

AN ENHANCED TEST CASE GENERATION TECHNIQUE USING ACTIVITY

DIAGRAM FOR SYSTEM TESTING

 NANSUKUSA YUDAYA

A dissertation submitted in partial fulfillment of the

requirements for the award of the degree of

Master of Science (Computer Science)

Faculty of Computer Science and Information Systems

Universiti Teknologi Malaysia

JANUARY 2013

iii

I affably dedicate this thesis to the biggest treasures of my life, my family. Not

forgetting my best friend Farooq who has always believed in me.

iv

ACKNOWLEDGEMENT

First of all, I would like to express my utmost gratitude to Allah S.W.T for

His endless blessings and guidance throughout my entire research process and stay in

Malaysia, Alhamdlillah for everything.

Then, sincere appreciation goes to my supervisor Associate Professor

Dayang Norhayati Abang Jawawi for her continued support, guidance, and

patience throughout my research. Despite her tight schedule, she always tried to

make herself available. I’ve never seen anyone as committed in nurturing their

students like she is. I will always look up to her as my academic role model.

I would also like to express my gratitude to my dear sponsors, Islamic

Development Bank, for always providing me with sufficient financial support, may

Allah reward you abundantly.

I will forever be grateful to my family, for their undulating support,

encouragement and prayers, not forgetting my best friend Farooq. To them I am

truly indebted and words alone cannot describe my earnest gratitude.

Special thanks go to all my friends who have always provided aid at various

occasions through their views and tips that were undeniably constructive throughout

my research and stay in Malaysia. You will all forever remain at heart.

v

ABSTRACT

Software Testing, a process comprised of test case generation, execution and

evaluation is one of the imperative phases of the development life cycle, with its cost

approximated to about 50% of the overall development cost. Researchers have

automated it using models with utmost focus put on Unified Modeling Language

(UML) as the up to date de facto standard utilized in software modeling. Its diagrams

include both behavioral and structural. This work has generated system tests (black

box) early in the development lifecycle hence the use of behavioral models, activity

diagrams in particular as they are one of the earliest and simplest analysis models to

be created with sufficient testing information. Also, as a way of reducing test case

generation effort and time, an existing technique that supposedly involved more

effort and time has been focused on in this work. It has been enhanced by reducing

the key steps involved through eliminating intermediate models as a way of reducing

effort and time involved in the test case formation process. The enhanced technique

has been applied on the same case study as in the original technique, producing four

test cases in 115 milliseconds with more ease compared to the original technique that

produced five test cases in 160 milliseconds with relatively more effort. It has further

been compared against another already existing model based technique (based on

sequence diagrams) and also one integrated with a model based tool using both

general criteria and those specific to the research problem (TCG effort and time), as a

way of further confirming its applicability.

vi

ABSTRAK

Pengujian Perisian, satu proses yang terdiri daripada penjanaan kes ujian,

pelaksanaan, dan penilaian adalah salah satu fasa penting untuk kitaran hayat

pembangunan, dengan kos yang dianggarkan kira-kira 50% daripada keseluruhan kos

pembangunan. Penyelidik telah mengautomasikan ia menggunakan model dengan

tumpuan penuh diletakkan ke atas Bahasa Permodelan Bersepadu (UML) sebagai

standard de facto terkini yang digunakan dalam pemodelan perisian. Rajahnya

termasuk kedua-dua tingkah laku dan struktur. Kerja ini telah menjana ujian sistem

(kotak hitam) di awal kitaran hayat pembangunan, maka penggunaan model tingkah

laku, rajah aktiviti khususnya kerana mereka adalah salah satu model analisis yang

terawal dan paling mudah untuk diwujudkan dengan maklumat ujian yang

mencukupi. Sebagai satu cara untuk mengurangkan usaha dan masa untuk menjana

kes ujian, satu teknik yang sedia ada yang sepatutnya melibatkan usaha dan masa

yang lebih telah diberikan tumpuan dalam kerja-kerja ini. Ia telah dipertingkatkan

dengan mengurangkan langkah-langkah utama yang terlibat melalui penghapusan

model perantaraan sebagai satu cara untuk mengurangkan usaha dan masa yang

terlibat dalam proses pembentukan ujian kes. Teknik yang dipertingkatkan ini telah

digunakan pada kajian kes yang sama seperti dalam teknik asal, menghasilkan empat

kes ujian dalam 115 milisaat dengan lebih mudah berbanding dengan teknik asal

yang menghasilkan lima kes ujian dalam 160 milisaat dengan usaha yang agak lebih.

Ia selanjutnya telah dibandingkan dengan satu lagi teknik yang sedia ada model

berasaskan (berdasarkan rajah jujukan) dan juga bersepadu dengan alat berasaskan

model menggunakan kedua-dua kriteria umum dan yang khusus kepada masalah

penyelidikan (TCG usaha dan masa), sebagai satu cara untuk selanjutnya

mengesahkan penggunaannya.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES xi

 LIST OF FIGURES xii

LIST OF ABBREVIATIONS xiv

LIST OF APPENDICES xv

1 INTRODUCTION

 1.1 Overview 1

 1.2 Problem Background 4

 1.3 Problem Statement 8

 1.4 Research Aim 9

 1.5 Research Objectives 10

 1.6 Scope of the Study 10

 1.7 Significance of Study 11

 1.8 Dissertation Organization 12

2 LITERATURE REVIEW

 2.1 Introduction 13

 2.2 Overview of Software Testing 13

 2.3 Model Based Testing 15

viii

 2.3.1 The MBT Process 16

2.4 Software Testing Metrics 17

 2.4.1 Software Testing Effort 18

 2.4.2 Software Testing Time 21

 2.5 Test Case Generation 23

 2.5.1 UML Models for Test case Generation Techniques 24

 2.5.1.1 Activity Diagrams 24

 2.5.1.2 Sequence Diagrams 27

 2.6 Model Based Test Case Generators (Tools) 34

 2.5.1 Fokus! MBT 37

 2.5.2 Hexawise Tool 38

 2.6 Summary 40

3 RESEARCH METHODOLOGY

 3.1 Introduction 41

 3.2 Research Process Flowchart 41

 3.2.1 Research Process 43

 3.2.2 Phase One 44

 3.2.3 Phase Two 45

 3.2.4 Phase Three 46

 3.3 Case Study 47

 3.3.1 Bank system application case studies 48

 3.4 Methodology Framework 49

 3.4.1 Bank system application case study 51

 3.4.2 UML Behavioral Model 51

 3.4.3 Automatic Test Case Generation 53

 3.5 Summary 53

4 GENERATION OF TEST CASES BASED ON THE ENHANCED

 TEST CASE GENERATION TECHNIQUE

 4.1 Introduction 54

 4.2 Overview of the Unified Modeling Language (UML) 2.0 55

 4.3 Generating Test cases using the Original Technique 56

 4.3.1 Module 1: Generation of ADT 57

ix

 4.3.2 Module 2: Generation of ADG 59

 4.3.3 Module 3: Test Cases Generation 60

 4.3.4 Module 4: Validate Generated Test Cases 63

 4.3.5 Evaluation of the Original Technique 64

 4.4 Overview of the Proposed (Enhanced) Technique 66

 4.4.1 Module 1: Test case Generation 67

 4.4.2 Module 2: Test Case Validation 73

4.4.3 Application of Proposed (Enhanced) Technique

with ATM Withdrawal Activity Diagram case

study 73

 4.5 Comparing Original with Proposed (Enhanced) Technique 74

4.5.1 TCG Effort comparisons for original and proposed

(enhanced) techniques 75

4.5.2 TCG Time comparisons for original and proposed

(enhanced) techniques 76

4.6 Discussion and Summary 79

5 COMPARING THE ENHANCED TECHNIQUE AGAINST THE

EXISTING (BASED ON SEQUENCE DIAGRAMS) AND MODEL

BASED TOOL INTEGRATED TECHNIQUES

 5.1 Introduction 80

5.2 Generating test cases using the enhanced technique with a

bank system (ATM PIN Validation) case study 81

 5.2.1 Deriving Input and Output Information 82

 5.2.2 Using Proposed Algorithm with Identified Inputs 83

 5.2.3 Validation of Generated test cases 85

 5.3 Generating Test cases using UML Sequence diagram 86

 With Bank system case study

 5.3.1 Overview of Test case Generation from a 87

 Sequence Diagram

 5.3.1.1 Evaluation of Generated test cases 91

 5.3.2 Comparing Existing with Proposed Technique 92

 5.3.2.1 General Criteria 93

 5.3.2.2 Criteria Related to Current Research 95

Problem

 5.4 Hexawise Test Design Tool 97

 5.4.1 Test case Generation using Hexawise Tool 97

x

 5.4.1.1 Pairwise (2-Way) Interactions 99

 5.4.1.2 Three (3-Way) Interactions 100

 5.4.2 Comparing Enhanced Technique with Hexawise

Tool Technique 101

5.4.2.1 General Criteria 102

5.4.2.2 Criteria Related to Current Research 103

Problem

5.5 Discussion and Summary 104

6 CONCLUSION AND FUTURE WORK

 6.1 Introduction 106

 6.2 Research Conclusion 106

 6.3 Research Contribution 110

 6.4 Future Works 110

 REFERENCES 112

 APPENDIX 120

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Quality metrics for test case design 19

2.2 Software Testing Metrics for Effort and Time attributes 22

2.3 A Summary of the reviewed Activity Diagram Techniques 30

2.4 A Summary of the reviewed Sequence Diagram Techniques 32

2.5 Comparing the Test Case Generator Tools 35

2.6 Summary of the chosen Open-Source Tools 40

4.1 ATM Withdrawal Activity Dependency Table 59

4.2 All Possible Test Paths 61

4.3 Generated Test Cases with Original technique 62

4.4 The Cyclomatic Activity Table 63

4.5 Generated Test paths and Test cases with enhanced technique 74

4.6 Effort Complexity for both original and proposed techniques 76

4.7 TCG Time for both original and proposed techniques 78

5.1 Comparative Evaluation between the Existing (Sequence diagram) 93

 and Proposed (Activity diagram) techniques

5.2 Inputs from Activity Diagram to Hexawise Tool 98

5.3 Pairwise (2-way) Tests 99

5.4 3-way Tests 100

5.5 Comparative Evaluation between the proposed UML Activity

diagram Technique and Hexawise Tool Technique 102

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Examples of Software Systems Applications 3

2.1 Model-based testing tool chain 38

3.1 Research Process Flow Chart 42

3.2 Simple Framework illustrating Test case Generation from UML 50

Activity or Sequence Diagram

4.1 Test Case Generation Model Architecture 57

4.2 ATM Withdrawal Activity Diagram 58

4.3 Activity Dependency Graph (ADG) 60

4.4 Cyclomatic Activity Graph 64

4.5 Architecture of the Proposed (Enhanced) Technique 67

4.6 Proposed Algorithm for Test paths and Test case generation 70

4.7 Flow Chart for the Test paths and Test cases generation

Algorithm 71

4.8 Effort Complexities 75

4.9 Test case generation time 77

5.1 ATM PIN Validation Activity Diagram 81

5.2 Bank ATM PIN Validation graph 82

5.3 Generated Test Paths and Test Cases 85

5.4 Schematic Block Diagram for the proposed approach 88

5.5 Sequence Diagram of Bank ATM System 89

5.6 Displaying Sequence Diagram Graph 90

5.7 Test cases Generated 91

xiii

 LIST OF ABBREVIATIONS

AD Activity Diagram

ADG Activity Dependency Graph

ADT Activity Dependency Table

ATM Automatic Teller Machine

BFS Breadth First Search

CAG Cyclomatic Activity Graph

DFS Depth First Search

EUROCAE European Organization for Civil Aviation Equipment

IFD Interaction Flow Diagram

IFG Interaction Flow Graph

LTS Labeled Transition System

MBT Model Based Testing

OCL Object Constrained Language

PIN Personal Identification Number

RTCA Radio Technical Commission for Aeronautics

SD Sequence Diagram

SDT Sequence Dependency Table

SUT System Under Test

TCG Test Case Generation

UML Unified Modeling Language

xiv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Source Code for the Proposed Direct Traversal Algorithm 120

CHAPTER 1

INTRODUCTION

1.1 Overview

The recent past has seen the software industry change at a fast pace, many

software systems have become larger, additionally complex, and rather integrated.

This has in turn made software very sophisticated yet it makes up the larger part of

most systems, often replacing hardware (Jerraya and Wolf, 2005).

Areas for example the embedded systems fields are growing enormously

important that they potentially represent a revolution in information technology (IT).

Their growth is determined by the rising potential and ever-declining costs of

computing and communications devices, resulting in networked systems of

embedded computers whose functional components are nearly invisible to end users

(Mercuri et al., 2008).

Software is applied extensively in a variety of system applications from small

sized ones like mobile phones to enormous systems such as machine condition

monitoring, airbag control systems, marine and military security (Hua-ming and

Chun, 2009) and many others. Because of rapid changes in this field, future

applications will most likely contain even more software. The forecast for the next

10 years is an exponential growth of the market for these products (Liggesmeyer and

Trapp, 2009). When system intricacy rises, the development lifecycle must also

2

change. For this reason, efficient system development methodologies have to be used

so as to handle the team size, the product requirement (scope) and to meet the

project’s restraints like time-to-market and costs.

Software in various system applications is steadily fetching even higher

importance than the hardware because of the formation of novel inventive meanings

based on software and also because of the execution of previously automatically

included functions in software (Zander-Nowicka et al., 2007). Accuracy of software

applications’ functionality, usability and performance gives a crucial task in software

quality. Software testing is a vital means of software quality assurance, satisfied by

various attributes such as effort and time (Hua-ming and Chun, 2009).

The intricacy of software applications is growing because of the increased

customer’s demand together with the time restrictions needed to get the artifact on

marketplace. Even when its intricacy is mounting, the time to market is diminishing.

Because of this, effort and time slotted to generating software is kept as a significant

aspect in product selling so as to ensure its quality (Seon-Jae et al., 2008). This

therefore means that the manual (traditional) way of testing cannot meet software

industry demands, hence automated testing is introduced, commonly referred to as

model based testing (Schieferdecker, 2012b).

To define software testing, some researchers would call it a method, or a

sequence of processes, of dynamically executing a program with given inputs, so as

to ensure that the computer code does exactly that for which it is designed. Various

applications are turning out to be ever more omnipresent, taking care of an extensive

diversity of well accepted and safety-critical devices. Testing is the frequently

utilized technique used in authenticating software applications, and efficient testing

methods may well be supportive for enhancing the reliability of such systems.

Figure 1.1 illustrates some of the general examples of software applications

such as Automatic Teller Machines (ATMs), cellular telephones, satellites, airplanes,

security alarm systems robotics and many others that are used in different fields.

3

Figure 1.1 Examples of Software System Applications (Sabil, 2010).

 Software testing offers help not only in locating bugs but also in reducing

effort and time spent in mitigating these bugs. Current studies from Electric Cloud

carried out together with Osterman Research show that a greater part of software

bugs are ascribed to poor testing procedures or infrastructure limitations rather than

design problems (Kandl, 2010).

Despite the fact that manual testing is an easy process to follow through its

clearly laid out steps, it still involves more effort and time as compared to automated

testing which has fewer time takings. As a result, automated testing is taking the lead

for software applications nowadays because it is faster given that time is considered a

very significant constraint as a determinant of quality (Schieferdecker, 2012).

According to Seidewitz (2003), Unified Modeling Language (UML) 2.0

offers various models applied in the development lifecycle such as use case diagrams

4

that are primarily made up of use cases (represented using behavioral diagrams

(Dhir, 2012)), sequence, activity, class, state machine diagrams, etcetera. It is also

recognized as a visual language (Dai, 2004).

Apart from extensively using it for modeling object oriented systems, it is

also employed in designing tests on the different levels such as unit, integration and

system, (Tahiliani and Pandit, 2012). Many researchers are now proposing ways of

re-using its design models for test case generation despite the fact that many other

techniques using different models exist. This is to help reduce software testing effort

and time as the models are already created by system developers, also encouraging

leverage by testers.

Because software is applied in many fields with a stringent quality

requirement, any failure will in one way or the other have an effect on individual life

and assets, not forgetting the security of the ecological environment. Accuracy of

software functionality and performance takes up a critical responsibility in the

software quality with software testing as a significant means of quality assurance.

This therefore calls for efficient testing of software application so as to avoid

compromising any company’s name once customer satisfaction is not met.

1.2 Problem Background

The notion of quality started way back in time when people attempted to

discover an apt quality in every artificial object. The last decade has also seen a

sudden boost of the Internet, meaning that the quality uprising is now circulating all

through the world swiftly. Various organizations have then recognized that triumph

in the novel worldwide market necessitates developing quality results (products).

Originally; to enhance feature quality, many attempts were intense around

testing products mainly towards development (lifecycle) end. Of late, the idea of

5

quality is giving attention to the works involving all production phases from the

analysis of the requirements until the delivery of the product to customer, paying

attention to uncovering and mitigation of defects at a lesser cost (Beck et al., 2001).

In our daily lives, change is part of human nature, so it is for software

applications. Software requirements change almost on a daily basis, calling for

change in software development and testing techniques. This also introduces system

design intricacy together with an extremely tense time-to market period because of

the inconsistence, inaccuracy and ambiguity of the requirements.

Testing software systems such as those for mission-critical applications is

particularly tricky because of their unique features like timeliness, owing to design

complexities and frequent requirements changes (Wei-Tek et al., 2005). Other small

sized applications like mobile phones have limited storage space which is also

challenging for designers and testers especially with choosing the adequate test

attributes for it.

The software development process distinguishes testing as a time and

resource (effort) overwhelming subject matter. According to Micskei and Majzik

(2006), over 30% of the process’ emphasis ought to be set aside for testing. Coming

up with a simple and efficient test suite typically involves lots of manual work and

specialist (expertise) familiarity. A testing engineer’s usual responsibilities include

coming up with test cases (input-output pairs) for imperative tasks, clustering them

into test sequences and test suites, after which they are executed and later analyzed.

Traditionally, test suites are generated from the start (scratch) using different,

frequently insufficient manual techniques. Finding the test data physically by hand

enormously takes much effort and time, particularly if the software has complicated

features to test. As a result, various efforts have been made to automate the process,

making it faster and more reliable hence genesis of model based testing (MBT).

Numerous researchers have deeply surveyed this field with an intention of finding

out how exactly the test data (input and output) is generated, executed and later

6

evaluated against any given system. Test data generation has proven the most

challenging step that determines the correctness of the next phases.

Copious attributes depicting quality of software exist for example effort, time

and cost (Yacoub et al., 1999). According to Bruntink and van Deursen (2006), effort

of the classes of object-oriented software involved in the test case generation process

can be estimated by Lines of Code for Class (LOCC) and Number of Test Cases

(NOTC). Other researchers including Shrivastava and Jain (2011) estimate test

design effort by Depth of Inheritance Tree (DIT), Fan out (FOUT), Lack of Cohesion

on Methods (LCOM) and many others. Time can be measured either using a wall

clock or CPU cycles (Ali et al., 2010). Sometimes, test efforts are considered

dependent on the test time (Nageswaran, 2001).

Various techniques have been used by different researchers and practitioners

to automate test case generation both in academia and industry because the activities

involved are consuming an increasing amount of resources allocated to software

development projects (Chimisliu and Wotawa, 2012). Automating test case

generation involves use of manually chosen algorithms to automatically and

systematically form test cases from a set of models of the system under test or its

environment (Schieferdecker, 2012b).

According to Hyungchoul et al (2007), among the several models that exist,

those created with Unified Modeling Language (UML) are thought of as the most

highly ranked type. Boghdady et al (2012) then comes in to state that even within

these UML models, activity diagrams are one of the most famed models that

represent business and operational workflows of a system. Using gray box method to

generate test cases directly from a UML activity diagram is one of the methods

proposed, where the design model is reused to avoid the cost of test model creation.

The test scenarios are extracted directly from the activity diagram modeling an

operation while the test case generation data such as input or output sequence and

parameters, the constraint conditions and expected object method sequence, is

derived from each test scenario. (Linzhang et al., 2004).

7

An approach to capture, store and output usage scenarios derived

automatically from UML activity diagrams was also reviewed. In this work, they

presented an approach “dubbed AD2US”, which automatically extracts Usage

Scenarios (USs) from Activity Diagrams (ADs); thereby extending the time available

for other activities such as test-case generation or the verification of consistency

between ADs, use cases and usage scenarios (Mingsong et al., 2006).

 Generation of test scenarios using activity diagrams with specialty in

handling fork-join pairs present in activity diagrams is a technique sought by P.

Nanda (2008). A test case generation technique based on activity diagrams proposes

a model that introduces an algorithm which automatically creates a table called

Activity Dependency Table (ADT), and then uses it to create a directed graph called

Activity Dependency Graph (ADG) which is later traversed to create test paths

translated into test cases (Boghdady et al., 2012; Boghdady et al., 2011a; Boghdady

et al., 2011b).

Sequence diagrams are also important UML models in the creation of test

cases under the MBT umbrella as reported by several research attempts. Sarma et al,

(2007) as well as Sawant and Shah (2011b) both describe an approach to transform a

UML sequence diagram into a sequence diagram graph (SDG) and augmenting its

nodes with information needed to compose test vectors so as to later traverse it for

test case formation. To create mobile phone application functional test cases, a UML

sequence diagram is translated into Labeled Transition Systems (LTSs) where Depth

First Search (DFS) technique is applied on the LTS so as to obtain test paths

transformed into test cases.

In other approaches, a Seditec tool is proposed to take sequence diagrams as

input to automatically generate test stubs for the classes and methods whose behavior

is specified in the sequence diagrams (Fraikin and Leonhardt, 2002). Test case

generation by means of UML Sequence diagram using Genetic Algorithm in which

the best test cases are optimized and the test cases are validated by prioritization is

also reviewed (Shanthi and MohanKumar, 2012).

8

In summary, traditional generation of test cases is carried out towards the end

of the development lifecycle, ultimately compromising quality of the software. UML

models have been considered the most popular, especially activity and sequence

diagrams in the effort to boost early test case creation. Considering researchers who

have attempted to reverse the ideology of observing testing at the end, a few of them

have considered using these models directly hence decreasing the steps involved in

reaching the tests, eventually decreasing the effort and time involved there within.

In addition, all the techniques conferred focus on generating tests through

intermediate models such as those proposed by Sawant and Shah (2011a), Boghdady

et al (2011a) and many others. Aside increasing effort and time involved in their

construction, errors likely to be encountered also increase. Therefore, besides

observing test case generation as a last phase in the development lifecycle, most

researchers also continued to use intermediate models, increasing effort and time that

would rather be reduced if they were being used directly.

While Activity diagrams give a clear control flow of activities in a given

system, sequence diagrams explain its dynamic behavior through exchange of

messages between the objects involved. Because these are among the first behavioral

models created in the analysis phase, early tests are expected to be generated with

less effort and time by eliminating the intermediate models that were rather delaying

the entire test case generation process.

1.3 Problem Statement

Testing is a crucial part of quality assurance but as the complexity of software

applications grows, more effort and time is entailed. Because testing consists of three

phases, such as test case generation, execution and evaluation in that order, the first

one is a more challenging task compared to the rest because its correctness

determines that of those which follow. Carrying it out manually would only increase

9

the effort and time hence increasing the costs involved in identifying and mitigating

any errors (Zander-Nowicka et al., 2007). This has then prompted many researchers

into automation, also referred to as Model Based Testing (Schieferdecker, 2012b).

Because Test case creation (generation) is of indispensable significance, this

study has focused on the use of Unified Modeling Language (UML) behavioral

models to accomplish it successfully. Various techniques have used activity diagrams

because of their simplicity and sufficient testing information, also because they are

one of the earliest models created in the development lifecycle thus encouraging

early testing. Most of them have emphasized creation of either intermediate tables,

graphs or both. In due course, this has increased test case generation effort and time

needed to create tests. This research therefore proposed elimination of these

intermediate models by directly traversing activity diagrams, reducing on likely

errors created during their construction besides the effort and time wasted there

within.

Therefore, the research question posed is “Is it possible to reduce the effort

and time spent on test case generation by eliminating intermediate models without

compromising the quality of the test cases?”

1.4 Research Aim

The research is aimed at enhancing an existing UML activity diagram test

case generation technique in terms of effort and time by reducing steps involved

through intermediate models riddance.

10

1.5 Research Objectives

This study consists of a set of objectives that lead to the research process.

They include:

 To identify contemporary issues of test case generation techniques in system

(black box) testing.

 To propose and apply a test case generation technique that improves

effectiveness (effort and time) for system testing with a software application

case study.

 To compare the proposed technique with the original one, an existing model

based (sequence diagram) technique and automated tool so as to deem it

successful in reducing effort and time as anticipated.

1.6 Scope of the Study

This study is intended for several small to medium-sized software

applications that require accuracy and consistence in their system functionality

before they are released to the market, i.e., those where testing the customer

requirements for quality is vital. The following were paramount:

 The study has focused on only UML behavioral models, activity diagrams

and sequence diagrams in particular for system level (black box) test case

generation, leaving out the rest of the other models.

 Techniques focusing on only one model at a time have been considered,

leaving out those dealing with model integrations.

 It has also chosen an existing technique using activity diagrams studied and

enhanced it in terms of effort and time elapsed during test case generation,

and then applied it on a software application example.

11

 The enhanced test case generation technique is then compared with the

original one, an already existing technique using sequence diagrams and

another technique integrated with automated model based tools.

 The work has been concluded by proposing primary ideas to address some of

the practical challenges identified in applying them on both academia and

industrial test case design.

1.7 Significance of Study

This study is primarily intended to benefit the software applications industry

by focusing on less costly and earlier alternative test case generation techniques that

will have testers leverage on analysts and developers by re-using UML analysis

behavioral models. Most of the existing techniques do not particularly compare test

cases generated by either activity and sequence or any other UML models. This will

in turn do well to the different areas that employ various small sized software

applications in their daily operations for example, the telecommunications, banking,

transportation and other industries.

It will also be helpful in homes where performing daily chores for example

washing and vacuuming requires use of the small to medium sized software

applications since test cases to validate them before being released for use will be

created. It will also be beneficial to the education sector as it will largely contribute

to the body of knowledge for the students interested in carrying out their research in

the area of software testing.

12

1.8 Dissertation Organization

This thesis is made up of six chapters, where by the first chapter clearly states

the motivation and objectives of this work. The second chapter described the relevant

literature review, the fundamentals model based testing. Chapter three introduced

the methodology that was used to build up test cases as input for the subsequent

chapters. Test cases were experimentally generated using an activity diagram in

chapter four and later compared with already existing ones of a sequence diagram in

chapter five. They were further compared with those generated from techniques

integrated with automated tools. The final chapter of this work concluded it all by

proposing initial ideas to identified challenges during test cases generation and also

regarding the tests and techniques employed throughout this work.

 112

REFERENCES

Abdurazik, A., and Offutt, J. (2000). Using UML collaboration diagrams for static

checking and test generation, Lecture Notes in Computer Science Volume

1939, 2000, pp 383-395.

Ali, S., Briand, L. C., Hemmati, H., and Panesar-Walawege, R. K. (2010). A

Systematic Review of the Application and Empirical Investigation of Search-

Based Test Case Generation. Software Engineering, IEEE Transactions on,

36(6), 742-762.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,

M., et al. (2001). Manifesto for agile software development. The Agile Alliance,

2002-2004.

Boberg, J. (2008). Early fault detection with model-based testing, Proceedings of the

7th ACM SIGPLAN workshop on ERLANG, Pages 9-20.

Boghdady, P., Badr, N. L., Hashem, M. A., and Tolba, M. F. (2012, 14-16 May

2012). An enhanced technique for generating hybrid coverage test cases using

activity diagrams. Paper presented at the Informatics and Systems (INFOS),

2012 8th International Conference on, SE-20-SE-28.

Boghdady, P. N., Badr, N. L., Hashem, M., and Tolba, M. F. (2011a). A Proposed

Test Case Generation Technique Based on Activity Diagrams. International

Journal of Engineering & Technology IJET-IJENS, 11(03).

Boghdady, P. N., Badr, N. L., Hashim, M. A., and Tolba, M. F. (2011b). An

enhanced test case generation technique based on activity diagrams, 289-294.

Bruntink, M., and van Deursen, A. (2006). An empirical study into class testability.

Journal of Systems and Software, 79(9), 1219-1232.

Burnstein, I. Practical software testing: a process-oriented approach: Springer,

2003.

Cartaxo, E. G., Neto, F. G. O., and Machado, P. D. L. (2007). Test case generation

by means of UML sequence diagrams and labeled transition systems, This paper

 113

appears in: Systems, Man and Cybernetics, 2007. ISIC. IEEE International

Conference on 1292-1297.

Chen, M., Mishra, P., and Kalita, D. (2010). Efficient test case generation for

validation of UML activity diagrams. Design Automation for Embedded

Systems, 14(2), 105-130.

Chimisliu, V., and Wotawa, F. (2012, 19-21 March 2012). Model based test case

generation for distributed embedded systems. Paper presented at the Industrial

Technology (ICIT), 2012 IEEE International Conference on, 656-661.

Clarke, E. M., Grumberg, O., and Peled, D. A. (2000). Model checking: MIT press.

Dai, Z. R. (2004). Model-driven testing with UML 2.0. Proceedings of the 2nd

European Workshop on Model Driven Architecture, Computer Science at Kent,

179.

Debbarma, M. K., Kar, N., and Saha, A. (2012). Static and dynamic software metrics

complexity analysis in regression testing. Paper presented at the Computer

Communication and Informatics (ICCCI), 2012 International Conference on, 1-

6.

Devaraj, G., Heimdahl, M. P. E., and Liang, D. (2005). Coverage-directed test

generation with model checkers: Challenges and opportunities, This paper

appears in: Computer Software and Applications Conference, 455-462 Vol. 2.

Dhir, S. (2012). Impact Of UML Techniques In Test Case Generation, International

journal of engineering science & advanced technology, Volume-2, Issue-2, 214

– 217.

Do, R. (1992). 178B, Software considerations in airborne systems and equipment

certification. Radio and Technical Commission for Aeronautics.

Elish, K. O., and Alshayeb, M. (2009). Investigating the Effect of Refactoring on

Software Testing Effort. Paper presented at the Software Engineering

Conference, 2009. APSEC'09. Asia-Pacific, 29-34.

Fenton, N.E., and Pfleeger, S.L. (1996) Software Metrics: A Rigorous and Practical

Approach, PWS Publishing Company, Boston, Massachusetts, USA.

Fenton, N. E., and Neil, M. (1999). Software metrics: successes, failures and new

directions. Journal of Systems and Software, 47(2), 149-157.

Fenton, N. E., and Neil, M. (2000). Software metrics: roadmap. Paper presented at

the Proceedings of the Conference on the Future of Software Engineering, 357-

370.

 114

Fraikin, F., and Leonhardt, T. (2002). SeDiTeC-testing based on sequence diagrams,

Proceedings. ASE 2002. 17th IEEE International Conference on 261-266.

Gutiérrez, J. J., Escalona, M. J., Mejías, M., and Torres, J. (2006). Generation of test

cases from functional requirements. A survey.In: 4th Workshop on System

Testing and Validation , Potsdam, Germany.

Harrold, M. J., McGregor, J. D., and Fitzpatrick, K. J. (1992). Incremental testing of

object-oriented class structures. Paper presented at the Proceedings of the 14th

international conference on Software engineering, 68-80.

Hasling, B., Goetz, H., and Beetz, K. (2008). Model based testing of system

requirements using UML use case models, in Proceedings of 2008 International

Conference on Software Testing, Verification, and Validation, pp.367-376.

Heinecke, A., Bruckmann, T., Griebe, T., and Gruhn, V. (2010). Generating Test

Plans for Acceptance Tests from UML Activity Diagrams, Engineering of

Computer Based Systems (ECBS), 2010 17th IEEE International Conference

and Workshops, pp.57-66.

Heineman, G. P., S. Selkow. (2008')." Algorithms in a Nutshell" book by O'Reilly

Media.

Hua-ming, Q., and Chun, Z. (2009, 11-13 Dec. 2009). A Embedded Software Testing

Process Model. Paper presented at the Computational Intelligence and Software

Engineering, 2009. CiSE 2009. International Conference on, 1-5.

Hunter, J. (2009). improve automation, documentation and transparency of the entire

software development process. Retrieved 15/10/2012, 2012.

Hutcheson, M. L. (2003). Software testing fundamentals: methods and metrics: book

by Wiley.

Hyungchoul, K., Sungwon, K., Jongmoon, B., and Inyoung, K. (2007, July 30 2007-

Aug. 1 2007). Test Cases Generation from UML Activity Diagrams. Paper

presented at the Software Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing, 2007. SNPD 2007. Eighth ACIS International

Conference on, 556-561.

Jerraya, A. A., and Wolf, W. (2005). Hardware/software interface codesign for

embedded systems. Computer journals, volume(2), pg.63-69.

Kandl, S. (2010). A Requirement-Based Systematic Test-Case Generation Method for

Safety-Critical Embedded Systems. University Technology Vienna.

 115

Kansomkeat, S., and Rivepiboon, W. (2003). Automated-generating test case using

UML statechart diagrams, Proceedings of the 2003 annual research conference

of the South African institute of computer scientists and information

technologists on Enablement through technology, Pg. 296-300.

Khan, M. B. A., and Shang, S. (2009). Evaluation of Model Based Testing and

Conformiq Qtronic. Final Thesis Evaluation, Sweden, Linköping.

Khandai, M., Acharya, A. A., and Mohapatra, D. P. (2011). A novel approach of test

case generation for concurrent systems using UML Sequence Diagram,

Electronics Computer Technology (ICECT), 2011 3rd International Conference,

Vol 6, pg. 157-161.

Kuhn, R., Kacker, R., Yu, L., and Hunter, J. (2009). Combinatorial Software Testing.

Computer journals and magazines, 42(8), 94-96.

Kumar, A. V. K. S. a. G. M. (2011). Automated Test Cases Generation from UML

Sequence Diagram.

Li, K., Kou, J., and Gong, L. (2011). Predicting software quality by optimized BP

network based on PSO. Journal of Computers, 6(1), 122-129.

Liggesmeyer, P., and Trapp, M. (2009). Trends in embedded software engineering.

Software, IEEE, 26(3), 19-25.

Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H., Xuandong, L., and Guoliang, Z.

(2004). Generating test cases from UML activity diagram based on gray-box

method, Software Engineering Conference, 11th Asia-Pacific, pg. 284-291.

Mahesh S., Rajeev K. (2010). A Hybrid Genetic Algorithm Based Test Case

Generation Using Sequence Diagrams, Contemporary Computing - Third

International Conference, IC3 2010, Noida, India, pg 53-63.

Mark Utting, B. L. (2007). practical model-based Testing a tools approach. In 7th

International Conference on Software Engineering (ICSE).

McCabe, T. J. (1976). A complexity measure. Software Engineering, IEEE

Transactions on(4), pg. 308-320.

Mercuri, M., Joseph, J., Hogg, J., Ossipov, D., Mascaro, M., Garber, D., et al.

(2008). Considerations for Designing Distributed Systems. The Architecture

Journal.

Michael, J. B., Bossuyt, B. J., and Snyder, B. B. (2002). Metrics for measuring the

effectiveness of software-testing tools. Paper presented at the Software

 116

Reliability Engineering, 2002. ISSRE 2003. Proceedings. 13th International

Symposium on, 117-128.

Micskei, Z., and Majzik, I. (2006, 25-27 May 2006). Model-based Automatic Test

Generation for Event-Driven Embedded Systems using Model Checkers. Paper

presented at the Dependability of Computer Systems, 2006. DepCos-

RELCOMEX '06. International Conference on, 191-198.

Mingsong, C., Xiaokang, Q., and Xuandong, L. (2006). Automatic test case

generation for UML activity diagrams, Proceedings of the 2006 international

workshop on Automation of software test, pg. 2-8.

Nageswaran, S. (2001). Test effort estimation using use case points. Paper presented

at the Quality Week, 1-6.

NichaKosindrdecha, J. (2005 – 2010.). A Test Generation Method Based On State

Diagram. Journal of Theoretical and Applied Information Technology.

Nirpal, P. B., and Kale, K. (2011). A Brief Overview Of Software Testing Metrics.

International Journal on Computer Science and Engineering (IJCSE), 3(1).

P. Nanda, D. P. M. a. S. K. S. (2008). Generation of Test Scenarios Using Activity

Diagram. Paper presented at the Proceedings of SPIT-IEEE Colloquium and

International Conference.

Pan, J. (1999). Software testing. Book Retrieved January, 5, 2006.

Patel, P., and Patil, N. N. (2012). Test case formation using UML activity diagram.

World Journal of Science and Technology, 2(3).

Paulish, M. K.-H. a. D. J. (1993). Software metrics: A practitioner's guide to

improved product development. Retrieved 8 January, 2013.

Periyasamy, K., and Liu, X. (1999, Aug 1999). A new metrics set for evaluating

testing efforts for object-oriented programs. Paper presented at the Technology

of Object-Oriented Languages and Systems, 1999. TOOLS 30 Proceedings, 84-

93.

Riebisch, M., Philippow, I., and Götze, M. (2003). UML-based statistical test case

generation. Objects, Components, Architectures, Services, and Applications for

a Networked World, pg. 394-411.

Rodrigues Barbosa, J., Eduardo Delamaro, M., Carlos Maldonado, J., and Marcelo

Rizzo Vincenzi, A. (2011). Software Testing in Critical Embedded Systems: a

Systematic Review of Adherence to the DO-178B Standard, 126-130.

 117

Rosenberg, L., Hammer, T. F., and Huffman, L. L. (1998). Requirements, testing,

and metrics, In: 15th Annual Pacific Northwest Software Quality Conference.

Sabharwal, S., Singh, S. K., Sabharwal, D., and Gabrani, A. (2010, 17-19 Sept.

2010). An event-based approach to generate test scenarios. Paper presented at

the Computer and Communication Technology (ICCCT), 2010 International

Conference on, 551-556.

Sabil, S. B. (2010). A Syatematic Component-Based Development Process Model

Using Integrated MARMOT And PECOS Methods. Unpublished Full Research,

Universiti Teknologi Malaysia, Johor Bahru.

Saglietti, F. (2010). Testing for Dependable Embedded Software, Software

Engineering and Advanced Applications (SEAA), 36th EUROMICRO

Conference, pg. 409-416.

Samuel, P., Mall, R., and Kanth, P. (2007). Automatic test case generation from

UML communication diagrams. Information and Software Technology, 49(2),

158-171.

Santiago, V., Vijaykumar, N. L., Guimaraes, D., Amaral, A. S., and Ferreira, E.

(2008, 9-11 April 2008). An Environment for Automated Test Case Generation

from Statechart-based and Finite State Machine-based Behavioral Models.

Paper presented at the Software Testing Verification and Validation Workshop,

2008. ICSTW '08. IEEE International Conference on, 63-72.

Sarma, M., Kundu, D., and Mall, R. (2007). Automatic test case generation from

UML sequence diagram, Advanced Computing and Communications, ADCOM.

International Conference, pg. 60-67.

Sarma, M., and Mall, R. (2007). System testing using UML Models, Asian Test

Symposium, 155-158.

Sawant, V., and Shah, K. (2011a). Construction of Test Cases from UML Models.

Technology Systems and Management, 61-68.

Sawant, V., and Shah, K. (2011b). Construction of Test Cases from UML Models

Shrivastava, D. P., and Jain, R. C. (2011, 3-5 March 2011). Unit test case design

metrics in test driven development. Paper presented at the Communications,

Computing and Control Applications (CCCA), 2011 International Conference

on, 1-6.

Technology Systems and Management. In K. Shah, V. R. Lakshmi Gorty and A.

Phirke (Eds.), (Vol. 145, pp. 61-68): Springer Berlin Heidelberg.

 118

Schieferdecker,I.(2012a).http://www.fokus.fraunhofer.de/en/motion/ueber_motion/te

chnologien/fokusmbt/index.html. Retrieved 15/10/2012, 2012

Schieferdecker, I. (2012b). Model-Based Testing. Software, IEEE, 29(1), 14-18.

Seidewitz, E. (2003). What models mean. Software, IEEE, 20(5), 26-32.

Seon-Jae, J., Hae-Geun, K., and Youn-Ky, C. (2008, 14-16 May 2008). Manual

Specific Testing and Quality Evaluation for Embedded Software. Paper

presented at the Computer and Information Science, 2008. ICIS 08. Seventh

IEEE/ACIS International Conference on, 502-507.

Shanthi, A., and MohanKumar, G. (2012). A Heuristic Approach for Automated Test

Cases Generation from Sequence Diagram using Tabu Search Algorithm.

European Journal of Scientific Research, 85(4), 534-540.

Sommerville. (2000). Software Engineering, 6th Edn. Book by Addison-Wesley,

England.

Sundmark, D., Pettersson, A., Eldh, S., Ekman, M., Thane, H., and Ericsson, A.

(2008). Efficient system-level testing of embedded real-time software, 5.

Swain, S. K., Mohapatra, D. P., and Mall, R. (2010a). Test case generation based on

state and activity models. Journal of Object Technology, 9(5), 2010.

Swain, S. K., Mohapatra, D. P., and Mall, R. (2010b). Test case generation based on

use case and sequence diagram. Int. J. of Software Engineering, IJSE, 3(2).

Swain, S. K., Mohapatra, D. P., and Mall, R. (2010c). Test case generation based on

use case and sequence diagram. International Journal of Software Engineering,

IJSE, 3(2), 21-52.

Tahiliani, S., and Pandit, P. (2012). A Survey of UML-Based approaches to Testing,

International Journal Of Computational Engineering Research

(ijceronline.com) Vol. 2 Issue. 5.

Torsel, A. M. (2011, 18-22 July 2011). Automated Test Case Generation for Web

Applications from a Domain Specific Model. Paper presented at the Computer

Software and Applications Conference Workshops (COMPSACW), 2011 IEEE

35th Annual, 137-142.

Utting, M., Pretschner, A., and Legeard, B. (2006). A taxonomy of model-based

testing, (Working paper series. University of Waikato, Department of Computer

Science. No. 04/2006). Hamilton, New Zealand: University of Waikato.

Utting, M., Pretschner, A., and Legeard, B. (2011). A taxonomy of model‐based

testing approaches. Software Testing, Verification and Reliability.

 119

Wang, R., and Huang, N. (2008). Requirement Model-Based Mutation Testing for

Web Service, Next Generation Web Services Practices (NWESP). 4th

International Conference71-76.

Wang, Y. (2012). The Study of Test Case Generation from UML Models. University

of Wisconsin.

Wei-Tek, T., Lian, Y., Feng, Z., and Paul, R. (2005). Rapid embedded system testing

using verification patterns. Software, IEEE, 22(4), 68-75.

Wiederseiner, C., Jolly, S., Garousi, V., and Eskandar, M. (2010). An open-source

tool for automated generation of black-box xunit test code and its industrial

evaluation. Testing–Practice and Research Techniques, 118-128.

Wiessalla, J. (2010). Towards Fault-based Generation of Test Cases for Dependable

Embedded Software, Austrian Institue of Technology, Austria.

Yacoub, S. M., Ammar, H. H., and Robinson, T. (1999). Dynamic metrics for object

oriented designs. Paper presented at the Software Metrics Symposium, 1999.

Proceedings. Sixth International, 50-61.

Yongfeng, Y., and Bin, L. (2009, 19-20 Dec. 2009). A Method of Test Case

Automatic Generation for Embedded Software. Paper presented at the

Information Engineering and Computer Science, 2009. ICIECS 2009.

International Conference on, 1-5.

Yongfeng, Y., Zhen, L., and Bin, L. (2010, 14-15 Aug. 2010). Real-time Embedded

Software Test Case Generation Based on Time-extended EFSM: A Case Study.

Paper presented at the Information Engineering (ICIE), 2010 WASE

International Conference on, 272-275.

Zander-Nowicka, J., Pérez, A. M., Schieferdecker, I., and Dai, Z. R. (2007). Test

Design Patterns for Embedded Systems, Reseacrh and Practices.

	NansukusaYudayaMFSKSM2013ABS
	NansukusaYudayaMFSKSM2013TOC
	NansukusaYudayaMFSKSM2013CHAP1
	NansukusaYudayaMFSKSM2013REF

