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ABSTRACT 

 

 

 Most of the software today are not secure and contain security vulnerabilities 

that can be exploited by people with malicious intend to cause financial and physical 

damage. One of the reasons is that most research efforts have been put into the 

general development and maintenance processes with the implementation of some 

models. One such model for maintenance of software is task oriented maintenance 

model. This maintenance model does not focus on how to maintain secure software. 

Thus, this project identifies software design issues that need to be addressed in 

maintenance stage. In order to do this, we enhance the task oriented maintenance 

model to task oriented security maintenance (TOSiM) model. The proposed 

enhanced TOSiM model aspired to avoid design vulnerabilities by considering 

security features. In order to study the concept suitability of the model, two case 

studies have been conducted with software industry experts and the results are 

analyzed. The analysis shows that the enhanced model can be used to guide software 

designers/architects that fulfill their needs for how to maintain secure software 

design with less vulnerability. 
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ABSTRAK 

 

 

  

Kebanyakkan perisian pada masa kini adalah tidak selamat dan mengandungi 

kelemahan-kelemahan yang boleh diguna oleh orang-orang yang berniat jahat dan 

akan menyebabkan kerosakan dari segi kewangan dan juga fizikal. Antara faktor-

faktornya ialah kebanyakan usaha-usaha penyelidikan telah digunakan untuk 

penambahbaikan dalam proses-proses pembangunan-pembangunan umum dan juga 

proses-proses penyelenggaraan. Salah satu model ialah model tugas yang 

berorientasikan penyelenggaraan. Model ini tidak fokus dalam bagaimana untuk 

mengekalkan keselamatan perisian. Oleh itu, matlamat kajian ini ialah untuk 

mengenal pasti isu-isu reka bentuk perisian yang perlu dipertengahkan dalam 

peringkat penyelenggaraan dan untuk meningkatkan model penyelenggaraan ini. 

Peningkatan model yang dicadangkan ini berhasrat untuk mengelak kelemahan-

kelemahan pada reka bentuk dengan mempertimbangkan ciri-ciri keselamatan. 

Metodologi pembangunan perisian yang selamat menyediakan cara-cara untuk 

mengintegrasikan keselamatan dalam perisian semasa pembangunannya. 

Pembangunan perisian yang selamat berkemungkinan ialah keselamatan keperluan 

proses, keselamatan proses reka bentuk, suatu set garis panduan dan prinsip-prinsip 

keselamatan. Semasa menjalankan penyelanggaraan, dua kajian-kajian case telah 

dijalankan dengan pakar-pakar industri perisian dan keputusannya dikaji. Maklum 

balas menunjukkan bahawa model yang dipertingkatkan boleh digunakan untuk 

membimbing pereka bentuk/arkitek perisian dalam mengekalkan reka bentuk 

perisian yang selamat dan kurang kelemahan. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

       

 

 

1.1 Introduction 

 
 

Software is one of the main components of computer system, it is operating 

all hardware parts of computer machine even though operating all computerize 

machine in the current time. Therefore software industry expands greatly with 

increasing of computer users because of all universities, governments and business 

workers created demand for software. Software development organization 

implements process for constructing software and used standard technique to write 

the software. Software development does not stop when the system is delivered to 

the client but continue for life time of the system. Most large companies spend a lot 

of money to use of software for many years to get back on it is investment but 

business change and change of user expectation and operational environment 

generate new requirement for existing software. The software traceability ensures 

design maintenance traceable to keep the design component for software link to 

reflect good requirement for user and adapted with new change. There are many 

secure software maintenance efforts in the directions of building secure software 

design and one of these efforts using traceability process to trace the designing of the 

software from requirements and throughout building secure software design. 

 

 

Software maintenance changes should not expose the system to threats to its 

confidentiality, integrity and availability. The effect of maintenance change in the 
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security of the software should first be evaluated when the change is occurred in the 

design and later during the verification process. In this project will propose a model 

for improving traceability in the design maintenance. The model can be evaluated 

using case study.  

 

 

 

1.2  Problem Background 

 

 

Software maintenance activity is performed by giving feedback and defects 

report to the vendor and asking for corrections. The corrections correct the defects or 

security vulnerabilities. It is important for building, maintaining and reuse software 

to improve the functionality of software design, and accurate traceability need to be 

resilience to change as possible. The traceability links remain true even when the 

model change (Yu, Jurjens et al. 2008). The resilience change in software property 

can help to reduce the effort in maintenance modification. Most refactoring steps are 

used to improve the understandability of maintenance process. Software design is the 

most important process of software maintenance activity, so that how to trace the 

security issues in the design phase in the early stage of software development and 

what are the security vulnerabilities in the design that threaten software especially in 

web application. 

 

 

This study is concentrated for enhancing one established model called task 

oriented maintenance model and the enhancing collaborate with some phases which 

are related to requirement phase and design phase. Another objective of this study is 

to validate the model in the real life.  
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1.3  Software Maintenance  

 

 

 Apache http server and Mozilla web browser have been studied by (Koponen 

and Hotti 2005) of two large  projects and came out with the conclusion that 

maintenance process in software is alike to the common vision of the maintenance 

process defined in the standards ISO/IEC 12207 (1995) and ISO/IEC 14764 (1999) 

(See Figure 1.1). 

 

 

  In the picture maintenance process is containing problem and modification 

analysis, maintenance review/acceptance and modification implementation which is 

connected with cyclic relationship. After these processes, software will entering 

retirement and migration phase which is can be the end of software life cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1  ISO/IEC Maintenance Process Activities 

 

 

 

1.4  Problem Statement 

 
 

The research highlights security issues in the design for secure software 

maintenance.  The maintenance process used to trace the development of software 
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from requirement through design process to vet the software functionality and find 

any missing security requirements that is not allocate through design process. 

Traceability process ensure that design satisfies the security requirements and the 

implementation does not digress from secure design. The previous studied 

maintenance model has been developed, but did not focus on the vulnerabilities in 

the design for secure software maintenance as mention it in problem background.   

 

 

Indeed, this study will improve software design architecture during maintenance 

process and strive to reduce or mitigate security flaws that designer may overlook it's 

in the design for secure software. Web application attacks nowadays exploits design 

flaws with malicious intend to abnormal use software systems and breaks security 

protection. In addition, most of users not worry about security principles during 

collection of requirements. But during analyses process the user remembered that do 

not concentrate on security requirement which is significantly used to reduce 

software threats and security vulnerabilities in the software design. Ultimately, this 

study enhances task oriented maintenance model by utilizing security principles and 

guidelines in the design of secure software maintenance. The model highlights the 

following questions: 
 

 

 What are the design issues that are occurred during maintenance of secure 

software design? 

 What are the security enhancements can be proposed to reduce software 

vulnerabilities in secure software design maintenance? 

 Does the software maintenance functionality work as it is suppose to do? 

   

 

 

1.5 Project Objectives 

 

 

1. To identify software design issues that needs to be addressed in maintenance 

process.  
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2. To propose security enhancement for task oriented maintenance model using 

secure software design maintenance. 

3. To analyzed and validate the enhanced model by conducting case study via 

software industry experts.  

 

 

 

1.6  Project Scope 

 
 

1) The study focus on enhancing security traceability in the design of software 

maintenance model. 

2) The proposed model will be evaluated using case study can be conducted at 

UTM CICT for software development. 

 

 

 

1.7 Project Organization  

 

 

 This thesis is divided into six chapters. The first chapter presents the 

introduction of study which contains the explanation of background, problem 

statement, scope, objectives and the contribution. The study of literature will be 

reviewed in Chapter two. This chapter is concentrated in reviewing current design 

issues of software maintenance, Software maintenance models, select one 

maintenance model to enhance, traceability and some explanation about security 

requirements and design phase. Chapter three discuss about methodology of the 

research. The implementation of enhancements for selecting TOSiM model, 

proposed enhancement processes, maintenance process in design, target system and 

validation of TOSiM model using survey all can be described in Chapter four while 

Chapter five present implementation of survey and data collection for TOSiM 

Model. Chapter six explains about the conclusion and future work. 
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1.8  Conclusion 

 

 

 Security threats in software systems are a major dangerous that threatens 

computer software. In the early stages of software development ,these issues need to 

handle , so that this project propose security enhancements in one maintenance 

model by using secure design features and analysis, while security threats modeled 

by use and misuse case ,attack tree and attack pattern. Security design analyses 

method give a good guidance in detailed design validation of the system 

implementation. This method assists software designers/architects to discover 

security vulnerabilities in the early stage of design and to utilize security mitigation 

techniques to reduce it. 

 

 

 The project used some secure design practices and guidelines that are 

reported in chapter two. It is expected that these practices aid the developers to 

respect security techniques and grow the number of security issues that are 

encountered. 
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