INFLUENCE OF AGGREGATE FLAKINESS ON MARSHALL PROPERTIES FOR ASPHALTIC CONCRETE (AC14) MIXTURES

MOHD DAUD BIN JARKASI

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil-Transportation and Highway)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JANUARY 2013

Dedicated to my beloved father and mother, Jarkasi Bin Mohd Yassin and Kadinam Bt Kadimon, all my sister and brother (Haliza, Harlina, Hanitah, Anuar, Siti Khadijah, Ismail and Sulaiman) for their love, support and patience"

"Also not forgotten to all my friends, thank you for encouragement, support and help"

ACKNOWLEDGEMENT

This piece of work will never be accomplished without our God Almighty with His blessings and His power that work within me and also without the people behind my life for inspiring, guiding, and accompanying me through thick and thin.

I would like to thank all people who have helped and inspired me during process completing my thesis. I especially want to thank my supervisor and cosupervisor, Dr Haryati Yaacob and Dr Ramadhansyah Putra Jaya for their guidance during my research and study. Thank for all the criticism and shared experiences to help me preparing this thesis. Further thanks also go to technicians of Highway and Transportation laboratories for their assistance and cooperation.

My deepest gratitude goes to my family for their unflagging love and support throughout my life. I am indebted to my father, Jarkasi Bin Mohd Yassin for his care and love. As a father, he worked very hard to support the family and spare no effort to provide the best possible environment for me to grow up and attend school. He had never complained in spite of all the hardship in his life. I cannot ask for more from my mother, Kadinam Binti Kadimon as she is simply perfect. I have no suitable word that can fully describe her everlasting love to me. Last but not least, I want to thanks all my friends for all them had done during the completion of this thesis. I hope this project will be useful for future use.

ABSTRACT

Flaky aggregate is normally avoided in bituminous mixtures because it influences the aggregate gradation, reduces interlocking characteristics and due to that it should be therefore limited. This thesis presents a study of laboratory evaluation on the effects of flaky aggregates in asphaltic concrete, AC14. Three types of proportion flaky aggregates in the mixture were considered under this study which 8 percent, 16 percent and 24 percent. Laboratory Marshall Mix Design System was used for all mix design. The objective of this study is to study the effect of flaky aggregates on the optimum bitumen content and Marshall Properties of AC14. Flow and stability (ASTM D 1559-89) test was used in this study to determine the value for all parameters needed. It is found that bitumen content will increase with increase the proportion use of flaky aggregates in the mixture. Besides that, the value of Marshall Properties for AC14 such stability, VTM and stiffness are reduced with increase the flaky aggregate content while, the value of flow and VFA is increased. As a conclusion, the presence of flaky aggregate is affected the asphalt content and Marshall Properties for AC14 mix.

ABSTRAK

Penggunaan agregat yang berkeping biasanya dielakkan di dalam Campuran asfalt kerana ia mempengaruhi penggreda agregat, serta mengurangkan ciri-ciri saling mengunci antara agregat dan disebabkan itu penggunaanya perlu dihadkan. Tesis ini membentangkan tentang kajian penilaian makmal terhadap kesan penggunaan agregat berkeping di dalam campuran konkrit berasfalt, AC14. Tiga jenis kandungan agregat berkeping yang digunakan di dalam kajian ini iaitu 8 peratus, 16 peratus, dan 24 peratus. Setiap campuran direkabentuk menggunakan sistem campuran Marshall. Objektif kajian ini adalah untuk mengkaji kesan agregat berkeping terhadap kandungan asfalt dan ciri-ciri Marshall bagi campuran AC14. Ujian kestabilan dan Aliran telah digunakan di dalam kajian ini untuk menentukan nilai bagi parameter yang diperlukan. Daripada ujian yang dijalankan, didapati bahawa kandungan optimum asfalt meningkat dengan meningkatnya penggunaan agregat Berkeping di dalam campuran konkrit berasfalt. Selain itu, nilai kestabilan, peratus lompang di dalam campuran dan kekukuhan berkurangan dengan peningkatan penggunaan agregat Berkeping manakala nilai Aliran dan peratus lompang terisi asfalt meningkat. Kesimpulannya, penggunaan agregat berkeping memberi kesan terhadap kandungan asfalt di dalam campuran konkrit berasfalt dan ciri-ciri Marshall.

TABLE OF CONTENT

CHAPTER		TITLE	PAGE
	TITI	E	i
	DEC	LARATION	ii
	DED	ICATION	iii
	ACKNOWLEDGEMENT		iv
	ABS	TRACT	v
	ABSTRAK TABLE OF CONTENT LIST OF TABLES LIST OF FIGURES LIST OF ABREVATIONS		vi
			vii
			xii
			xiv
			xvi
	LIST	COF APPENDIX	xvii
1	INTI	RODUCTION	
	1.1	Introduction	1
	1.2	Problem Statement	2
	1.3	Objectives of Study	3
	1.4	Scope of Study	4
	1.5	Significance of Study	4

2

2.1	Introduction		5
2.2	Bitum	minous Mixes	
2.3	Mater	ials	7
	2.3.1	Aggregate	7
		2.3.1.1 Coarse Aggregate	8
		2.3.1.2 Fines Aggregate	9
	2.3.2	Asphalt	9
		2.3.2.1 Asphalt Sources	10
		2.3.2.2 Types of Asphalt	10
		2.3.2.2.1 Penetration Grade	
		Asphalt	11
		2.3.2.2.2 Cutback Asphalt	11
		2.3.2.2.3 Asphalt Emulsion	12
		2.3.2.3 General Properties of Asphalt	13
	2.3.3	Filler	13
2.4	Aggre	gate Particle Shape and Texture	15
	2.4.1	Flaky Aggregates	18
2.5	Aggre	gate Gradation	20
2.6	Previo	ous Study on the Effect of Aggregate	
	Shape	on Asphaltic Concrete	23
2.7	Marsh	all Mix Characteristics	25
	2.7.1	Bulk Specific Gravity	25
	2.7.2	Air Voids in Compacted Mixture	25
	2.7.3	Percent Voids in the Mineral Aggregate	
		in Compacted Bituminous Mixture	26
	2.7.4	Percent Voids Filled with Asphalt in	
		Compacted Mixture	26
	2.7.5	Marshall Stability and Flow	27
2.8	Aspha	Asphaltic Concrete Stability	
2.9	Previo	ous Study on Marshall Stability	29

RESEARCH METHODOLOGY

3

3.1	Introd	Introduction		
3.2	Opera	tional Framework		
3.3	Proces	ss of Selection and Preparation of		
	Mater	ial	35	
	3.3.1	Aggregate	35	
		3.3.1.1 Sieve Analysis of Fine and		
		Coarse Aggregate	35	
		3.3.1.2 Aggregate Impact Value Test	37	
		3.3.1.3 Flakiness Index Test	40	
		3.3.1.4 Specific Gravity Test	42	
		3.3.1.4.1 Specific Gravity for		
		Fine Aggregate	42	
		3.3.1.4.2 Specific Gravity for		
		Coarse Aggregate	44	
	3.3.2	Filler	46	
		3.3.2.1 Preparation of Hydrated Lime	46	
	3.3.3	Asphalt	47	
3.4	Marsh	all Mix Design	47	
	3.4.1	Theoretical Maximum Density		
		(Loose Mix)	47	
	3.4.2	Marshall Sample Preparation		
		(Compacted Sample)	50	
3.5	Data Analysis		53	
	3.5.1	Bulk Specific Gravity	53	
	3.5.2	Voids Filled With Asphalt (VFA)	54	
	3.5.3	Voids in Total Mix (VTM)	54	
	3.5.4	Flow and Stability Test	55	
	3.5.5	Determination of Optimum Asphalt		
		Content (OAC)	57	

RESULTS AND ANALYSIS

4

4.1	Introduction		58
4.2	Aggregate Gradation		
4.3	Flaky	Aggregate Content	62
4.4	Aggre	gate Impact Value	62
4.5	Specif	fic Gravity Determination	63
	4.5.1	Specific Gravity of Asphalt	63
	4.5.2	Specific Gravity of Aggregate	63
		4.5.2.1 Specific Gravity of Coarse	
		Aggregate	64
		4.5.2.2 Specific Gravity of Fine	
		Aggregate	64
	4.5.3	Specific Gravity of Filler	65
4.6	Theore	etical Maximum Density	65
4.7	Deterr	nination of Marshall Characteristics	66
	4.7.1	Marshall Analysis	66
	4.7.2	Verification Sample	67
4.8	Marsh	all Properties	69
	4.8.1	Stability	69
	4.8.2	Flow	70
	4.8.3	Stiffness	71
	4.8.4	Voids in Total Mix	72
	4.8.5	Voids Filled with Asphalt	73
4.9	Analy	sis of Variance (ANOVA)	74

х

CONCLUSION AND RECOMMENDATION

5

5.1	Introduction	76
5.2	Conclusion	76
5.3	Recommendation	78

REFERENCES	79
------------	----

APPENDIX A – G	83-110
----------------	--------

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Filler Grading (ASTM, 1992)	14
2.2	Basic Aggregate Properties	
	(Meininger and Nichols, 1990)	16
3.1	Gradation Limit for AC14	37
3.2	Data for Determination of Flakiness Index	
	(BS 812-105.1:1989)	41
3.3	Design Asphalt Content	47
3.4	Minimum Sample Size Requirement for	
	Maximum Theoretical Specific Gravity	
	(ASTM D 2141)	48
3.5	Marshall Correction Factor (ASTM, 1992)	56
3.6	JKR/SPJ/2008 Specification for Wearing	
	Course AC14	57
4.1	Gradation Limit for AC14 with 8 percent Flaky	
	Aggregate	59
4.2	Gradation Limit for AC14 with 16 percent Flaky	
	Aggregate	60
4.3	Gradation Limit for AC14 with 24 percent Flaky	
	Aggregate	61

TABLE NO.	TITLE	PAGE
4.4	Weight of Flaky Aggregate	62
4.5	Specific Gravity and Water Absorption of Coarse	
	Aggregate	64
4.6	Specific Gravity and Water Absorption of Fine	
	Aggregate	65
4.7	Bitumen Use for TMD Test	65
4.8	OAC Obtained for Mix with Different Proportion	
	of Flaky Aggregate	66
4.9	Result of Verification Sample of AC14 with 8 percent	ţ
	Flaky Aggregate	68
4.10	Result of Verification Sample of AC14 with 16 percent	nt
	Flaky Aggregate	68
4.11	Result of Verification Sample of AC14 with 24 percent	nt
	Flaky Aggregate	68
4.12	Two-way ANOVA Analysis	75

xiii

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Types of Particle Shape	17
2.2	Typical Ratios of Flat Particles	18
2.3	Flaky Aggregates	19
2.4	FHWA Gradation Graph	22
2.5	Relationship between Particle Index and	
	Marshall Stability and Flow	29
2.6	Relationship between Marshall Stability and	
	Increasing PI Values	30
3.1	Flow Chart of Laboratory Process and Analysis	33
3.2	Study Process	34
3.3	A Metal Gauge	40
3.4	Loose Mixture	49
3.5	TMD Equipment	49
3.6	Marshall Compactor Machine	52
3.7	Machine for Flow and Stability Test	56
4.1	Aggregate Gradation for AC14 with 8 percent Flaky	
	Aggregate	59
4.2	Aggregate Gradation for AC14 with 16 percent Flaky	/
	Aggregate	60

FIGURE NO. TITLE		GE
4.3	Aggregate Gradation for AC14 with 24 percent Flaky	
	Aggregate	61
4.4	Variation of Stability with Different Proportion of Flaky	
	Aggregate	70
4.5	Variation of Flow with Different Proportion of Flaky	
	Aggregate	71
4.6	Variation of Stiffness with Different Proportion of Flaky	
	Aggregate	72
4.7	Variation of VTM with Different Proportion of Flaky	
	Aggregate	73
4.8	Variation of VFA with Different Proportion of Flaky	
	Aggregate	74

xv

LIST OF ABREVIATIONS

AC14	-	Asphaltic Concrete Wearing with 14 mm Nominal Maximum
		Aggregate Size
HMA	-	Hot Mix Asphalt
OAC	-	Optimum Asphalt Content
SHRP	-	Strategic Highway Research Program
ASTM	-	American Society for Testing and Materials
JKR	-	Jabatan Kerja Raya
PCC	-	Portland Cement Concrete
FI	-	Flakiness Index
BSI	-	British Standard Institution
FHWA	-	Federal Highway Administration
VMA	-	Voids in Mineral Aggregate
VFA	-	Voids Filled with Asphalt
VTM	-	Voids in Total Mix
AASHTO	-	American Association of State Highway and Transportation
		Officials
AIV	-	Aggregate Impact Value
TMD	-	Theoretical Maximum Density
ANOVA	-	Analysis of Variance

LIST OF APPENDIX

APPENDIX NO.TITLEPAGE

Appendix A	Aggregate Size Distribution	80
Appendix B	Aggregate Impact Value Test, Specific	
	Gravity and Water Absorption Test	83
Appendix C	Theoretical Maximum Density	84
Appendix D	Marshall Test Result (OAC)	86
Appendix E	Marshall Test Result (Verification Sample)	95
Appendix F	Marshall Sample Preparation and Test	98

CHAPTER 1

INTRODUCTION

1.1 Introduction

Road as one of land transportation infrastructure is very important in supporting the economic for both regional and national development. A good and systematic of road network can make the short travel time from one destination to other destination. In 2008, there are approximately 90, 000 km of roads in Malaysia and it is about 87, 626 km are paved with asphalt (Hainin, *et al*, 2010). The road has specific design life based on the traffic loading that has been determined before construction.

The quality of material for road construction will influence the road performance. Asphalt concrete as one of road surface material is mainly influenced by the quality of aggregates since aggregate occupies 95 percent by weight in total mixture (Ginting, *et al*, 2005). Various shapes of aggregates might be occurred during crushing in the crushing plant starting from rounded to flaky and elongated aggregates. The presence of flaky aggregates is considered undesirable in bituminous mixtures because of their tendency to break down during construction and subsequent traffic operations.

Poor quality of materials will lead to damaged road. The damaged road should be repaired to prevent an accident by road users. Therefore, aggregate shape is one of the important properties that must be considered in the mix design of asphalt pavements to avoid premature pavement failure.

1.2 Problem Statement

Mineral aggregate has contributed approximately 95 percent of hot mix asphalt (HMA) by weight. The mineral aggregate is made up predominantly of coarse aggregate. Some study have been done shown that aggregate characteristic such as particle size, shape, and texture influence the performance and service ability of road pavement (Brown, *et al*, 1989).

Cubical particles were desirable for increased aggregate internal friction and also improved rutting resistance. The usage of flaky aggregates in bituminous mixture is undesirable because of their tendency to break down during construction and subsequent traffic operations. In addition, bituminous mixture which consist high flaky aggregates has more voids and the workability of the mixtures is low.

Flaky particles have less strength and durability when compared with cubical, angular or rounded particles of the same aggregate. Hence too flaky aggregates should be avoided as far as possible in the bituminous mixtures. There are some study which conducted by Li and Kett (1967) found that mixes with flaky aggregates have exhibit higher fatigue life and mixes with non flaky aggregates.

The presence of flaky aggregates beyond certain limits will reduce the strength of bituminous mixtures and causes extreme damage in road pavement. Their presence in large proportions also results in a higher asphalt demand due to the increased surface area. Hence, it was felt need some study to find the right proportions of flaky and elongated aggregates used in bituminous mixtures.

1.3 Objectives of Study

Objectives are good guidelines for the development of study so that it can be developed according to the correct direction in the future. There are several objectives that have been highlighted in this study.

- 1) To determine optimum asphalt content (OAC) for AC14 based on the proportion of flaky aggregates.
- To study the effect of flaky aggregate on the volumetric properties of asphalt mix.
- To develop a relationship between different proportion of flaky aggregate and Marshall Characteristics for AC14.

1.4 Scope of Study

This study will be focused on the effect of flaky aggregates of asphaltic concrete with 14 mm nominal maximum aggregate size, AC14 towards the stability of the bituminous mixtures. The proportion of flaky and elongated aggregates used in the mixtures is 8 percent, 16 percent, and 24 percent. The asphalt that use for AC14 is PEN 80/100.

All of the samples are Marshall Samples. The test that will be conducted to measure the stability of the bituminous mixtures is Marshall Stability Test. From the test, the parameters value of Marshall Properties will be known and comparison will be making between each sample that contain different proportion of flaky aggregates.

1.5 Significant of Study

From the study, all the parameters value of AC14 with different proportions of flaky aggregates can be obtained. It is important to know the effect of flaky aggregates towards the Marshall properties and to what percentage should flaky aggregates limited for AC14 to meet JKR specification. Last but not least is the result of this study can be used for further study on the effect proportions of flaky aggregates in HMA mixtures in Malaysia.

REFERENCES

- Agus Ariawan (2011). Variasi Agregat Pipih Sebagai Aggregat Kasar Terhadap Karakteristik Lapisan Aspal Beton (Laston), Jurnal Ilmiah Teknik Sipil, Vol. 15, No.1.
- American Society for Testing Materials (1992b). *Test Method of Specific Gravity and Absorption of Course Aggregate*. Philadelphia, USA, C128-88.
- American Society for Testing Materials (1992c). *Test Method of Specific Gravity and Absorption of Fine Aggregate.* Philadelphia, USA, C128-88.
- American Society for Testing Materials (1992d). Test Method of Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures. Philadelphia, USA, D 2041-91.
- American Society for Testing and Materials (1992e). Test Method for Resistance to Plastic Flow of Bituminous Mixtures Using Marshall Apparatus.
 Philadelphia, USA, D 1559-89.
- American Society for Testing and Materials (1992f). *Test Method for Bulk Specific Gravity and Density of Compacted Bituminous Mixtures Using Saturated Surface-Dry Specimens*. Philadelphia, USA, D 2726-90.
- Siswosoebrotho, Soedirdjo, and Ginting (2005). Workability and Resilient Modulus of Asphalt Concrete Mixtures Containing Flaky Aggregates Shape, Journal of the Eastern Asia Society for Transportation Studies, Vol. 6, pp. 1302 1312.

- Dr. L.R. Kadyali and Dr. N.B. Lal. (2011). *Principles and Practices of Highway Engineering* (Fifth Edition). Khanna Publishers.
- D. Sakthibalan. (2009). Influence of Aggregate Flakiness on Dense Bituminous Macadam & Semi Dense Bituminous Concrete Mixes. Indian Geotechnical Society Chennai Chapter, pp. 25 – 29.
- Edward, J. M., and Huen, Y.C. (1967). *Hot Mix Asphalt Materials, Mixture Design and Construction.* First Edition. NAPA Research and Education Foundation. Lanham, Maryland.
- E. Tutumler, T. Pan and S. H. Carpenter (2005). Investigation of Aggregate Shape Effects on Hot Mix Performance Using an Image Analysis Approach. Study report, University of Illinois.
- Ganapati Naidu and S. Adiseshu (2005). Influence of Coarse Aggregate Shape Factors on Bituminous Mixtures. *International Journal of Engineering Research and Application, Vol. 1, pp. 2013 – 2024.*
- Hamzah, Marliana, and Azizi (2010). Properties of Geometrical Cubical Aggregates and Its Mixture Design, USM.
- Heatherlay, L. W. and Leaver, P. C. (1967). *Asphaltic Road Materials*. London, Edward Arnold Publisher LTD.
- Jabatan Kerja Raya (2008). *Standard Specifications for Road Works*. Kuala Lumpur, (JKR/SPJ/rev 2008).
- J. S. Chen, K. Y. Lin, and M. K. Chang. (2005). Influence of Aggregate Shape on the Strength of Asphalt Concrete Mixtures, *Journal of the Eastern Asia Society for Transportation Studies, Vol. 6, pp. 1062 – 1075.*

- J. S. Chen, S. Y. Wong, and K. Y. Lin (2005). Quantification of Movements of Flat and Elongated Particles in Hot Mix Asphalt Subject to Wheel Load Test. *Journal of Materials and Sructures*, 38, 395 – 402.
- Lusyana and Y. P Wijaya(2009). Perbandingan Campuran AC-WC Terhadap Penggunaan Kadar Pipih dan Lonjong Berdasarkan Spesifikasi Kimpraswil 2005, *Rekayasa Sipil, Volume V, No.2*.
- M. Shane Buchanan (2000). Evaluation of the Effect of Flat and Elongated particles on the Performance of Hot Mix Asphalt Mixtures. NCAT Report, Auburn University, Alabama.
- Monismith, C. L. (1970). Influence of Shape, Size, and Surface Texture on The Stiffness and Fatigue Response of Asphalt Mixtures. In Special report 109, HRB, National Research Council, Washington, D. C. 4 – 11.
- Nurfadzlin Bt Mohamed Yusof (2011). *Moisture Susceptibility of Malaysian Hot Mix Asphalt Mixture*. Master thesis, Universiti Teknologi Malaysia.
- Nursyazwani Bt Md Zaki (2010). Study on Performance of Flat and Elongated Aggregate in Low Traffic Road. Undergraduate thesis, Universiti Malaysia Pahang.
- Norhazwani Bt Zulkeflee (2010). Kesan Agregat Berkeping keatas Kedalaman Tekstur dan Rintangan Gelinciran 14mm Dandanan Permukaan. Undergraduate thesis, Universiti Teknologi Malaysia.
- Oduroh, P. K., Mahboud, K. C., and Anderson, R. M. (2000). Flat and Elongated Aggregates in Superpave Regime. *Journal of Materials in Civil Engineering*, *12*, *124 130*.

- Ramadhansyah Putra Jaya (2008). Kesan Agregat Berkubik Dan Pengusiaan ke atas Sifat Kejuruteraan Konkrit Asfalt ACW14. Tesis Ijazah Sarjana, Universiti Sains Malaysia.
- W. R. Vavrik, R. J. Fries, S. H. Carpenter, and B. D. Aho (2000). Effect of Flat and Elongated Coarse Aggregate on Characteristic of Gyratory Compacted Samples. A final study report Department of Civil and Environmental Engineering University of Illinois.
- Zemichael Berhe Mehari (2007). Effect of Different Types of Filler Materials on Characteristics of Hot Mix Asphalt Concrete. Master thesis, Addis Ababa University.

http://www.pavementinteractive.org/article/flat-and-elongated-particles/