FINITE ELEMENT SIMULATION OF RECTANGULAR CONCRETE-FILLED STEEL-HOLLOW SECTION BEAM-COLUMN STRUCTURE

KAMYAR BAGHERINEJAD SHAHRBIJARI

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Civil-Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JANUARY 2013

I cordially dedicate this project report to the biggest treasures of my life, my parents, who gave me their love, and also for their endless support and encouragement.

To my beloved mother and father

ACKNOWLEDGEMENT

I would like to thank all my friends and people who have given the cooperation to me in writing this project report. I am sincerely grateful to my supervisor; Assoc. Prof. Dr. Suhaimi Abu Bakar for his continues support and guidance to set a high standard for the conduct of this study and his valuable suggestions confer to complete this project report. My sincere appreciation also extends to all my family members.

ABSTRACT

Composite steel-concrete construction is widely used in the construction of modern buildings and bridges, even in regions of high seismic risk. Despite the excellent engineering properties of concrete filled tubs (CFT), they are not as widely used as traditional structural steel and reinforced concrete members. Although much research has been performed on the topic, the amount of information regarding CFTs is significantly less than that available for traditional steel or reinforced concrete members. The aim of this study is to predict the buckling behavior of concrete-filled steel hollow structural section beamcolumns with advanced finite element methods, then compare the predictions with experimental results found from literature. It is also optimize findings and represent a finite element model for further studies. In this study the modeling and non-linear analysis of beam-column specimens is perform using ABAQUS finite element software. A total of two different specimens from experimental study were investigated with eccentric loading. The specimens have square section with overall depth of 120 mm and 140 mm respectively. Two different models were established, to investigate bending behavior of rectangular sections with overall depth of 120 mm and 140 mm. The steel tube section thickness for all sections was 3.84 mm. The tests were performed on pin-ended Beamcolumns. It is found that the buckling shape and the displacements predicted from ABAQUS are in good agreement to those observed experimentally. ABAQUS non-linear Finite element analysis can be also used to predict the ultimate load of concrete filled steel tube members.

ABSTRAK

Komposit keluli-konkrit telah digunakan secara meluas dalam industri pembinaan moden bangunan dan jambatan walaupun di kawasan berisiko tinggi seperti kawasan seismik. Sungguhpun sifatnya yang baik ditunjukkan oleh tiub diisi konkrit (CFT), ianya tidak digunakan secara meluas seperti mana struktur keluli dan anggota konkrit bertulang biasa. Walaupun agak banyak penyelidikan dilakukan ke atas topik ini , maklumat berkaitan CFT adalah tersangat sedikit berbanding keluli dan anggota konkrit bertetulang biasa. Tujuan kajian ini adalah untuk meramalkan kelakuan lengkukan ke atas rasuk-tiang keluli berongga berisi konkrit menggunakan kaedah unsur terhingga, seterusnya membanding ramalan tersebut dengan hasil ujikaji yang didapati daripada literatur. Kajian ini juga akan mengoptimumkan keputusan dan turut mencadangkan permodelan unsur terhingga bagi kajian seterusnya. Dalam kajian ini, permodelan dan analisis tak linear ke atas spesimen rasuk-tiang dilakukan menggunakan kaedah unsur terhingga ABAQUS. Sebanyak dua spesimen berbeza daripada kajian ujikaji literatur dengan pembebanan sipi telah diambil. Spesimen mempunyai keratan segiempat sama dengan ukurdalam keseluruhan adalah masing-masingnya 120 mm dan 140 mm. Dua model yang berbeza telah dibentuk bagi mengkaji tingkah laku lenturan terhadap keratan segiempat dengan ukurdalam keseluruhan 120 mm dan 140 mm. Ketebalan tiub untuk kesemua keratan adalah 3.84 mm. Analisis ke atas sampel ujian telah dilakukan ke atas rasuk-tiang dengan kedua-dua hujung adalah pin. Bentuk lengkokan ujikaji dan anjakan yang diramalkan daripada perisian ABAQUS didapati memberikan persetujuan yang baik dengan keputusan ujikaji. Analisis tak linear unsur terhingga ABAQUS juga didapati boleh digunakan untuk meramalkan beban muktamad bagi anggota tiub keluli berisi konkrit.

TABLE OF CONTENTS

CHAPTER	2	TITLE	PAGE
	DEC	CLARATION	ii
	DEDICATION		
	ACK	KNOWLEDGEMENT	iv
	ABS	TRACT	v
	ABS	TRAK	vi
	ТАВ	LE OF CONTENTS	vii
	LIST	Γ OF TABLES	xiii
	LIST	FOF FIGURES	xiv
1	INT	RODUCTION	1
	1.1	General	1
		1.2 Statement of problem	2
	1.3	Objectives of study	3
	1.4	Scope of study	3
	1.5	Significant of study	4
2	LITI	ERATURE REVIEW	5
	2.1	General	5
	2.2	Current Design Recommendations	8

2.2.1	AISC De	esign Provisions	9
	2.2.1.1	Geometric Limits on CFT Columns	9
	2.2.1.2	Material Limitations on CFT Columns	10
	2.2.1.3	Compressive Strength	11
	2.2.1.4	Flexural Strength	12
	2.2.1.5	Axial-Moment Interaction	15
	2.2.1.6	Shear Strength	17
	2.2.1.7	Tensile Strength	17
	2.2.1.8	Effective Stiffness	18
2.2.2	ACI Des	ign Provisions	19
	2.2.2.1	Geometric Limits on CFT Columns	19
	2.2.2.2	Compressive and Flexural Strength	20
	2.2.2.3	Effective Stiffness	21
2.2.3	Eurocode	e 4 Design Provisions	22
	2.2.3.1	Geometric Limits on CFT Columns	22
	2.2.3.2	Resistance of the cross-section to axia	ıl
		compression	23
	2.2.3.3	Cross-section resistance under moment and	
		axial force	23
		2.2.3.3.1 Second-order amplification o bending moments	of 25
Beam	-Column c	oncrete-filled tube, Specimen Tests	26
2.3.1		nd Boehme (1994) Beam-Column Tests	26
2.3.1	2.3.1.1	Research Objectives	26
	2.3.1.2	Experimental Test Program	20
	2.3.1.2	Experimental Test Setup	27
	2.3.1.3	Experimental Results	27
	2.3.1.4	LAPOTITIONIAI ACSUILS	20

2.3

	2.3.1.5	Research Conclusions	29
2.3.2	Elremaily	and Azizinanimi (2002) Beam-Column Test	ts 30
	2.3.2.1	Research Objectives	30
	2.3.2.2	Experimental Test Program	31
	2.3.2.3	Test Setup	31
	2.3.2.4	Experimental Results	32
	2.3.2.5	Research Conclusions	33
Eccer	trically Lo	aded CFT Specimen Tests	34
2.4.1	O'Shea	and Bridge (2000) Beam-Column Tests	34
	2.4.1.1	Research Objectives	34
	2.4.1.2	Experimental Test Program	34
	2.4.1.3	Test Setup	35
	2.4.1.4	Experimental Results	35
	2.4.1.5	Research Conclusions	36
2.4.2	Han <i>etal</i> .	(2001) Beam-Column Tests	37
	2.4.2.1	Research Objectives	37
	2.4.2.2	Experimental Test Program	37
	2.4.2.3	Test Setup	39
	2.4.2.4	Experimental Results	40
	2.4.2.5	ResearchConclusions	41

2.4

3		FINITE ELEMENT ANALYSIS OF CONCRETE FILLEI)
		STEEL TUBE USING ABAQUS	42
	3.1	Overview	42
	3.2	ABAQUS Program	44
	3.3	Structural Modeling in ABAQUS	44

. -

_

3.4	Genera	l Issues in Creating Frame Models in ABAQUS	45
	3.4.1	Eigenvalue buckling analysis prediction	45
	3.4.2	Unstable collapse and postbuckling analysis	46
3.5	Materia	l behavior	48
	3.5.1	Basic material properties	48
	3.5.2	Concrete properties for nonlinear analysis	48
		3.5.2.1 Stress-strain curve for uniaxial compression	48
		3.5.2.2 Stress-strain curve for uniaxial tension	51
		3.5.2.3 Concrete Damage Plasticity Model	54
	3.5.3	Steel properties for nonlinear analysis	56
		3.5.3.1 Stress-strain curve	56
		3.5.3.2 Steel plastic Model	58
3.6	Experin	nental Models	60
3.7	Finite E	Element Models	62
	3.7.1	Concrete filled steel tubes	62
	3.7.2	Steel tube model	64
	3.7.3	Reinforced concrete model	65
	3.7.4	Interaction	67
	3.7.5	Element types and General ABAQUS Assumptions	67
	3.7.6	Boundary condition	68
	3.7.7	Loading	69
	3.7.8	Mesh Size	70
	3.7.9	Number of Load Increments	70
	3.7.10	Linear Geometry and Non-Linear Geometry Analyses	71

FINI		IMENT SIMULATION OF CONCRETE FILT	JED
STEE	EL TUB	ES	73
4.1	Overvi	iew	73
4.2	Applic	cation and verification of material	74
	4.2.1	Compressive test simulation of concrete	74
	4.2.2	Tensile test simulation of steel	75
4.3	Theore	etical Methods for Elastic Buckling Analysis	77
4.4	ABAÇ	US Models for Buckling Analysis	77
4.5	CFT so	quare section	79
	4.5.1	CFT120	79
		4.5.1.1 Comparison of different mesh size	80
		4.5.1.2 Linear Geometry and Non-Linear Geom	etry
		Analyses	83
	4.5.2	CFT140	86
4.6	Reinfo	orced Concrete Model	88
	4.6.1	Reinforced concrete failure load	88
4.7	Steel N	Model	91
	4.7.1	Steel tube failure load	91
4.8	Rectar	ngular concrete filled steel tube	93
4.9	Compa	arison of Models	94
CON	CLUSI	ON AND RECOMMENDATION	97
5.1	Conclu	isions	97
5.2	Future	Prospects	99
REF	RENCE	S	100

FINITE ELEMENT SIMULATION OF CONCRETE FILLED

4

5

LIST OF TABLES

TABLE NO	O TITLE	PAGE
2.1	Prion and Boehme (1994) Beam-Column Specimens	27
22	Prion and Boehme (1994) Test Results	29
2.3	Elremaily and Azizinanimi (2002) Test Program	31
2.4	Elremaily and Azizinanimi (2002) Experimental Results	33
2.5	O'Shea and Bridge (2000) Experimental Test Program	35
2.6	O'Shea and Bridge (2000) Experimental Results	36
2.7	Han etal. (2001)Test Program	38
3.1	Basic material properties used for analyses	48
3.2	Default parameters of CDP model under compound stress	55
3.3	Specimen labels, material properties and member capacities	61
3.4	Details of square concrete filled steel tube model	63
3.5	Details of rectangular concrete filled steel tube model	63
3.6	Details of steel tube models	64
3.7	Details of reinforced concrete model	66
3.8	CFT120 different mesh size	70

4.1	Different mesh size details for CFT120	80
4.2	Maximum load for concrete filled tube sections	94

LIST OF FIGURES

FIGURE N	O TITLE	PAGE
2.1	Concrete-filled steel box columns.	5
2.2	Free Body Diagram of CFT Cross-Section Using the Plastic Stress Distribution Method	13
2.3	Stress and Strain Distribution of CFT Cross-Section Using the Stra Compatibility Method	ain 14
2.4	Normalized Axial-Flexural Interaction Diagram for a Typical CFT Member	15
2.5	Normalized Axial-Flexural Interaction Diagram for a Typical CFT Member	16
2.6	Stress and Strain Distribution of CFT Cross-Section Using ACI Flexural Design Procedure	20
2.7	M-N interaction curve for uniaxial bending	24
2.8	Resistance to axial compression and uniaxial bending	24
29	Member resistance under compression and biaxial bending	25
2.10	Prion and Boehme (1994) Beam-Column Test Setup	28
2.11	Elremaily and Azizinanimi (2002) Test Setup	32
2.12	Han etal. (2001) Test Setup	39
2.13	Load versus mid-span lateral deflection curves (Experimental curv are shown in solid lines; Predicted curves are shown in dashed line	

3.1	Proportional loading with unstable response.	47
3.2	Stress-strain diagram of concrete for analysis of structures	50
3.3	Stress-strain curve for concrete	51
3.4	Definition of strain after cracking – tension stiffening	52
3.5	Tensile stress-strain curve of concrete	53
3.6	Schematic stress-strain curve of steel	57
3.7	Stress-strain curve for steel	58
3.8	ABAQUS Stress-Strain data input approach	59
3.9	Test set up of the columns and beam-columns	60
3.10	Load versus mid-span lateral deflection curves for (a) scp-1-1-3, (b))
	scp-1-2-4 specimens	61
3.11	FE model of CFT	62
3.12	The FE model rectangular concrete filled tube, (a) CFT-120_140, (b))
	CFT-140_120	64
3.13	The FE model of steel tube	65
3.14	The FE model of reinforced concrete	66
3.15	Boundary conditions	68
3.16	Vertical load with eccentricity	69
4.1	Results for concrete cylinder specimen with a height of 108 mm and	1
	a diameter of 54 mm.	74
4.2	Results for confinement	75
4.3	Geometry of tensile test specimen	76
4.4	Engineering stress strain curves comparison of steel tensile test	76
4.5	Buckling mode shapes for CFT120	78
4.6	(a) Deformed shapes of CFT120 (b) Mises stresses	79
4.7	Load-midspan lateral deflection curve for different mesh sizes of	f
	CFT120	81

4.8	Compression of mesh size for CFT120	82
4.9	Load-midspan lateral deflection curve of CFT120 compared with Zhong Tao experimental results	83
4.10	Load-midspan lateral deflection curve using nonlinear analysis and linear geometry analysis	84
4.11	Load-midspan lateral deflection curve using nonlinear analysis and linear material analysis	85
4.12	Load-midspan lateral deflection curve of CFT120 compared with Zhong Tao experimental results	86
4.13	Difference between test and FEM load capacity of CFT-120 and CFT-140	87
4.14	Load-midspan lateral deflection curve of reinforced concrete	88
4.15	Load-stress curve for steel rebar in tension	89
4.16	Load-stress curve for concrete in compression	89
4.17	Load-stress curve for concrete in tension	90
4.18	Load-midspan lateral deflection curve of steel tube	91
4.19	Load-stress curve for concrete in compression	92
4.20	Load-stress curve for concrete in tension	92
4.21	Load versus midspan lateral deflection curve for CFT-120_140	93
4.22	Load- midspan lateral deflection curve for CFT-140_120	93
4.23	Load midspan lateral deflection curve for concrete filled tubes	94
4.24	Maximum load for CFT120, steel tube and reinforced concrete	95
4.25	Maximum load for all models	96

CHAPTER 1

INTRODUCTION

1.1 General

Concrete filled tubes (CFT) are composite structural elements comprised of a rectangular or circular steel tube with concrete infill. CFT, structural members efficiently combine the tensile strength and ductility of steel with the compressive strength of concrete. Lighter and more slender CFT columns can replace traditional steel or reinforced columns with equivalent resistance. The tube provides large buckling and bending capacity by placing the steel at the outer perimeter of the section where the moment of inertia and radius of gyration are greatest. There, the steel can perform most effectively in tension with the minimum amount of material. The concrete core provides compressive strength and flexural stiffness to the section, and it delays and often prevents local buckling of the steel tube. In addition, the steel tube enhances the shear resistance and confines the concrete, increasing the compressive strength and strain capacity of the concrete, and in turn the ductility of the member. Multi-story buildings develop large compressive loads due to the accumulation of gravity loads over the height of the building, and the high axial strength of CFT columns makes them particularly attractive for the lower story columns. Confinement of the concrete infill improves its strength and prevents spalling that might occur in a traditionally reinforced concrete component under cyclic lateral loading such as an earthquake.

In addition to reducing section sizes, CFT members provide economic benefits by reducing costs associated with traditional steel or concrete construction. A CFT column providing resistance equivalent to a steel column replaces a significant portion of the steel weight with concrete. In addition, CFT construction can proceed rapidly, as erection of the tubes and framing elements in a building can precede concrete pouring by several stories. CFT columns reduce time and costs associated with reinforced concrete construction by eliminating the need for formwork and additional reinforcement.

1.2 Statement of problem

Despite the excellent engineering properties of CFTs, they are not as widely used as traditional structural steel and reinforced concrete members. Although much research has been performed on this topic, the amount of information regarding CFTs is significantly less than that available for traditional steel or reinforced concrete members. As a result, the design procedures have been in part based on these traditional systems.

Current design methods for CFT component are limited and the experimental research is not sufficient to establish reliable engineering methods. Specially, although the codes have provisions for using CFT, but they are restrictive and therefore of limited practical value.

1.3 Objectives of study

As mentioned before, different researches have been done to simulate the concrete filled steel hollow structural sections. The objective of this study is to predict the behavior of concrete-filled steel hollow structural section beam columns with a finite element model and compare the predictions with experimental results and optimize findings and represent a finite element model for further studies.

The specific objectives of this study are as follows:

- Develop a finite element model using ABAQUS that can predict the behavior of concrete-filled steel hollow structural section beam columns;
- Investigate the existing specifications for the design of CFT;
- Develop the finite element models of reinforced concrete and steel tube beam-column and compare behavior of them with concrete filled steel hollow section.

1.4 Scope of study

The main purpose of current study is summarizes the literature review on the behavior of concrete-filled tube members, develop an analytical model for CFTs, evaluation of code specifications, and recommendations for design and evaluates the design specifications used to design them.

REFRENCES

- American Concrete Institute (ACI) (2008). <u>Building Code Requirements for</u> <u>Structural Concrete and Commentary</u>. Farmington Hills, MI.
- American Institute of Steel Construction (AISC) (2005). <u>Specification for Structural</u> <u>Steel Buildings</u>. Chicago, Illinois.
- British Standards Institution (Eurocode 4) (2001). <u>Design of composite steel and concrete structures</u>. London, British Standards Institution.
- Elremaily and Azizinamini (2002). "Behavior and strength of circular concrete-filled tube columns." Journal of Constructional Steel Research **58**(12): 1567-1591.
- Furlong (1967). "Strength of steel-encased concrete beam columns." Journal of the. Structure division **93**(5): 113-124.
- Guo *et al.* (2007). "Behavior of square hollow steel tubes and steel tubes filled with concrete." <u>Thin-Walled Structures</u> **45**(12): 961-973.
- Han (2002). "Tests on stub columns of concrete-filled RHS sections." Journal of <u>Constructional Steel Research</u> **58**(3): 353-372.
- Han *et al.* (2001). "Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns." <u>Steel and Composite Structures</u> **1**(1): 51-74.
- Kilpatrick and Rangan (1999). "Tests on high-strength concrete-filled steel tubular columns." <u>Aci Structural Journal</u> **96**(2): 268–275.
- Knowles and Park (1969). "Strength of concrete filled steel tubular columns." Journal of the. Structure division **95**(12): 2565–2587.
- Kuranovas *et al.* (2009). "Load-Bearing Capacity of Concrete-Filled Steel Columns." Journal of Civil Engineering and Management **15**(1): 21-33.
- Liang *et al.* (2006). "Nonlinear analysis of concrete-filled thin-walled steel box columns with local buckling effects." Journal of Constructional Steel Research **62**(6): 581-591.
- Liu *et al.* (2003). "Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns." Journal of Constructional Steel Research **59**(12): 1499-1515.
- O'Shea and Bridge (2000). "Design of circular thin-walled concrete filled steel tubes." Journal of Structural Engineering-Asce **126**(11): 1295-1303.
- Prion and Boehme (1994). "Beam-Column Behavior of Steel Tubes Filled with High-Strength Concrete." <u>Canadian Journal of Civil Engineering</u> **21**(2): 207-218.
- Rangan and Joyce (1992). "Strength of Eccentrically Loaded Slender Steel Tubular Columns Filled with High-Strength Concrete." <u>Aci Structural Journal</u> **89**(6): 676-681.
- Schneider (1998). "Axially loaded concrete-filled steel tubes." Journal of Structural Engineering-Asce **124**(10): 1125-1138.

- Shakir-Khalil and Zeghiche (1989). "Experimental behaviour of concrete-filled rolled rectangular hollowsection columns." <u>The Structural Engineer</u> **67**(19): 346–353.
- Tomii *et al.* (1977). Experimental studies on concrete filled steel tubular stub columns under concentric loading. International Colloquium on Stability of Structures Under Static and Dynamic Loads Washington, DC, American Society of Civil Engineers: 718-741.
- Uy (2001). "Strength of short concrete filled high strength steel box columns." Journal of Constructional Steel Research **57**(2): 113-134.
- Varma *et al.* (2002a). "Experimental behavior of high strength square concrete-filled steel tube beam-columns." Journal of Structural Engineering-Asce **128**(3): 309-318.
- Varma *et al.* (2002b). "Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns." Journal of Constructional <u>Steel Research</u> **58**(5-8): 725-758.
- Wang and Hsu (2001). "Nonlinear finite element analysis of concrete structures using new constitutive models." <u>Computers and Structures</u> **79**(32): 10.