

ENHANCEMENT OF TASK ORIENTED MAINTENANCE MODEL USING

SECURE SOFTWARE DESIGN MAINTENANCE

ESSA ZAKI ABDULRAZZAK

A project submitted in partial fulfillment of the

requirements for the award of the degree of

Master of Computer Science (Information Security)

Faculty of Computer Science and Information Systems

Universiti Teknologi Malaysia

JANUARY 2013

iii

This project is dedicated to my family for their endless support and encouragement.

iv

ACKNOWLEDGEMENT

First and foremost, I would like to express heartfelt gratitude to my

supervisor Dr. Imran Ghani for his constant support during my study at UTM. He

inspired me greatly to work in this project. His willingness to motivate me

contributed tremendously to our project. I have learned a lot from him and I am

fortunate to have him as my mentor and supervisor

Besides, I would like to thank the authority of Universiti Teknologi Malaysia

(UTM) for providing me with a good environment and facilities such as employees

in CICT help me to validate the project enhanced model and gave me some

information which I need during validation process.

 Last but not the least, I would like to thank my family especially my parents

and my wife, for encouraging me to complete my postgraduate studying of master

degree and supporting me spiritually throughout my life.

v

ABSTRACT

 Most of the software today are not secure and contain security vulnerabilities

that can be exploited by people with malicious intend to cause financial and physical

damage. One of the reasons is that most research efforts have been put into the

general development and maintenance processes with the implementation of some

models. One such model for maintenance of software is task oriented maintenance

model. This maintenance model does not focus on how to maintain secure software.

Thus, this project identifies software design issues that need to be addressed in

maintenance stage. In order to do this, we enhance the task oriented maintenance

model to task oriented security maintenance (TOSiM) model. The proposed

enhanced TOSiM model aspired to avoid design vulnerabilities by considering

security features. In order to study the concept suitability of the model, two case

studies have been conducted with software industry experts and the results are

analyzed. The analysis shows that the enhanced model can be used to guide software

designers/architects that fulfill their needs for how to maintain secure software

design with less vulnerability.

.

vi

ABSTRAK

Kebanyakkan perisian pada masa kini adalah tidak selamat dan mengandungi

kelemahan-kelemahan yang boleh diguna oleh orang-orang yang berniat jahat dan

akan menyebabkan kerosakan dari segi kewangan dan juga fizikal. Antara faktor-

faktornya ialah kebanyakan usaha-usaha penyelidikan telah digunakan untuk

penambahbaikan dalam proses-proses pembangunan-pembangunan umum dan juga

proses-proses penyelenggaraan. Salah satu model ialah model tugas yang

berorientasikan penyelenggaraan. Model ini tidak fokus dalam bagaimana untuk

mengekalkan keselamatan perisian. Oleh itu, matlamat kajian ini ialah untuk

mengenal pasti isu-isu reka bentuk perisian yang perlu dipertengahkan dalam

peringkat penyelenggaraan dan untuk meningkatkan model penyelenggaraan ini.

Peningkatan model yang dicadangkan ini berhasrat untuk mengelak kelemahan-

kelemahan pada reka bentuk dengan mempertimbangkan ciri-ciri keselamatan.

Metodologi pembangunan perisian yang selamat menyediakan cara-cara untuk

mengintegrasikan keselamatan dalam perisian semasa pembangunannya.

Pembangunan perisian yang selamat berkemungkinan ialah keselamatan keperluan

proses, keselamatan proses reka bentuk, suatu set garis panduan dan prinsip-prinsip

keselamatan. Semasa menjalankan penyelanggaraan, dua kajian-kajian case telah

dijalankan dengan pakar-pakar industri perisian dan keputusannya dikaji. Maklum

balas menunjukkan bahawa model yang dipertingkatkan boleh digunakan untuk

membimbing pereka bentuk/arkitek perisian dalam mengekalkan reka bentuk

perisian yang selamat dan kurang kelemahan.

vii

TABLE OF CONTENT

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF FIGUERS xi

 LIST OF TABLES xii

 LIST OF APPENDIX xv

1 INTRODUCTION

1.1 Introduction 1

1.2 Problem Background 2

1.3 Software Maintenance 3

1.4 Problem Statement 4

1.5 Project Objective 5

1.6 The Project Scope 5

1.7 Project Organization 5

1.8 Conclusion 6

2 LITERATURE REVIEW

2.1 Introduction 7

2.2 Software Maintenance 8

2.3 Importance of Software Maintenance 11

viii

2.4 Software Maintenance Category 12

2.4.1 Corrective Maintenance 14

2.4.2 Perfective Maintenance 15

2.4.3 Adaptive Maintenance 15

2.4.4 Preventive Maintenance 16

2.5 Why Software Maintenance is Difficult? 18

2.6 Software Maintenance Process 20

2.7 Example of Maintenance Processes and Activities 20

2.8 Software Maintenance Problems 21

2.9 Traceability 24

2.10 Existing Software Maintenance Model 25

2.10.1 Quick Fix Model 25

2.10.2 Osborne Model 26

2.10.3 Task Oriented Model 28

 2.11 Software Maintenance Maturity Model 30

2.11.1 Prior Research in SM3 31

2.12 Summary of Previous Study 32

2.13 Security Requirements Engineering Process 35

2.14 Secure Software Design 36

2.15 Building Secure Software 36

2.16 Software Assurance for Secure Design Process 37

2.17 The Challenge of Building Secure Software 38

2.18 Misuse Case Model 39

 2.18.1 Use Case Diagram 40

 2.18.2 Class Diagram 40

 2.18.3 Component Diagram 40

 2.18.4 Misuse Case / Abuse Case 40

2.19 Attack Pattern 41

2.20 Secure Design Guidelines 42

2.21 Conclusion 46

3 METHODOLOGY

3.1 Introduction 47

ix

3.2 Research Methodology Framework 49

3.3 Phase 1 Information Gathering 51

3.4 Phase 2 Design the Propose Model 53

 3.5 Phase 3Validation the Model 54

 3.6 Summary 55

4 IMPLEMENTATION

4.1 Introduction 56

4.2 Secure Design Issues 57

4.3 Justification of Chosen Task Oriented Maintenance

Model 58

4.4 Challenge of Building Secure Software 63

4.5 Propose Secure Software Design Enhancements for

Task Oriented Model. 64

 4.5.1 Security Requirements Analysis 64

 4.5.1.1 Misuse Case Model 65

 4.5.1.2 Attack tree 66

 4.5.1.3 Attack Pattern 68

 4.5.2 Maintain Secure Software Design 70

 4.5.2.1 Misuse Case Model 71

 4.5.2.2 Principle and practice for Secure

 Software design
73

 4.5.2.3 Using Attack Pattern &Attack Tree 76

 4.5.2.4 Using Architecture Risk Analysis 77

 4.5.2.5 Threat Modeling 78

 4.5.2.6 Create Software Architecture Diagram 80

4.5.2.7 Secure Design Guideline Base on

(Peine 2008) Work 81

 4.5.3 Validation and Implementation 83

4.5.3.1 Section A Security Requirement

Analysis 84

4.5.3.2 Section B Maintain Secure Software

Design 87

4.5.3.3 Section C Secure Design for Web

Application
88

4.5.3.4 Section D Maintenance for

Software Design 98

x

4.6 Summary 103

5 DATA ANALYSIS AND DISCUSSION

 5.1 Introduction 104

 5.2 Purpose of Survey 104

 5.3 Pilot Survey 105

 5.3.1 Implementation of Pilot Survey 105

 5.4 Implementation of Project Survey 107

 5.5 Objective for Data Analyses 108

 5.6 Target Experts for Validation 108

 5.7 Data Analysis for Security Requirement Interview 109

 5.8 Requirement Data Analysis Discussion 112

 5.9 Data Analysis for Secure Software Design 113

 5.10 Data Analysis for Secure Design in Web Application

system 117

 5.11 Data Analysis for Secure Software Design Maintenance 123

 5.12 Conclusion 126

6 CONCLUSION AND FUTURE WORK

 6.1 Introduction 127

 6.2 Study Limitation 128

 6.3 Suggestion Future Work 128

 REFERENCES 124

 APPENDIX A 128

 APPENDIX B 133

xi

LIST OF FIGUERS

FIGUER NO TITLE PAGE

1.1 ISO/IEC maintenance process activities 3

2.1 Software development life cycle 10

2.2 Distribution of maintenance activities 13

2.3 Quick Fix Model 26

2.4 Osborne Model 27

2.5 Task Oriented Maintenance Model 28

2.6 Relations between Requirements analysis and

design 38

2.7 Misuse case Model 41

3.1 Framework of research Methodology 48

4.1 Task Oriented Security Maintenance Model 62

4.2 Misuse case diagram for an E-shop 66

4.3 Attack Tree of Bank Safe 67

4.4 Misuse case model for user account login 72

4.5 Attack tree shows how to obtain authentication

over network 77

4.6 Threats model processes 79

4.7 One page architecture diagram 81

4.8 Scenario of cross site scripting attack 97

4.9 Propose secure software design maintenance

process 105

5.1 Percentage of security requirements analysis

processes base on two interviewees. 112

5.2 Number of interviewees for secure software

design

116

5.3 Percentage of interviewees for secure design 117

xii

software.

5.4 Total number of interviewees for design secure

web application 120

5.5 Rate of potential threats in web application

using DREAD 122

5.6 Numbers of interviewees for secure software

design maintenance. 125

xiii

LIST OF TABLES

TABLE NO TITLE PAGE

2.1 Example of maintenance activities and

categories work. 21

2.2 Survey of software maintenance problems

perceptions. 23

2.3 Summary for previous studied models 34

2.4 Comparison of secure design guidelines base

 on Peine 2008 work. 44

3.1 Description of methodology in details. 50

4.1 Enhancements using secure software design

maintenance processes. 61

4.2 Attack patterns components. 68

4.3 Security practices for mitigating vulnerabilities

in software design. 73

4.4 Attack pattern for code injection attack 76

4.5 Secure design guidelines extended for

Peine 2008 work

82

4.6 Security requirements analysis interview 85

4.7 Secure software design interview 87

4.8 Design categories for secure web application 91

4.9 Potential threats analysis using MSDREAD 93

4.10 Some web application threats categories 94

4.11 Interview for secure web application design 95

4.12 Interview maintenance process of secure

 software design 100

5.1 Interviewees information details 109

5.2 Interview for security requirement

 analysis process 110

xiv

5.3

Summation of interviewees for security

 requirement processes

111

5.4 Interview for secure software design. 114

5.5 Interview of secure software design in web

application. 118

5.6 Potential threats analysis using MSDREAD

 model. 120

5.7 Interview of maintenance process for secure

 software design. 123

xv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Interview 1 128

B Interview 2 133

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Software is one of the main components of computer system, it is operating

all hardware parts of computer machine even though operating all computerize

machine in the current time. Therefore software industry expands greatly with

increasing of computer users because of all universities, governments and business

workers created demand for software. Software development organization

implements process for constructing software and used standard technique to write

the software. Software development does not stop when the system is delivered to

the client but continue for life time of the system. Most large companies spend a lot

of money to use of software for many years to get back on it is investment but

business change and change of user expectation and operational environment

generate new requirement for existing software. The software traceability ensures

design maintenance traceable to keep the design component for software link to

reflect good requirement for user and adapted with new change. There are many

secure software maintenance efforts in the directions of building secure software

design and one of these efforts using traceability process to trace the designing of the

software from requirements and throughout building secure software design.

Software maintenance changes should not expose the system to threats to its

confidentiality, integrity and availability. The effect of maintenance change in the

2

security of the software should first be evaluated when the change is occurred in the

design and later during the verification process. In this project will propose a model

for improving traceability in the design maintenance. The model can be evaluated

using case study.

1.2 Problem Background

Software maintenance activity is performed by giving feedback and defects

report to the vendor and asking for corrections. The corrections correct the defects or

security vulnerabilities. It is important for building, maintaining and reuse software

to improve the functionality of software design, and accurate traceability need to be

resilience to change as possible. The traceability links remain true even when the

model change (Yu, Jurjens et al. 2008). The resilience change in software property

can help to reduce the effort in maintenance modification. Most refactoring steps are

used to improve the understandability of maintenance process. Software design is the

most important process of software maintenance activity, so that how to trace the

security issues in the design phase in the early stage of software development and

what are the security vulnerabilities in the design that threaten software especially in

web application.

This study is concentrated for enhancing one established model called task

oriented maintenance model and the enhancing collaborate with some phases which

are related to requirement phase and design phase. Another objective of this study is

to validate the model in the real life.

3

1.3 Software Maintenance

 Apache http server and Mozilla web browser have been studied by (Koponen

and Hotti 2005) of two large projects and came out with the conclusion that

maintenance process in software is alike to the common vision of the maintenance

process defined in the standards ISO/IEC 12207 (1995) and ISO/IEC 14764 (1999)

(See Figure 1.1).

 In the picture maintenance process is containing problem and modification

analysis, maintenance review/acceptance and modification implementation which is

connected with cyclic relationship. After these processes, software will entering

retirement and migration phase which is can be the end of software life cycle.

Figure 1.1 ISO/IEC Maintenance Process Activities

1.4 Problem Statement

The research highlights security issues in the design for secure software

maintenance. The maintenance process used to trace the development of software

4

from requirement through design process to vet the software functionality and find

any missing security requirements that is not allocate through design process.

Traceability process ensure that design satisfies the security requirements and the

implementation does not digress from secure design. The previous studied

maintenance model has been developed, but did not focus on the vulnerabilities in

the design for secure software maintenance as mention it in problem background.

Indeed, this study will improve software design architecture during maintenance

process and strive to reduce or mitigate security flaws that designer may overlook it's

in the design for secure software. Web application attacks nowadays exploits design

flaws with malicious intend to abnormal use software systems and breaks security

protection. In addition, most of users not worry about security principles during

collection of requirements. But during analyses process the user remembered that do

not concentrate on security requirement which is significantly used to reduce

software threats and security vulnerabilities in the software design. Ultimately, this

study enhances task oriented maintenance model by utilizing security principles and

guidelines in the design of secure software maintenance. The model highlights the

following questions:

 What are the design issues that are occurred during maintenance of secure

software design?

 What are the security enhancements can be proposed to reduce software

vulnerabilities in secure software design maintenance?

 Does the software maintenance functionality work as it is suppose to do?

1.5 Project Objectives

1. To identify software design issues that needs to be addressed in maintenance

process.

5

2. To propose security enhancement for task oriented maintenance model using

secure software design maintenance.

3. To analyzed and validate the enhanced model by conducting case study via

software industry experts.

1.6 Project Scope

1) The study focus on enhancing security traceability in the design of software

maintenance model.

2) The proposed model will be evaluated using case study can be conducted at

UTM CICT for software development.

1.7 Project Organization

 This thesis is divided into six chapters. The first chapter presents the

introduction of study which contains the explanation of background, problem

statement, scope, objectives and the contribution. The study of literature will be

reviewed in Chapter two. This chapter is concentrated in reviewing current design

issues of software maintenance, Software maintenance models, select one

maintenance model to enhance, traceability and some explanation about security

requirements and design phase. Chapter three discuss about methodology of the

research. The implementation of enhancements for selecting TOSiM model,

proposed enhancement processes, maintenance process in design, target system and

validation of TOSiM model using survey all can be described in Chapter four while

Chapter five present implementation of survey and data collection for TOSiM

Model. Chapter six explains about the conclusion and future work.

6

1.8 Conclusion

 Security threats in software systems are a major dangerous that threatens

computer software. In the early stages of software development ,these issues need to

handle , so that this project propose security enhancements in one maintenance

model by using secure design features and analysis, while security threats modeled

by use and misuse case ,attack tree and attack pattern. Security design analyses

method give a good guidance in detailed design validation of the system

implementation. This method assists software designers/architects to discover

security vulnerabilities in the early stage of design and to utilize security mitigation

techniques to reduce it.

 The project used some secure design practices and guidelines that are

reported in chapter two. It is expected that these practices aid the developers to

respect security techniques and grow the number of security issues that are

encountered.

124

REFERENCES

April, A. and A. Abran (2009). "A Software Maintenance Maturity Model (< i>

S3M</i>): Measurement Practices at Maturity Levels 3 and 4." Electronic Notes

in Theoretical Computer Science 233: 73-87.

April, A., J. Huffman Hayes, et al. (2005). "Software maintenance maturity model

(smmm): the software maintenance process model." Journal of software

maintenance and evolution: Research and Practice 17(3): 197-223.

Association, I. S. (1998). IEEE Std 1219-1998 IEEE Standard for Software

Maintenance, IEEE–SA.

Banker, R. D., S. M. Datar, et al. (1993). "Software complexity and maintenance

costs." Communications of the ACM 36(11): 81-94.

Barnum, S. (2008). "Common attack pattern enumeration and classification

(CAPEC) schema description." Cigital Inc, http://capec. mitre.

org/documents/documentation/CAPEC_Schema_Descr iption_v1 3.

Bishop, M. (2004). Introduction to computer security, Addison-Wesley Professional.

Boehm, B. W. (1987). "Industrial software metrics top 10 list." IEEE SOFTWARE

4(5): 84-85.

Brooks, F. P. (1987). "No silver bullet: Essence and accidents of software

engineering." IEEE computer 20(4): 10-19.

Buyens, K., B. De Win, et al. (2007). Empirical and statistical analysis of risk

analysis-driven techniques for threat management. Availability, Reliability and

Security, 2007. ARES 2007. The Second International Conference on, IEEE.

Canfora, G., J. Czeranski, et al. (2000). Revisiting the delta IC approach to

component recovery. Reverse Engineering, 2000. Proceedings. Seventh

Working Conference on, IEEE.

Dekleva, S. (1992). Delphi study of software maintenance problems. Software

Maintenance, 1992. Proceerdings., Conference on, IEEE.

http://capec/

125

Deraman, A. (1995). "Requirement For A Software Maintenance Process Model: A

Review." Malaysian Journal of Computer Science 8(2): 174-202.

Dupuis, R. (2004). "Software Engineering Body of Knowledge."

Erdil, K., E. Finn, et al. (2003). "Software maintenance as part of the software life

cycle." Comp180: Software Engineering Project.

Goertzel, K. M., T. Winograd, et al. (2007). Software Security Assurance: A State-

of-Art Report (SAR), DTIC Document.

Gregoire, J., K. Buyens, et al. (2007). On the secure software development process:

CLASP and SDL compared. Proceedings of the Third International Workshop

on Software Engineering for Secure Systems, IEEE Computer Society.

Grubb, P. and A. A. Takang (2003). Software maintenance: concepts and practice,

World Scientific Publishing Company Incorporated.

Hadawi, M. (2007). Vulnerability Prevention in Software Development Process.

Proceedings of the 10th International Conference on Computer & Information

Technology (ICCIT‟07).

Haley, C. B., R. Laney, et al. (2008). "Security requirements engineering: A

framework for representation and analysis." Software Engineering, IEEE

Transactions on 34(1): 133-153.

Hightower, R., M. K. Brady, et al. (2002). "Investigating the role of the physical

environment in hedonic service consumption: an exploratory study of sporting

events." Journal of Business Research 55(9): 697-707.

Howard, M. (2007). "Lessons learned from five years of building more secure

software." MSDN MAGAZINE 22(11): 56.

Howard, M. and D. LeBlanc Writing Secure Code. 2003, Microsoft Press

International.

Kajko-Mattsson, M. (2001). Motivating the corrective maintenance maturity model

(CM< sup> 3</sup>). Engineering of Complex Computer Systems, 2001.

Proceedings. Seventh IEEE International Conference on, IEEE.

Khan, M. K., M. A. Rashid, et al. (1996). "A task-oriented software maintenance

model." Malaysian Journal of Computer Science 9(2): 36-42.

Khan, M. U. A. and M. Zulkernine (2008). Quantifying Security in Secure Software

Development Phases. Computer Software and Applications, 2008.

COMPSAC'08. 32nd Annual IEEE International, IEEE.

126

Koponen, T. and V. Hotti (2005). Open source software maintenance process

framework. ACM SIGSOFT Software Engineering Notes, ACM.

Kozlov, D., J. Koskinen, et al. (2008). "Assessing maintainability change over

multiple software releases." Journal of software maintenance and evolution:

Research and Practice 20(1): 31-58.

Lewis, W. E. (2004). Software testing and continuous quality improvement,

Auerbach publications.

Lientz, B. P. and E. B. Swanson (1980). "Software maintenance management: a

study of the maintenance of computer application software in 487 data

processing organizations."

Mamone, S. (1994). "The IEEE standard for software maintenance." ACM SIGSOFT

Software Engineering Notes 19(1): 75-76.

McGraw, G. (2004). "Software security." Security & Privacy, IEEE 2(2): 80-83.

Moore, J. W. (1998). Software engineering standards, Wiley Online Library.

Mouratidis, H., P. Giorgini, et al. (2003). Integrating security and systems

engineering: Towards the modelling of secure information systems. Advanced

Information Systems Engineering, Springer.

Osborne, W. M. and E. J. Chikofsky (1990). "Guest Editors' Introduction: Fitting

Pieces to the Maintenance Puzzle." IEEE SOFTWARE: 11-12.

Palvia, P., J. T. Nosek, et al. (1990). An empirical evaluation of system development

methodologies. Managing information resources in the 1990s: proceedings of

1990 Information Resources Management Association international conference.

Peine, H. (2008). Rules of thumb for developing secure software: Analyzing and

consolidating two proposed sets of rules. Availability, Reliability and Security,

2008. ARES 08. Third International Conference on, IEEE.

Pigoski, T. M. (2001). "Software maintenance." Encyclopedia of Software

Engineering.

Richardson, T. and C. N. Thies (2012). Secure Software Design, Jones & Bartlett

Learning.

Saini, V., Q. Duan, et al. (2008). "Threat modeling using attack trees." Journal of

Computing Sciences in Colleges 23(4): 124-131.

Saltzer, J. H. and M. D. Schroeder (1975). "The protection of information in

computer systems." Proceedings of the IEEE 63(9): 1278-1308.

127

Schneidewind, N. F. (1987). "The state of software maintenance." Software

Engineering, IEEE Transactions on(3): 303-310.

Schneier, B. (1999). "Attack trees." Dr. Dobb‟s journal 24(12): 21-29.

Server, L. (2008). "Product Overview." Citrix Systems, available at: http://www.

citrix. com/site/ps/products. asp.

Sherman, S. and I. Hadar (2012). Identifying the need for a sustainable architecture

maintenance process. Cooperative and Human Aspects of Software Engineering

(CHASE), 2012 5th International Workshop on, IEEE.

Sindre, G. and A. L. Opdahl (2008). "Misuse Cases for Identifying System

Dependability Threats." Journal of Information Privacy and Security 4(2): 3-22.

Singh, Y. and B. Goel (2007). "A step towards software preventive maintenance."

ACM SIGSOFT Software Engineering Notes 32(4): 10.

Smith, J. (2009). "Wpf apps with the model-view-viewmodel design pattern." MSDN

MAGAZINE.

Sodiya, A. S., S. A. Onashoga, et al. (2006). "Towards building secure software

systems." Issues in Informing Science and Information Technology 3.

Team, C. P. (2002). "Capability Maturity Model® Integration (CMMI SM), Version

1.1." Software Engineering Institute, Carnegie Mellon University/SEI-2002-TR-

012. Pittsburg, PA.

Thayer, R. H. and E. Yourdon (1997). "Software engineering project management."

Software Engineering Project Management: 72.

Van Lamsweerde, A. (2004). Elaborating security requirements by construction of

intentional anti-models. Proceedings of the 26th International Conference on

Software Engineering, IEEE Computer Society.

Van Vliet, H. (2008). Software architecture knowledge management. Software

Engineering, 2008. ASWEC 2008. 19th Australian Conference on, IEEE.

Vehvilainen, R. (2000). What is preventive software maintenance? Software

Maintenance, 2000. Proceedings. International Conference on, IEEE.

Yu, Y., J. Jurjens, et al. (2008). Traceability for the maintenance of secure software,

IEEE.

Zitouni, M., A. Abran, et al. (1995). "Élaboration d'un outil d'évaluation et

d'amélioration du processus de la maintenance des logiciels: une piste de

recherche." Actes des Huitièmes Journées Internationales: Le Génie Logiciel et

ses Applications.

http://www/

