizontally from one side and tested to failure with cyclic load applied at the upper side of the specimen
- e) The compressive strength of concrete was 40 Mpa.
- f) The variable for specimens is the shear reinforcement systems. Different types of reinforcement were use: diagonal reinforced bars with spiral stirrups in the first specimen, diagonal reinforcement without stirrups in the second specimen, steel plate inside the beam in the third specimen.

1.5. Significant of study

In lateral force resisting system, the role played by coupling beams to dissipate energy cannot be denied. A properly designed system can ensure the coupling beams to have enough stiffness and strength, thus able to dissipate the energy away, by shear and/or flexure, through the formation of plastic hinge at the base of wall piers. Hence, the coupling beams are said to act as 'fuse' in providing elasticity to the systems and simultaneously decrease the damage from the wall piers.

REFERENCES

ACI Committee 318 (1990). Building Code Requirements for Reinforced Concrete (ACI 318M-89). American Concrete Institute, Detriot, Michigan.

Brown, C. B. and J. T. P. Yao (1983). "Fuzzy sets and structural engineering." Journal of Structural Engineering 109(5): 1211-1225.

Buyukozturk, O. and B. Hearing (1998). "Failure behavior of precracked concrete beams retrofitted with FRP." Journal of composites for construction 2(3): 138-144.

Cheng, P. C. (2004). "Shear capacity of steel-plate reinforced concrete coupling beams."

Chen, W. F. (2007). Plasticity in reinforced concrete, J. Ross Publishing.

De Normalisation, C. E. (1991). Eurocode 2: Design of Concrete Structures: Part 1: General Rules and Rules for Buildings, European Committee for Standardization.

Fortney, P. J. (2006). The next generation of coupling beams, University of Cincinnati.

Galano, L. and A. Vignoli (2000). "Seismic behavior of short coupling beams with different reinforcement layouts." ACI Structural Journal 97(6).

Gong, B. and B. M. Shahrooz (2001). "Concrete-steel composite coupling beams. I: Component testing." Journal of Structural Engineering 127(6): 625-631.

Gong, B. and B. M. Shahrooz (2001). "Concrete-steel composite coupling beams. II: Subassembly testing and design verification." Journal of Structural Engineering 127(6): 632-638.

Harries, K. A., P. J. Fortney, et al. (2005). "Practical design of diagonally reinforced concrete coupling beams-critical review of ACI 318 requirements." ACI Structural Journal 102(6).

Harries, K. A., D. Mitchell, et al. (1998). "Nonlinear seismic response predictions of walls coupled with steel and concrete beams." Canadian Journal of Civil Engineering 25(5): 803-818.

Harries, K. A., J. D. Moulton, et al. (2004). "Parametric Study of Coupled Wall Behavior-Implications for the Design of Coupling Beams." Journal of Structural Engineering 130(3): 480-488.

Lam, W. Y., R. K. L. Su, et al. (2005). "Experimental study on embedded steel plate composite coupling beams." Journal of Structural Engineering 131(8): 1294-1302.

Park, R. and T. Paulay (1900). Reinforced concrete structures.

Paulay, T. (1986). "The design of ductile reinforced concrete structural walls for earthquake resistance." Earthquake Spectra 2(4): 783-823.

Shiu, N., G. Barney, et al. (1981). "Earthquake Resistant Walls–Coupled Wall Test." Report to NSF submitted by Portland Cement Association, Research and Development.