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ABSTRACT 

  

Software Testing, a process comprised of test case generation, execution and 

evaluation is one of the imperative phases of the development life cycle, with its cost 

approximated to about 50% of the overall development cost. Researchers have 

automated it using models with utmost focus put on Unified Modeling Language 

(UML) as the up to date de facto standard utilized in software modeling. Its diagrams 

include both behavioral and structural. This work has generated system tests (black 

box) early in the development lifecycle hence the use of behavioral models, activity 

diagrams in particular as they are one of the earliest and simplest analysis models to 

be created with sufficient testing information. Also, as a way of reducing test case 

generation effort and time, an existing technique that supposedly involved more 

effort and time has been focused on in this work. It has been enhanced by reducing 

the key steps involved through eliminating intermediate models as a way of reducing 

effort and time involved in the test case formation process. The enhanced technique 

has been applied on the same case study as in the original technique, producing four 

test cases in 115 milliseconds with more ease compared to the original technique that 

produced five test cases in 160 milliseconds with relatively more effort. It has further 

been compared against another already existing model based technique (based on 

sequence diagrams) and also one integrated with a model based tool using both 

general criteria and those specific to the research problem (TCG effort and time), as a 

way of further confirming its applicability. 
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ABSTRAK 

 

Pengujian Perisian, satu proses yang terdiri daripada penjanaan kes ujian, 

pelaksanaan, dan penilaian adalah salah satu fasa penting untuk kitaran hayat 

pembangunan, dengan kos yang dianggarkan kira-kira 50% daripada keseluruhan kos 

pembangunan. Penyelidik telah mengautomasikan ia menggunakan model dengan 

tumpuan penuh diletakkan ke atas Bahasa Permodelan Bersepadu (UML) sebagai 

standard de facto terkini yang digunakan dalam pemodelan perisian. Rajahnya 

termasuk kedua-dua tingkah laku dan struktur. Kerja ini telah menjana ujian sistem 

(kotak hitam) di awal kitaran hayat pembangunan, maka penggunaan model tingkah 

laku, rajah aktiviti khususnya kerana mereka adalah salah satu model analisis yang 

terawal dan paling mudah untuk diwujudkan dengan maklumat ujian yang 

mencukupi. Sebagai satu cara untuk mengurangkan usaha dan masa untuk menjana 

kes ujian, satu teknik yang sedia ada yang sepatutnya melibatkan usaha dan masa 

yang lebih telah diberikan tumpuan dalam kerja-kerja ini. Ia telah dipertingkatkan 

dengan mengurangkan langkah-langkah utama yang terlibat melalui penghapusan 

model perantaraan sebagai satu cara untuk mengurangkan usaha dan masa yang 

terlibat dalam proses pembentukan ujian kes. Teknik yang dipertingkatkan ini telah 

digunakan pada kajian kes yang sama seperti dalam teknik asal, menghasilkan empat 

kes ujian dalam 115 milisaat dengan lebih mudah berbanding dengan teknik asal 

yang menghasilkan lima kes ujian dalam 160 milisaat dengan usaha yang agak lebih. 

Ia selanjutnya telah dibandingkan dengan satu lagi teknik yang sedia ada model 

berasaskan (berdasarkan rajah jujukan) dan juga bersepadu dengan alat berasaskan 

model menggunakan kedua-dua kriteria umum dan yang khusus kepada masalah 

penyelidikan (TCG usaha dan masa), sebagai satu cara untuk selanjutnya 

mengesahkan penggunaannya. 
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CHAPTER 1 

INTRODUCTION 

1.1  Overview 

The recent past has seen the software industry change at a fast pace, many 

software systems have become larger, additionally complex, and rather integrated. 

This has in turn made software very sophisticated yet it makes up the larger part of 

most systems, often replacing hardware (Jerraya and Wolf, 2005).  

Areas for example the embedded systems fields are growing enormously 

important that they potentially represent a revolution in information technology (IT). 

Their growth is determined by the rising potential and ever-declining costs of 

computing and communications devices, resulting in networked systems of 

embedded computers whose functional components are nearly invisible to end users 

(Mercuri et al., 2008). 

Software is applied extensively in a variety of system applications from small 

sized ones like mobile phones to enormous systems such as machine condition 

monitoring, airbag control systems, marine and military security (Hua-ming and 

Chun, 2009) and many others. Because of rapid changes in this field, future 

applications will most likely contain even more software. The forecast for the next 

10 years is an exponential growth of the market for these products (Liggesmeyer and 

Trapp, 2009). When system intricacy rises, the development lifecycle must also 
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change. For this reason, efficient system development methodologies have to be used 

so as to handle the team size, the product requirement (scope) and to meet the 

project’s restraints like time-to-market and costs.  

Software in various system applications is steadily fetching even higher 

importance than the hardware because of the formation of novel inventive meanings 

based on software and also because of the execution of previously automatically 

included functions in software (Zander-Nowicka et al., 2007). Accuracy of software 

applications’ functionality, usability and performance gives a crucial task in software 

quality. Software testing is a vital means of software quality assurance, satisfied by 

various attributes such as effort and time (Hua-ming and Chun, 2009). 

The intricacy of software applications is growing because of the increased 

customer’s demand together with the time restrictions needed to get the artifact on 

marketplace. Even when its intricacy is mounting, the time to market is diminishing. 

Because of this, effort and time slotted to generating software is kept as a significant 

aspect in product selling so as to ensure its quality (Seon-Jae et al., 2008). This 

therefore means that the manual (traditional) way of testing cannot meet software 

industry demands, hence automated testing is introduced, commonly referred to as 

model based testing (Schieferdecker, 2012b). 

To define software testing, some researchers would call it a method, or a 

sequence of processes, of dynamically executing a program with given inputs, so as 

to ensure that the computer code does exactly that for which it is designed. Various 

applications are turning out to be ever more omnipresent, taking care of an extensive 

diversity of well accepted and safety-critical devices. Testing is the frequently 

utilized technique used in authenticating software applications, and efficient testing 

methods may well be supportive for enhancing the reliability of such systems. 

Figure 1.1 illustrates some of the general examples of software applications 

such as Automatic Teller Machines (ATMs), cellular telephones, satellites, airplanes, 

security alarm systems robotics and many others that are used in different fields. 
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Figure 1.1 Examples of Software System Applications (Sabil, 2010). 

 Software testing offers help not only in locating bugs but also in reducing 

effort and time spent in mitigating these bugs. Current studies from Electric Cloud 

carried out together with Osterman Research show that a greater part of software 

bugs are ascribed to poor testing procedures or infrastructure limitations rather than 

design problems (Kandl, 2010).  

Despite the fact that manual testing is an easy process to follow through its 

clearly laid out steps, it still involves more effort and time as compared to automated 

testing which has fewer time takings. As a result, automated testing is taking the lead 

for software applications nowadays because it is faster given that time is considered a 

very significant constraint as a determinant of quality (Schieferdecker, 2012). 

According to Seidewitz (2003), Unified Modeling Language (UML) 2.0 

offers various models applied in the development lifecycle such as use case diagrams 
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that are primarily made up of use cases (represented using behavioral diagrams 

(Dhir, 2012)), sequence, activity, class, state machine diagrams, etcetera. It is also 

recognized as a visual language (Dai, 2004).  

Apart from extensively using it for modeling object oriented systems, it is 

also employed in designing tests on the different levels such as unit, integration and 

system, (Tahiliani and Pandit, 2012). Many researchers are now proposing ways of 

re-using its design models for test case generation despite the fact that many other 

techniques using different models exist. This is to help reduce software testing effort 

and time as the models are already created by system developers, also encouraging 

leverage by testers. 

Because software is applied in many fields with a stringent quality 

requirement, any failure will in one way or the other have an effect on individual life 

and assets, not forgetting the security of the ecological environment. Accuracy of 

software functionality and performance takes up a critical responsibility in the 

software quality with software testing as a significant means of quality assurance. 

This therefore calls for efficient testing of software application so as to avoid 

compromising any company’s name once customer satisfaction is not met. 

1.2  Problem Background 

The notion of quality started way back in time when people attempted to 

discover an apt quality in every artificial object. The last decade has also seen a 

sudden boost of the Internet, meaning that the quality uprising is now circulating all 

through the world swiftly. Various organizations have then recognized that triumph 

in the novel worldwide market necessitates developing quality results (products).  

Originally; to enhance feature quality, many attempts were intense around 

testing products mainly towards development (lifecycle) end. Of late, the idea of 
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quality is giving attention to the works involving all production phases from the 

analysis of the requirements until the delivery of the product to customer, paying 

attention to uncovering and mitigation of defects at a lesser cost (Beck et al., 2001). 

In our daily lives, change is part of human nature, so it is for software 

applications. Software requirements change almost on a daily basis, calling for 

change in software development and testing techniques. This also introduces system 

design intricacy together with an extremely tense time-to market period because of 

the inconsistence, inaccuracy and ambiguity of the requirements.  

Testing software systems such as those for mission-critical applications is 

particularly tricky because of their unique features like timeliness, owing to design 

complexities and frequent requirements changes (Wei-Tek et al., 2005). Other small 

sized applications like mobile phones have limited storage space which is also 

challenging for designers and testers especially with choosing the adequate test 

attributes for it.  

The software development process distinguishes testing as a time and 

resource (effort) overwhelming subject matter. According to Micskei and Majzik 

(2006), over 30% of the process’ emphasis ought to be set aside for testing. Coming 

up with a simple and efficient test suite typically involves lots of manual work and 

specialist (expertise) familiarity. A testing engineer’s usual responsibilities include 

coming up with test cases (input-output pairs) for imperative tasks, clustering them 

into test sequences and test suites, after which they are executed and later analyzed.  

Traditionally, test suites are generated from the start (scratch) using different, 

frequently insufficient manual techniques. Finding the test data physically by hand 

enormously takes much effort and time, particularly if the software has complicated 

features to test. As a result, various efforts have been made to automate the process, 

making it faster and more reliable hence genesis of model based testing (MBT). 

Numerous researchers have deeply surveyed this field with an intention of finding 

out how exactly the test data (input and output) is generated, executed and later 
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evaluated against any given system. Test data generation has proven the most 

challenging step that determines the correctness of the next phases. 

Copious attributes depicting quality of software exist for example effort, time 

and cost (Yacoub et al., 1999). According to Bruntink and van Deursen (2006), effort 

of the classes of object-oriented software involved in the test case generation process 

can be estimated by Lines of Code for Class (LOCC) and Number of Test Cases 

(NOTC). Other researchers including Shrivastava and Jain (2011) estimate test 

design effort by Depth of Inheritance Tree (DIT), Fan out (FOUT), Lack of Cohesion 

on Methods (LCOM) and many others. Time can be measured either using a wall 

clock or CPU cycles (Ali et al., 2010). Sometimes, test efforts are considered 

dependent on the test time (Nageswaran, 2001).   

Various techniques have been used by different researchers and practitioners 

to automate test case generation both in academia and industry because the activities 

involved are consuming an increasing amount of resources allocated to software 

development projects (Chimisliu and Wotawa, 2012). Automating test case 

generation involves use of manually chosen algorithms to automatically and 

systematically form test cases from a set of models of the system under test or its 

environment (Schieferdecker, 2012b). 

According to Hyungchoul et al (2007), among the several models that exist, 

those created with Unified Modeling Language (UML) are thought of as the most 

highly ranked type. Boghdady et al (2012) then comes in to state that even within 

these UML models, activity diagrams are one of the most famed models that 

represent business and operational workflows of a system. Using gray box method to 

generate test cases directly from a UML activity diagram is one of the methods 

proposed, where the design model is reused to avoid the cost of test model creation. 

The test scenarios are extracted directly from the activity diagram modeling an 

operation while the test case generation data such as input or output sequence and 

parameters, the constraint conditions and expected object method sequence, is 

derived from each test scenario. (Linzhang et al., 2004).  
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An approach to capture, store and output usage scenarios derived 

automatically from UML activity diagrams was also reviewed. In this work, they 

presented an approach “dubbed AD2US”, which automatically extracts Usage 

Scenarios (USs) from Activity Diagrams (ADs); thereby extending the time available 

for other activities such as test-case generation or the verification of consistency 

between ADs, use cases and usage scenarios (Mingsong et al., 2006). 

 Generation of test scenarios using activity diagrams with specialty in 

handling fork-join pairs present in activity diagrams is a technique sought by P. 

Nanda (2008). A test case generation technique based on activity diagrams proposes 

a model that introduces an algorithm which automatically creates a table called 

Activity Dependency Table (ADT), and then uses it to create a directed graph called 

Activity Dependency Graph (ADG) which is later traversed to create test paths 

translated into test cases (Boghdady et al., 2012; Boghdady et al., 2011a; Boghdady 

et al., 2011b). 

Sequence diagrams are also important UML models in the creation of test 

cases under the MBT umbrella as reported by several research attempts. Sarma et al, 

(2007) as well as Sawant and Shah (2011b) both describe an approach to transform a 

UML sequence diagram into a sequence diagram graph (SDG) and augmenting its 

nodes with information needed to compose test vectors so as to later traverse it for 

test case formation. To create mobile phone application functional test cases, a UML 

sequence diagram is translated into Labeled Transition Systems (LTSs) where Depth 

First Search (DFS) technique is applied on the LTS so as to obtain test paths 

transformed into test cases. 

In other approaches, a Seditec tool is proposed to take sequence diagrams as 

input to automatically generate test stubs for the classes and methods whose behavior 

is specified in the sequence diagrams (Fraikin and Leonhardt, 2002). Test case 

generation by means of UML Sequence diagram using Genetic Algorithm in which 

the best test cases are optimized and the test cases are validated by prioritization is 

also reviewed (Shanthi and MohanKumar, 2012).  
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In summary, traditional generation of test cases is carried out towards the end 

of the development lifecycle, ultimately compromising quality of the software. UML 

models have been considered the most popular, especially activity and sequence 

diagrams in the effort to boost early test case creation. Considering researchers who 

have attempted to reverse the ideology of observing testing at the end, a few of them 

have considered using these models directly hence decreasing the steps involved in 

reaching the tests, eventually decreasing the effort and time involved there within.  

In addition, all the techniques conferred focus on generating tests through 

intermediate models such as those proposed by Sawant and Shah (2011a), Boghdady 

et al (2011a) and many others. Aside increasing effort and time involved in their 

construction, errors likely to be encountered also increase. Therefore, besides 

observing test case generation as a last phase in the development lifecycle, most 

researchers also continued to use intermediate models, increasing effort and time that 

would rather be reduced if they were being used directly. 

While Activity diagrams give a clear control flow of activities in a given 

system, sequence diagrams explain its dynamic behavior through exchange of 

messages between the objects involved. Because these are among the first behavioral 

models created in the analysis phase, early tests are expected to be generated with 

less effort and time by eliminating the intermediate models that were rather delaying 

the entire test case generation process. 

1.3  Problem Statement 

Testing is a crucial part of quality assurance but as the complexity of software 

applications grows, more effort and time is entailed. Because testing consists of three 

phases, such as test case generation, execution and evaluation in that order, the first 

one is a more challenging task compared to the rest because its correctness 

determines that of those which follow. Carrying it out manually would only increase 
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the effort and time hence increasing the costs involved in identifying and mitigating 

any errors (Zander-Nowicka et al., 2007). This has then prompted many researchers 

into automation, also referred to as Model Based Testing (Schieferdecker, 2012b).  

Because Test case creation (generation) is of indispensable significance, this 

study has focused on the use of Unified Modeling Language (UML) behavioral 

models to accomplish it successfully. Various techniques have used activity diagrams 

because of their simplicity and sufficient testing information, also because they are 

one of the earliest models created in the development lifecycle thus encouraging 

early testing. Most of them have emphasized creation of either intermediate tables, 

graphs or both. In due course, this has increased test case generation effort and time 

needed to create tests. This research therefore proposed elimination of these 

intermediate models by directly traversing activity diagrams, reducing on likely 

errors created during their construction besides the effort and time wasted there 

within.  

Therefore, the research question posed is “Is it possible to reduce the effort 

and time spent on test case generation by eliminating intermediate models without 

compromising the quality of the test cases?” 

1.4 Research Aim 

The research is aimed at enhancing an existing UML activity diagram test 

case generation technique in terms of effort and time by reducing steps involved 

through intermediate models riddance. 
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1.5  Research Objectives 

This study consists of a set of objectives that lead to the research process. 

They include: 

 To identify contemporary issues of test case generation techniques in system 

(black box) testing. 

 To propose and apply a test case generation technique that improves 

effectiveness (effort and time) for system testing with a software application 

case study. 

 To compare the proposed technique with the original one, an existing model 

based (sequence diagram) technique and automated tool so as to deem it 

successful in reducing effort and time as anticipated.  

1.6  Scope of the Study 

This study is intended for several small to medium-sized software 

applications that require accuracy and consistence in their system functionality 

before they are released to the market, i.e., those where testing the customer 

requirements for quality is vital. The following were paramount: 

 The study has focused on only UML behavioral models, activity diagrams 

and sequence diagrams in particular for system level (black box) test case 

generation, leaving out the rest of the other models.  

 Techniques focusing on only one model at a time have been considered, 

leaving out those dealing with model integrations.  

 It has also chosen an existing technique using activity diagrams studied and 

enhanced it in terms of effort and time elapsed during test case generation, 

and then applied it on a software application example. 
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 The enhanced test case generation technique is then compared with the 

original one, an already existing technique using sequence diagrams and 

another technique integrated with automated model based tools. 

 The work has been concluded by proposing primary ideas to address some of 

the practical challenges identified in applying them on both academia and 

industrial test case design.  

1.7  Significance of Study 

This study is primarily intended to benefit the software applications industry 

by focusing on less costly and earlier alternative test case generation techniques that 

will have testers leverage on analysts and developers by re-using UML analysis 

behavioral models. Most of the existing techniques do not particularly compare test 

cases generated by either activity and sequence or any other UML models. This will 

in turn do well to the different areas that employ various small sized software 

applications in their daily operations for example, the telecommunications, banking, 

transportation and other industries.  

It will also be helpful in homes where performing daily chores for example 

washing and vacuuming requires use of the small to medium sized software 

applications since test cases to validate them before being released for use will be 

created. It will also be beneficial to the education sector as it will largely contribute 

to the body of knowledge for the students interested in carrying out their research in 

the area of software testing. 
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1.8  Dissertation Organization   

This thesis is made up of six chapters, where by the first chapter clearly states 

the motivation and objectives of this work. The second chapter described the relevant 

literature review, the fundamentals model based testing.  Chapter three introduced 

the methodology that was used to build up test cases as input for the subsequent 

chapters. Test cases were experimentally generated using an activity diagram in 

chapter four and later compared with already existing ones of a sequence diagram in 

chapter five. They were further compared with those generated from techniques 

integrated with automated tools. The final chapter of this work concluded it all by 

proposing initial ideas to identified challenges during test cases generation and also 

regarding the tests and techniques employed throughout this work. 
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