HIGH CELL DENSITY CULTIVATION OF *Hendersonia* sp. FOR THE APPLICATION OF BIOLOGICAL CONTROL OF OIL PALM DISEASE

MUHAMMAD DANIAL BIN AZMAN

A dissertation submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (*Bioprocess*)

Faculty of Chemical Engineering

Universiti Teknologi Malaysia

JANUARY 2013

to my mom and dad for bringing me into this wonderful world

ACKNOWLEDGEMENT

Praise be upon Allah, the Almighty Who is Kind and Merciful. For it is by His grace and blessing that gave me the endurance and perseverance to complete this project, and ultimately, this dissertation.

I would like to express my sincere gratitude to my supervisor, Prof. Dr. Hesham Ali El Enshasy, for giving me the opportunity to revive my long lost passion for research. There won't be anything in the world that can compensate his endless support and advice.

I also would like to acknowledge the help and support from everyone who was involved in this project, directly or indirectly, especially the staff members from the Insitute of Bioproduct Development (IBD). Once again, I wish to thank the research officers, Ms. Roslinda and Ms. Zalina, as well as Mr. Solleh and Mr. Yahya for sharing their knowledge and assistance.

My deepest gratitude to all my fellow friends from the lab for their kindness and enormous help throughout the project. Working in the lab would never be fun and enjoyable without them around.

Last but not least, I would like to thank my parents and family for their love and prayer. The success of this project would not be achieved if it were not for their continuous support.

ABSTRAK

Malaysia merupakan salah satu pengeluar dan pengeksport produk kelapa sawit yang terbesar di dunia. Pada 2011, Malaysia telah mengeskport sebanyak 24.27 juta tan produk kelapa sawit yang membawa kepada nilai eksport sebanyak RM 80.4 billion. Walau bagaimanapun, pokok kelapa sawit mudah terdedah kepada penyakit, terutamanya Basal Stem Rot yang berpunca dari Ganoderma. Penyakit ini telah menyebabkan kerugian yang besar kepada ekonomi. Hendersonia sp. adalah strain kulat yang telah menunjukkan kesan efektif dalam menangani jangkitan Ganoderma. Kajian ini dijalankan bagi membina suatu platform pengkulturan Hendersonia yang komprehensif untuk pengeluaran skala industri. Bagi kajian screening medium agar, medium yang terbaik terdiri daripada (g/L): Ekstrak Malt, 20; Glukosa, 20; Pepton,1; Ekstrak Yis, 5; Serbuk Agar, 20. Bagi kajian screening shake flask pula, medium yang terdiri dari (g/L): Ekstrak Malta, 20; Glukosa, 20; Pepton,1; Ekstrak Yis, 5, memberi CDW yang tertinggi iaitu 7.45±0.6 g/L. Ini diikuti dengan medium yang terdiri dari of (g/L): Sukrosa, 40; KH₂PO₄, 1; MgSO₄.7H₂O, 1.0; KCl, 0.5; FeSO₄, 0.01; Ekstrak Yis, 2, yang memberi CDW sebanyak 6.15±0.14 g/L. Optimasi medium telah dibuatkan dengan menggunakan Metodologi Response Surface. Formulasi medium yang telah dioptimasi terdiri dari (g/L): Sukrosa, 60; K₂HPO₄, 0.5; Ekstrak Yis, 3; MgSO₄.7H₂O, 1; KCl, 0.5; FeSO₄, 0.01. Bagi pengkulturan bioreaktor 150-L, dengan menggunakan pH tanpa kawalan, CDW sebanyak 13.55 g/L telah diperolehi. Selain itu, kesan kelajuan agitasi kepada jisim sel telah dikaji di dalam bioreaktor 150-L. CDW yang tertinggi telah diperolehi dengan menggunakan kelajuan agitasi 250 rpm pada 70 jam. Kesimpulannya, kajian ini telah mencadangkan kaedah yang kos efektif dalam menghasilkan Hendersonia dalam skala industri.

ABSTRACT

Malaysia is one the world's biggest producers and exporters of oil palm products. In 2011, Malaysia has exported 24.27 million tonnes of oil palm products, which accounted for RM 80.4 billion in total export revenue. However, the oil palm is susceptible to plant diseases, especially Basal Stem Rot caused by Ganoderma. This disease has caused tremendous losses to the economy. *Hendersonia* sp. is a novel fungus strain that has shown effective results in controlling Ganoderma infection. The aim of this study was to establish a comprehensive Hendersonia cultivation platform for industrial-scale production. In an agar medium screening study, the best medium was composed of (g/L): Malt Extract, 20; Glucose, 20; Peptone,1; Yeast Extract, 5; Agar powder, 20. Based from the shake flask media screening study, the medium composed of (g/L): Malt extract, 20; Glucose, 20; Peptone, 1; Yeast extract, 5, gave the highest CDW of 7.45 ± 0.6 g/L. This is followed by the medium composed of (g/L): Sucrose, 40; KH₂PO₄, 1; MgSO₄.7H₂O, 1.0; KCl, 0.5; FeSO₄, 0.01; Yeast Extract, 2, which resulted with CDW of 6.15±0.14 g/L. The optimization of the medium was applied by using Response Surface Methodology. The new optimized medium formulation was composed of (g/L): Sucrose, 60; K₂HPO₄, 0.5; Yeast Extract, 3; MgSO₄.7H₂O, 1; KCl, 0.5; FeSO₄, 0.01. For the 150-L bioreactor cultivation, by utilizing un-controlled pH throughout the cultivation, 13.55 g/L of CDW was obtained. In addition, the effects of agitation speed on the cell mass during the 150-L bioreactor cultivation were studied. The highest CDW (15.6 g/L) was obtained with agitation speed of 250 rpm at 70 h. In conclusion, the present study has proposed a reliable and cost-effective approach in mass producing Hendersonia in industrial scale.

TABLE OF CONTENTS

CHAPTER

1

TITLE

PAGE

ii
iii
iv
V
vi
vii
xi
xiii
XV
xvi
1
1
2

1.2	Problem statement	2
1.3	Research objectives	3
1.4	Research scopes	3

LITERATURE REVIEW

2.1	Oil pa	lm disease	4
2.2	Chem	ical-based fungicides for the control	5
	of oil		
2.3	Biolog	7	
2.4	Hende	ersonia sp.	8
2.5	Hende	ersonia cultivation conditions	9
2.6	High o	cell density cultivation of	10
	Hende	ersonia	
	2.6.1	Overview of high cell density	10
		cultivation	
	2.6.2	Factors affecting high cell density	11
		production	
		2.6.2.1 Oxygen concentration	11
		2.6.2.2 Effect of agitation speed on	12
		growth and sporulation	
		2.6.2.3 Medium consideration	13
		2.6.2.4 Feeding strategy	15
MET	HODO	LOGY	16
3.1	Introd	uction	16
3.2	Micro	organism	18
3.3	Devel	opment of master and working cell	18
	bank		
3.4	Studie	es on solid medium	19
	3.4.1	Agar medium screening	19
3.5	Cell c	ultivation in liquid media	20
	3.5.1	Shake flask media screening	20
	3.5.2	Shake flask media growth study	21
	3.5.3	Studies on the effect of different	22

		sucrose concentration in submerged	
		culture	
	3.5.4	Optimization of submerged cultivation	23
		medium using response surface	
		methodology	
	3.5.5	Growth kinetic comparison between	25
		optimized medium and un-optimized	
		medium	
3.6	Cultiv	ation in pilot plant scale bioreactor	26
	3.6.1	16-L stirred tank bioreactor cultivation	26
	3.6.2	Cultivation in 150-L bioreactor	28
	3.6.3	Studies on the effects of controlled and	30
		un-controlled pH in 150-L bioreactor	
	3.6.4	Studies on the effects of agitation speed	31
		in 150-L bioreactor	
3.7	7 Analytical methods		32
	3.7.1	pH determination	32
	3.7.2	Cell dry weight determination	32
	3.7.3	Total carbohydrate analysis	33
	3.7.4	Glucose determination	33
	3.7.5	Morphological observations under	34
		microscope	
RESU	JLTS A	ND DISCUSSIONS	35
4.1	Introd	uction	35
4.2	Basic	cultivation information on	36
	Hend	ersonia sp.	
4.3	Studie	es on solid medium	37
4.4	Cell c	ultivation in liquid media	41
	4.4.1	Shake flask media screening from five	42
		different media	

4

	4.4.2	Shake flask media growth study	46
	4.4.3	Studies of the effect of different	50
		sucrose concentration in submerged culture	;
	4.4.4	Optimization of submerged cultivation	54
		medium using response surface	
		methodology	
	4.4.5	Growth kinetic comparison between	62
		optimized medium and un-optimized	
		medium	
4.5	Cultiv	ation in pilot plant scale bioreactor	65
	4.5.1	Batch cultivation in 16-L and 150-L	65
		bioreactor	
	4.5.2	Studies on the effects of controlled	69
		and un-controlled pH in 150-L bioreactor	
	4.5.3	Studies on the effects of agitation speed	72
		in 150-L bioreactor	
CON	CLUSI	ONS AND RECOMMENDATIONS	78
5.1	Conclusions Recommendations		78
5.2			80
			81

APPENDICES

REFERENCES

LIST OF TABLES

TABLE NO.

TITLE

PAGE

3.1	Media composition of malt extract peptone	18
	Agar (DSMZ)	
3.2	Media compositions of six different agar media	19
3.3	Media compositions for shake flask media screening	21
3.4	Media compositions for eight different sucrose	22
	concentrations	
3.5	Media compositions for medium optimization of	24
	sucrose medium	
3.6	Media compositions for 16-L bioreactor	27
3.7	Media composition for 150-L bioreactor	29
4.1	Average diameters of the mycelium growth	38
4.2	Visual observation of the agar plates	39
4.3	Comparison of cell dry weight, pH, and total	43
	Carbohydrate analyzed from the shake flask media	
4.4	Media compositions for the shake flask growth study	46
4.5	Comparison of cell dry weight, pH, and total	47
	carbohydrate analyzed from M1 and M4 media	
4.6	Media compositions for eight different sucrose	50
	concentrations	
4.7	Comparison of cell dry weight, pH, and total	51
	carbohydrate analyzed from six different	
	media of different sucrose concentrations	

4.8	Media compositions for medium optimization	55
	of sucrose medium and their cell dry weight	
	results	
4.9	Estimated regression coefficients for cell dry	57
	weight	
4.10	Media compositions for both un-optimized	62
	medium and optimized medium	

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

3.1	Overview of the research methodology	17
4.1	Graph showing the average diameters of the	40
	mycelium growth	
4.2	Comparison of cell dry weight, pH, and total	44
	carbohydrate from different media	
4.3	Comparison of cell dry weight, pH, and total	49
	carbohydrate between M1 and M4	
4.4	Comparison of cell dry weight, pH, and total	52
	carbohydrate analyzed from eight different	
	media of different sucrose concentrations	
4.5	Contour plot of cell dry weight versus K ₂ HPO ₄	59
	and sucrose	
4.6	Contour plot of cell dry weight versus yeast	60
	extract and sucrose	
4.7	Contour plot of cell dry weight versus yeast	61
	extract and K ₂ HPO ₄	
4.8	Comparison of cell dry weight, pH, and total	63
	carbohydrate between optimized medium and	
	un-optimized medium	
4.9	Batch cultivation of Hendersonia sp. in 16-L bioreactor	67
	uncontrolled pH	
4.10	Batch cultivation of Hendersonia sp. in 150-L bioreactor	68

uncontrolled pH Hendersonia sp. cultivation in 150-L bioreactor using 4.11 70 controlled pH Hendersonia sp. cultivation in 150-L bioreactor using 4.12 71 un-controlled pH Hendersonia sp. cultivation in 150-L bioreactor using 4.13 73 150 rpm agitation speed 4.14 Hendersonia sp. cultivation in 150-L bioreactor using 74 200 rpm agitation speed Hendersonia sp. cultivation in 150-L bioreactor using 4.15 75 250 rpm agitation speed

LIST OF ABBREVIATIONS

CDW	-	Cell dry weight
DO	-	Dissolved oxygen
FeSO ₄	-	Ferrous sulfate
KCl	-	Potassium chloride
KH ₂ PO ₄	-	Di-potassium phosphate
MgSO ₄ .7H ₂ O	-	Magnesium sulfate heptahydrate

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A	Pictures of the agar plates from the agar	87
	cultivation study	
В	Pictures of the shake flasks from the shake flask	90
	study cultivation study	
С	Pictures of microscopes slides from Hendersonia sp.	93
	bioreactor cultivation	
D	Response surface methodology optimization data	98
	generated by Minitab 16	

CHAPTER I

INTRODUCTION

1.1 Research background

Being one of the world's largest producers and exporters of oil palm products, Malaysia exported 24.27 million tonnes of oil palm products in 2011. These oil palm products, which include palm oil, palm kernel oil, palm kernel cake, oleochemicals, biodiesel and finished products, account for RM 80.4 billion in total export revenue (Malaysian Palm Oil Board, 2012).

However, like most crops, oil palm is susceptible to diseases. One of the major diseases of oil palm is known as basal stem rot (BSR), which is caused by pathogenic fungal species especially *Ganoderma* (Pilotti, 2005). This disease poses a serious threat to the cultivation and the production of oil palm, which leads to severe economic losses.

Over recent years, many attempts have been done to control basal stem rot in oil palm. The usage of chemical-based fungicide as control showed only mediocre results due to the characteristics of *Ganoderma* which is soil borne (Susanto *et al.*, 2005). Thus,

researchers are currently focusing in studying the biological control of the disease using endophytic microorganisms including *Pseudomonas, Trichoderma,* and *Hendersonia*.

One of the major advantages of using endophytic microorganisms as control is they can be easily introduced to the roots without causing harm to the host plants. Moreover, these endophytic microorganisms can suppress the growth of pathogens by limiting their nutrient and space.

1.2 Problem statement

Hendersonia has been researched for its biological control properties, especially in controlling fungal diseases. Resulting from this, there is a growing need of these fungi in oil palm cultivations across Malaysia and other oil palm producing countries. Thus, in order to cater for these demands, there must be some means to produce this strain in large scale. In this study, we aim to design an efficient high cell density cultivation of *Hendersonia* sp. As of the time of writing this thesis, there has been no previous study on both shake flask and bioreactor cultivation of *Hendersonia* sp.

1.3 Research objectives

The main objectives of this research are:

- (i) To establish a comprehensive *Hendersonia* sp. cultivation platform;
- (ii) To select the optimum medium for the cultivation of *Hendersonia* sp.

1.4 Research scope

In order to achieve the objectives of this study, the scope of research were applied:

- (i) Medium screening for agar cultivation;
- (ii) Medium screening for shake flask cultivation;
- (iii) Medium optimization for shake flask cultivation;
- (iv) Effect of pH and agitation speed on cell growth in 150-L bioreactor.

REFERENCES

Abouseoud, M., Maachi, R., and Amrane, A. Biosurfactant production from olive oil by *Pseudomonas fluorescens*. In Mendez-vilas, A. (Ed.) *Communicating current research and educational topics and trends in applied microbiology*. Spain: Formatex. 340-347, 2007

Azevedo, J.L., Maccheroni, J.W., Pereira O.J., and Araujo, L.W. (2000). Endophytic microorganisms: a review on insect control and recent advance on tropical plants. *Journal of Biotechnology*. 3, 40-65.

Bang, S.G., and Choi, C. Y. (1995). DO-stat fed batch production of cis, cis-muconic acid from benzoic acid by *Pseudomonas putida* BM014. *Journal of Fermentation and Bioengineering*. 79, 381-383.

Bingzhang, H. and Yujie, C. (1994). Study on biological characteristics of *Hendersonia* acicola. Journal of Northeast Forestry University. 5, 4.

Butin, H, and Lonsdale, D. (1995). *Tree Diseases and Disorders*. New York; Oxford University Press.

Caldwell, D. (2004). *Basal stem rot / Ganoderma butt rot of palms*. Florida: University of Florida.

Chincholker, S.B. and Mukerji, K.G. (2007). *Biological Control of Plant Diseases*. New York; Haworth Press.

Dikin, A., Sijam, K., Mior-Ahmad, Z.A., and Abu-Seman, I. (2003). Biological control of seedborne pathogen of oil palm, *Schizopyllum commune* Fr. with antagonistic bacteria. *International Journal of Agriculture and Biology*. 4, 507-512.

Doelle, H.W. and Mcgregor, A.N. (1983). The effect of high ethanol and carbon dioxide concentrations on the ultrastructure of *Zymomonas mobilis*. *Applied Microbiology and Biotechnology*. 17, 44-48.

Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F. (1956). Colorimetric method for determination of sugars and related substance. *Analytical Chemistry*. 28, 350-356.

Ellis, M.B. (1997). *Microfungi on Land Plants: An Identification Handbook*. United Kingdom: The Richmond Publishing Co. Ltd.

Gao, L., Sun, M.H., Liu, X.Z., and Che, Y.S. (2007). Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol fungi. *Mycological Research.* 3, 87-92.

Idris, A.S., Nurrashyeda, R., Maizatul, S.M., Madihah, A.Z., Tarmizi, A.M., Kushairi, A., Wan Azha, W.M., and Tony Peng, S.H. (2012). Biofertiliser *Hendersonia* GanoEF as biological control of *Ganoderma* in oil palm. *Malaysia Palm Oil Berhad Information Series*. ISSN 1511-7871.

Jones, R.P. and Greenfield, P.F. (1982). Effect of carbon dioxide on yeast growth and fermentation. *Enzyme and Microbial Technology*. 4, 210-223.

Khan, S., Misra, A.K., Tripathi, C.K.M., Mishra, B.N., and Bihari, V. (2006). Response surface optimization of effective medium constituents for the production of alkaline protease from a newly isolated strain of *Pseudomonas aeruginosa*. *Indian Journal of Experimental Biology*. 44, 151-156.

Lu, G.Y., Wong, P., He, J.Y., and Li, X.N. (2008). Medium optimization for enzymatic production of L-cysteine by *Pseudomonas* sp. ZJWP-14, using response surface methodology. *Food Technology and Biotechnology*. 46, 395-401.

Malaysia Palm Oil Board. (2011). *Overview of the Malaysian Oil Palm Industry 2010*. Malaysian Palm Oil Board.

Meade, J., Higgins, P., and Ogara, F. (1985). Production and storage of *Rhizobium leguminosarum* cell concentrates as inoculants. *Journal of Applied Microbiology*. 58, 517-524.

Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. *Analytical Chemistry.* 31 (3): 426–428.

Mitchell, C.P., Williamson, B., and Millar, C.S. (1976). *Hendersonia acicola* on pine needles infected by *Lophodermella sulcigena*. *European Journal of Pathology*. 6, 92-102

Patel, N., Choy, V., Malouf, P., and Thibault, J. (2009). Growth of *Trichoderma reesei* RUT C-30 in stirred tank and reciprocating plate bioreactors. *Process Biochemistry*. 44, 1164-1171.

Pilotti, C. A. (2005). Stem rots of oil palm caused by *Ganoderma boninense*: Pathogen biology and epidemiology. *Mycopathologia*. 159, 129-137.

Preusting, H., Houten, R.Z., Hoefs, A., Langenberghe, E.K.V., Favre-Bulle, O., and Witholt, B. (1992). *Biotechnology and Bioengineering*. 41, 550-556.

Rao, Y.K., Tsay, K., Wu, W., and Tzeng, Y. (2007). Medium optimization of carbon and nitrogen sources for the production of spores from *Bacillus amyloliquefaciens* B128 using response surface methodology. *Process Biochemistry*. 42, 535-541.

Shastry, S., and Prasad, M. (2002). Extracellular protease from *Pseudomonas sp.* (CL 1457) active against *Xanthomonas campestris*. *Process Biochemistry*. 37, 611-621.

Shiloach, J., and Fass, R. (2005). Growing *E. coli* to high cell density - A historical perpsective on method development. *Biotechnology Advances*. 23, 345-357.

Soepena, H. Purba, R.Y., and Pawirosukarto, S. A control strategy for basal stem rot (Ganoderma) on oil palm. In Flood. *et al.* (Ed.) *Ganoderma Disease of Perennial Crops*. United Kingdom: CAB International. 83-88, 2000

Son, H., Kim, K., Kim, H., Kim, Y., and Lee, S. (2000). Enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch cultures of *Pseudomonas sp* EL-2. *Journal of Industrial Microbiology & Biotechnology*. 24, 36-40.

Susanto, A., Sudharto, P. S., and Purba, R.Y. (2005). Enhancing biological control of basal stem rot disease (*Ganoderma boninense*) in oil palm plantations. *Mycopathologia*. 159, 157-157.

Thompson, A. (1931). Stem rot of oil palm in Malaya. *Bulletin of the Department of Agriculture*.

Tripathi, N.K., Sathyaseelan, K., Jana, A.M., and Rao, P.V.L. (2009). High yield production of heterologous protein with *Escherichia coli*. *Defence Science Journal*. 59, 137-146.

Van Loon, L., and Bakker, P. (2004). Signalling in rhizobacteria-plant interactions. In De Kroon, J. and E.J.W. Visser (Eds.) *Ecological Studies, Journal of Root Ecology.* 168, 287-330.

Zaiton, S. Sariah, M. and Zainal-Abidin, M.A. (2008). Effect of endophytic bacteria on growth and suppression of *Ganoderma* infection in oil palm. *International Journal of Agriculture & Biology*. 2, 127-132.