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ABSTRACT 

 

 

 

 Given an individual face image and a claimed ID, the face verification problem 

is to determine whether or not he is the person he claims to be. Although this task 

seems to be easy for a human, this problem is one of the most challenging problems in 

the area of computer vision. Eigenface and fisherface are two well-known and 

successful face verification approaches. Despite an assumption that face verification 

systems based on fisherface is thought to be more accurate than eigenface system, 

recent studies reveal that the idea is not always true. In this research, in order to 

leverage on the strength of both eigenface and fisherface techniques, a fusion of these 

two techniques by using different fusion method is examined. Four fusion methods, 

namely, sum-rule, Artificial Neural Network (ANN), Linear Support Vector 

Machines (Linear SVM), and Gaussian Support Vector Machines (Gaussian SVM) 

are considered. ORL database is used to evaluate and compare different approaches. 

The experiments show that the Total Error Rate for individual eigenface and 

fisherface systems are 12.5% and 9.4% respectively. This error for the fusion based 

systems that use sum-rule, ANN, Linear SVM, and Gaussian SVM, as fusion 

techniques are 9.9%, 5.9%, 6.7%, and 6.3% respectively. The results demonstrate that 

fusion-based face verification system outperforms both eigenface and fisherface 

systems when used individually.  
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ABSTRAK 

 

 

 

 Diberi imej muka seorang individu beserta dengan ID yang dituntut, masalah di 

dalam pengesahan muka adalah untuk menentukan sama ada individu tersebut adalah 

identiti yang didakwanya atau tidak. Walaupun tugas ini kelihatan mudah bagi 

manusia, namun begitu di dalam bidang visi komputer, ia merupakan antara  perkara 

yang amat mencabar.  Eigenface dan Fisherface adalah dua teknik yang popular dan 

efisien. Walaupun sistem pengesahan muka berdasarkan Fisherface dianggap lebih 

tepat berbanding sistem Eigenface, kajian terkini mendedahkan bahawa dakwaan itu 

tidak selalunya benar. Bagi memanfaatkan kelebihan daripada kedua-dua teknik, satu 

pendekatan gabungan dengan menggunakan kaedah gabungan yang berbeza dikaji. 

Terdapat empat kaedah gabungan iaitu sum-rule, Rangkaian Neural Tiruan (ANN), 

Linear Mesin Vektor Pendukung (Linear SVM) dan Gaussian Mesin Vektor 

Pendukung (Gaussian SVM) dipertimbangkan.  Pangkalan data ORL digunakan untuk 

menilai dan membanding teknik-teknik tersebut. Ujikaji menunjukkan ralat yang 

dikenali sebagai Jumlah Kadar Ralat bagi sistem Eigenface dan Fisherface masing-

masing adalah 12.5% dan 9.4%.  Ralat yang diperolehi berdasarkan sistem yang 

menggunakan kaedah gabungan sum-rule, ANN, Linear SVM dan Gaussian SVM 

masing-masing adalah 9.9%, 4.9%, 6.7% dan 6.3%. Hasil ujikaji menunjukkan 

bahawa sistem pengesahan muka berdasarkan gabungan mengatasi sistem Eigenface 

dan sistem Fisherface.   
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CHAPTER 1 

 

 

 
INTRODUCTION 

 

 

 

The face recognition problem is defined as: Given an individual face image, 

determine whether he is the person he claimed to be. Though this task seems to be easy 

for a human, as it will be explained, this problem is one of the most challenging ones in 

the area of computer vision. In this chapter an overview of face recognition and 

verification systems as well as their applications will be presented. 

!
!
!

1.1 Background#
       

Recognizing individuals to access to a physical or virtual domain is an important 

task in terms of security. Conventionally, identification process was done by a medium 

such as keys, passwords, tokens, PINs, and smart cards [1]. These approaches suffer from 

being misplaced, or stolen. The rapid progress in machine vision and image analysis 

research contributes to the emergence of biometric-based authentication systems. To 

determine an individual’s identity, biometric techniques utilize human behavioral 

characteristics (such as signature), physical attributes (such as fingerprint, face, retina, 

voice, etc.) [2]. Biometric techniques provide safer, faster, and automated authentication.  

 

Depending on the usage of different characteristic, biometric approaches vary. 

There has been a study conducted by International Biometric Group [3], which compared 
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different types of biometric system regarding to distinctiveness, cost, effort, and 

intrusiveness of the system. The result is shown in figure 1-1. The ideal system is the 

system, which all the four parameters are furthest from the center. 

!

!
Figure 1-1   A comparison of different biometric systems (adopted from International 
Biometric Group [3]) 

  

 

The advantages of face recognition over the other biometric techniques include 

[2]: 

• Outstanding accuracy: the existing face recognition system has an 

outstanding accuracy compares with other types of biometrics. 

• Cheap interface: a face recognition system needs an inexpensive camera as 

an interface 

• None-Intrusive: In the other types of recognition systems, users need to do 

an action. For example, in fingerprint-based biometric system, the user needs to place his 

fingers on sensor. However face recognition system is a non-intrusive biometric system.  

• Fast: A face recognition system can recognize faces in an image with a high 
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speed. This advantage is very useful especially in crowded places such as shopping malls. 

• Compatible with most ID cards: Generally speaking, the only biometric 

characteristic that is available in almost all ID cards and passports is an image of the 

holder’s face.  

!
Although the task of matching a person’s image with the person’s face is an easy 

one for human being, a computerized face recognition system that can imitate human’s 

ability has not been fully developed yet. A human brain is able to recognize familiar faces 

at a glance even under very different lighting condition, varying angles, scaling 

differently, different background, and effected by ageing. More interestingly, human can 

recognize familiar individual even by glancing at part of his face image. Some of the 

human’s ability in recognizing familiar faces even with variations in the images is shown 

in figure 1-2. The challenge of face recognition system is to recognize faces under such 

variations, which has proven to be very difficult.   

 

 
!
1.2 Automated Face Recognition System# #

 

Recognizing a face in an image consists of at least two main stages [1]: (1) face 

detection (2) face recognition. These two stages are shown in figure 1-3. In this 

subsection, an overview of each stage is presented.! 
 

 

!
1.2.1 Face Detection# #

 

In the first stage of a face recognition system, all faces in an image are detected 

from non-faces or background (Fig. 1.4). There are two important parameters in a face 

detection system [4]: (1) true positive rate (or detection rate) which is the ability of a face 

detection system to detect faces correctly (2) False positive rate: the error which the 

system detects faces in a coordinate of an image where there is not any faces there is  
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!
Figure 1-2  Ability of human in recognizing a familiar face under different (a) aging, 
(b) pose, (c) face expression, and (d) recognizing the person by seeing a part of a face 
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!
Figure 1-3 General stages of an automated face recognition system 

!
!
!
called false positive error. An ideal face detection system has 100% detection rate, and 

0% false positive error [4].!
!

Early study on face detection focused on detecting a specific face from a 

background by using image-processing techniques. However, recent techniques such as 

Adaboost approach [4] can detect the faces position in an image in a few milliseconds 

with a high detection rate (~95% for frontal face) and relatively low false positive error 

(~10^-9). 

 

!
Figure 1-4 An example of a face detection system. Three faces are detected correctly, 
while due to pose, one face has not been detected correctly. Adopted from [5] 

Input Image Face 
Detection 

Face 
Recognition  Identity 
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1.2.2 Face Recognition # #
 

After the position of the face is found, the identity of the face is recognized in the 

face recognition stage. Many methods have been proposed over the last few decades, 

which fall into three main groups (table 1-1): 

 
(1) Model (or featured) -based methods. In these methods, distinctive facial 

features such as the position of lips, nose, eyes, eyebrows, etc., are extracted. The 

geometric relationships between them are forming the vector of features. Machine 

learning techniques are then utilized to match faces using this vector. 

 
The advantages of model-based techniques include the robustness of the systems 

to position variation, and fast matching due to their small-size feature vector; however, 

these approaches suffer from the difficulty of feature detection, and low discriminative 

features [6].   

 

(2) Appearance (or holistic) -based methods. The first stage of modeled-based 

approaches was based on processing the image to find facial attributes. In contrast, 

appearance-based methods use the global representation for identification purpose. In 

other words, the whole image pixels are the feature vector [1].  

  

In appearance-based method, each image is defined in a space where N is the 

number of pixels. Not all possible points in this space are representing a face. In fact, 

faces images lay on a nonlinear manifold in this N-dimensions image space. Appearance-

based approaches suggest to find a proper mapping to reduce this N-dimensional space 

into M-dimensional space (M<N), where the faces are represented better in the new space. 

Two well-know appearance-based methods are Principal Component Analysis (PCA) [7], 

and Linear Discriminate Analysis (LDA) [8] where project the faces into subspace known 

as Eigen space and Fisher space respectively. In score-based face recognition systems, 

the projected face is then compared with the stored database via a similarity function 

(such as Euclidean Distance).  

  

RN
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Since appearance-based methods use all the pixels, they do not destroy 

information. Indeed, since all pixels in an image assumed to be equally important, the 

above advantage is holistic-based methods’ greatest drawback as well. However, by 

introducing techniques such as eigenface and fisherface, this disadvantage became less 

important. Generally speaking, holistic-based approaches outperform the model-based 

methods [9].  

 

(3) Hybrid methods. In this approach, the system uses both of the above methods 

to make its decision. 

 
Table 1-1: face recognition approaches [1] 

Approach Categories Examples 
Appearance-Based  • Eigenface [7] 

• Fisherface [10] 
• Independent Component Analysis (ICA) [11] 
• Probabilistic Decision Based Neural Network 

(PDBNN) [12] 
Model-Based • Elastic Bunch Graph Matching [6] 

• Hidden Markov Model [13] 
• Convolutional Neural Networks [14] 

Hybrid-Based • Hybrid Local Feature Analysis [15] 
• Modular Eigenface [16] 

 

 

 

1.3 Application Domains# #
 

There are two tasks which face recognition can be utilized:  

• Verification: in this task, face recognition system is used to perform a one-

to-one matching. More specifically, given an image with a claimed identity, the system 

should deny or accept the claimed identity 

 

• Identification: despite to the first task, this task needs to perform a one-to-
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many matching. Given an image of a face, the system should determine the identity of the 

individual according to the stored database. It worth to mention that, in literature the 

terms face recognition is usually used interchangeably with the term face identification, 

although the former refers to more broad application that include both identification and 

verification. In the rest of this thesis, this convention is used and the term face 

recognition will always used instead of face identification.  

 

Face recognition and verification have a vast number of applications range from 

entertainment to law-enforcement applications. Some of these applications are outlined in 

Table 1-2 [1]. Beside these applications, face recognition and verification techniques are 

used in many recently emerged applications such as expression recognition and face 

tracking. It is expected that in the near future, face recognition and verification will 

become the essential tools of all computers and smart phones. 

 

 

Table 1-2: applications of face recognition [1] 
Areas Application 

Entertainment Video game, virtual reality, training programs,  Human-

robot-interaction, human-computer-interaction 

Smart Cards Drivers’ licenses, entitlement programs, Immigration, 

national ID, passports, voter registration, Welfare fraud 

Information Security TV Parental control, personal device log on, desktop log 

on, Application security, database security, file encryption, 

Intranet security, internet access, medical records, Secure 

trading terminals 

Law enforcement and 

surveillance 

Advanced video surveillance, CCTV control, Portal 

control, post event analysis, Shoplifting, suspect tracking 

and investigation 
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1.4 Problem Statement 
!
A system that can imitate the full ability of a human to verify face images has not 

been developed yet [1]. All the face verification algorithms suffer from robustness where 

they may work well under certain conditions and by changing these conditions the 

system’s verification rate decreases rapidly [9]. This difficulty comes from the fact that 

from machine point of view discrimination between different face images are subtle [9]. 

In addition, the human’s face due to aging or facial paraphernalia may vary over time. 

These limitations make the autonomous face verification system an active and 

challenging area in the field computer vision. 

 

Researchers have proposed different face verification algorithms over the past 

decades [1, 9, 17]. Eigenface and fisherface are two well-known face verification 

techniques and among the best existing approaches [18]. Both eigenface and fisherface 

approaches seek to find a linear mapping matrix to project the face images into a lower 

dimension subspaces known as eigenspace and fisherspace respectively. The eigenface 

obtains the mapping matrix based on Principal Component Analysis (PCA) while the 

fisherface uses Linear Discriminant Analysis (LDA) to find the mapping matrix [19]. The 

main difference between PCA and LDA approaches is that PCA does not consider the 

relation of each sample to its class, while in the LDA calculations uses the class label 

information during the training [10].   

 

Early studies claimed that LDA technique is more accurate than PCA approach, 

since the former searches for the effective direction for discrimination [10, 20]. However, 

recent studies show that this is not correct in general, and on different situations each of 

these methods outperforms the other [19].  

 

In this research, in order to leverage on the strength of both eigenface and 

fisherface techniques, a fusion of these two techniques by using different fusion methods 

is examined. Five fusion methods, namely, sum-rule, Artificial Neural Network (ANN), 

Linear Support Vector Machines (Linear SVM), and Gaussian Support Vector Machines 

(Gaussian SVM) are considered and compared.  
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1.5 Objectives 
!
The main objectives of this research are as follows: 

 

i. To experimentally evaluate the performance of eigenface and fisherface-based    

face verification systems using three similarity measures, namely, Euclidean 

distance, Manhattan distance, and Chebysheve distance and find the most 

suitable similarity function for each of these approaches. 

ii. To fuse eigenface and fisherface approaches in a single face verification 

system by using sum-rule, Linear SVM, Gaussian SVM, and ANN fusion. 

iii. To compare the performance of the eigenface and fisherface systems with four 

fusion techniques, namely, sum-rule, ANN, Linear SVM, and Gaussian SVM. 

 

!
!

1.6 Scope of Thesis 
!
This thesis will cover on the following scope:  

 

i. The research only consider on face verification system. 

ii. No face detection stage is considered or preprocessing stage is considered. In 

other words, it is assumed that the face images are detected and preprocessed.!
iii. The Olievetti Research Laboratory (ORL) database [21] is used to evaluate 

and compare the performance of the methods.!
!
!
!
1.7 Thesis Organization 

!
The thesis organized as follows: 

 

• Chapter 1: describe some background information on the face recognition, 

including the problem statement and the objectives of the thesis.  
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• Chapter 2: consists of the literature review and explanation of the different 

parts of general face verification systems, the algorithm of eigenface and fisherface. 

Different fusion techniques are also explained in this chapter.   

 

• Chapter 3 explains the system setup of eigenface-, fisherface-, and fusion-

based face verification system 

 

• Chapter 4 Presents the experiments carried out to examine the system’s 

accuracy 

 

• Chapter 5 concludes about face verification system and summarizes what 

has been achieved in this research 

 

 

 

 

 

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
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