Visualizing Collaborative Time-Varying Scientific
Datasets

J. M. Sharif, M. S. S. Omalr, M. S. A. Latiff* and M. A. Ngadi
tBioinformatics Research Lab, Faculty of Science, Unitgr$echnology of Malaysia, Johor, Malaysia
*Department of Computer System & Communication, Univer$igghnology of Malaysia, UTM Skudai, 81310, Malaysia
Email: johan@fsksm.utm.my, shahir@bio.fs.utm.my, st@fieksm.utm.my, asri@fsksm.utm.my
Telephone: (+607) 5532384 Fax: (+607) 5565044

Abstract—Our perceptive of the scientific datasets has It is therefore highly desirable to use visualization to sum
largely relied on numerical and statistical analysis of data marize meaningful information in higher dimensional spati
from experimental dimension and computer simulation result temporal data sets. With a carefully prepared visualizatio

[41[14][211][22][13]. In particular, we consider a simulated 3D . .
time-varying model of scientific datasets and examine the tem- which convey both spatial and temporal features, the human

poral correlation among datasets. Our goal is to contrive effeive ~ ViSIon systems, perhaps the most intelligent vision system
visual representations to assist scientists in ascertaining tempalr  may be able to interpret spatio-temporal features in the vi-
correlation among intricate and apparently chaotic scientific gyalization.
dataset§. We propose a hybrid application with cc_)mbination of For example, in physics the existence of spatio-temporal
streamline, global and local color scale and opacity scheme for . L . . .
spatio-temporal collaborative depiction. We illustrated also few coIIabora_tlve in ion trajectories in glasses _WaS sugges.ted
images that can offer an effective tool for visually mining 3D DYy experimental results. However, any detailed obsematio
time-varying scientific datasets. of such collaboration character is not possible at moment.
Meanwhile, our understanding of the structure of the glass
and the ion trajectories has been enhanced with computer
simulation followed by statistical analysis. However due t
the size and complexity of the time-varying data generated,
the details of the structure-transport relationships i diata
|. INTRODUCTION were usually overlooked in favour of ensemble average in sta

A spatio-temporal data set is a collection of data where ddtistical analysis. Many scientific puzzles associatinghvifie
values vary in both space and time. Abstractly, such a data sellaborative phenomena in ion trajectories remain uresblvy
can be considered as a (continuous and discrete) specificaiind challenge the visualization technology to help uncover
of a function, F: E¢ x T — R”, where E¢ denotes d- the spatio-temporal relationship between glass strucimek
dimensional Euclidean spac& = R* N {oo} the domain ion trajectories.
of time, andR™ an n-dimensional scalar field. Examples of During analysis, some of the data sets could be very big
such data sets include time-varying simulation resultsysfil such as Beazleay and Lomdahl [1] were presented the method
and videos, time-varying medical scans, geometrical nsod#hat can be used for very large scale molecular dynamic
with motion or deformation, meteorological measurements asimulation. Meanwhile, Zhu et al. [16] were presented a grid
many more. technology and parallel rendering approach for visuaijzin

For lower dimensional spatio-temporal data sets, it is cormassive molecular datasets. Bulatov and Grimes [3] used a
mon to visualise to such data sets using line graphs, hadeo visualization technique called MPEG-based method to
charts or other pictorial representations of a similar ratBor generating a video clips that depict the animated movement
more complex spatio-temporal data sets, such as time waryif atoms. However, viewing animation or movie in general is
geometrical models, it is common to render a visualizatiamtime-consuming and resources-consuming process.
of spatial data at each time step, and display a series offo extract meaningful datasets, Imada et al. [8] introduced
visualization in a temporal order as animation. Howeveautomated histogram filtering (AHF) for time complexity
viewing animation or movies in general, is a time-consumirgnalysis on protein structure elucidation. This technioneest
and resource-consuming process. closely to the statistical clustering technique [5] [9] J1Bat

In visual data mining, viewing movie in order to extract had been used for analysis of molecular dynamic trajectorie
meaningful information also relies on viewer's ability towhile, Best and Hege [2] developed a method called planar
remember characteristics of specific visual features in theap. Basically, they constructed a 2D map of the trajectory
movies as well as their skills interpreting various changes that can reveal conformational ensembles and applied geclus
these features correctly, often within a very a small windoanalysis procedure that allows for the automatic identifica
of time. Hence, the effectiveness of viewing usually dexdin of the cluster. They used a line to connect all the points in 2D
rapidly when viewing period extends. dimensional map and they combine some of the point to form
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ellipsoid. This method will modify some of the interestingA. Orientation
point in our works which is the main objective to visualise @ Gjyen an ion trajectory as a series of + 1 points

timeline events of ion trajectories. Do, p1,...,pn, We have n consecutive vector segments,

Instead of clustering or grouping the trajectories, Hudem,, 4, ... v,, wherev; = (p; — pi_1). One can visualise
and van Liere [7] filter out uninteresting atom motion frone thsuch a trajectory using streamlines or vector g|yphs
|al’ger concerted motions. Same with Wlley et al. [15], they In Figure 1, even though each conical g|yph’ which rep-
used a similar approach with fourier and hilbert method feesents a vector segment, depict the instantaneous yehicit
filtering a frequency of sample trajectory. Horiuchi and ®p [ 3 given time interval with its length and the direction of the
also used a similar approach on molecular dynamic trajestormotion with its pointer but its does not much help to visualis
to extract the lowest frequency mode from the simulatiog time series events and collaborative issues in ion dynamic
data. The method shown by Huitema, Horiuchi and Wiley wilkithout the combination of color scale. In the next section,
remove some of the interesting trajectory which is critittl e will shows the color scale can give more understandable
our main purpose to visualise a timeline of trajectories.  apout time series events in ion dynamics.

The objective of this work is to develop effective visual
representation and visualization techniques to help 8sten
extract meaningful spatial and temporal information from
spatio-temporal datasets. In this paper, we propose acdybri
scheme that uses streamline for orientation, color scate an
color number coding scheme for depicting a timeline events
and zooming effect with transparency scheme for probgbilit
of collaboration. With a collection of visual examples, we
demonstrate that this scheme can offer an effective tool for
visually mining 3D time-varying datasets. We show that the
visualization not only confirm the presence of collabomativ
phenomena in ion dynamics but also help identify the dynamic
patterns and trigger events of such movements. This enables
scientists involved to develop more elegant and compréyeens
hypotheses about scientific datasets.

The ability to convey temporal as well as spatial informatio
is critical in our particular application, where the scien- Fig. 1. A trajectory of sodium #169
tists need a visual representations that can effectivaij-hi
light the correlation between different ions in their moso B. Temporal Information
among seemingly chaotic trajectories especially in colfab
tive events. This particu|ar Cha”enging requirement pj'ed When using visualization to summarise a series of events
this work with the principal motivation. along a timeline, perhaps the most difficult task is to aggeci

In the rest of this paper, we will describe the applicatioft Particular event with a precise moment on the timeline.
concern and scientific background in Section 2. In this eacti TNiS is useful not only determine the time of an event
we will first examine the methods that can convey orientatidiiit @lso for the identification corresponding parties iwedl
information to viewers. We will devote most of our focus tethin collaborative, but collaborative events is not included
visualization of temporal information in order to confirmdan Moment. _
identify the time series activities in the data sets. In ®ac8, 1) Global Color Scale: In order to shows the global time-
we will present some results of visual data mining process 8f€ of events on streamline, we introdud8tbbal Key Colors
glassy ion trajectories if there is a collaboration evewtsich Scale. In this scheme, we use a small set of colgr,cs, ..., ¢

will be followed by our concluding remarks in Section 4. (k> 1), then we assigned a colors to specific vector in the
vector series
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II. VISUALIZING ION DYNAMICS

In this section, we will first examine the more challengingvhere indices such as and v are pre-determined. For each
task for visualizing temporal information in order to idént vector that has not assigned a color we obtain a color by
the series of events and collaborative events. We will discuinterpolating the two nearest neighbours with the specified
the use of glyph, color and opacity in our visual representkey colors in each direction. This scheme allow a viewer to
tions and present the methods for constructing and rerglerofetermine a time frame at a global scale with the help of
composite visualization that convey a rich a collection ddey colors. In Figure 2, we chosen seven key color which
indistinguishable visual features for assisting in a Visleta from rainbow color to visualise global scale of time series.
mining process. At local level the interpolation can make different vector



segment indistinguishable. Moreover, it is possible toehtine
same or similar interpolated colors between different séts
consecutive key colors.

*
Fig. 2. Seven Key Colors for trajectory of sodium #169 % ,
-
2) Local Color Scale: In order to correlate each vector »
segment with the timeline more accurately and hence to &

improve the differentiation of different vector segmenitss £
introduce a Color Number Coding Scheme in our visualization
Given a small set of key colorgy, co, ..., (k > 1) and
distinctive interval-color (e.g., while, black or grey dapling
on the background color), we code a group of consecutive
m vectors as &-nary number, terminated by a vector in the
interval-color. Givenn as the total number of vectors and we
always assign the interval-color to the first vector, we niged
find the smallest integemn that satisfies Equation 1;

Fig. 4. Combination of visualization collaborative ion dymas

((m+1DE™) = n 1)

For instance, whem = 1000, using two key colors, saydynamic. Figure 4 shows the example of collaborative events
red and green, we need in = 7 color digits. We haven = in ion dynamics.
5fork =3, m=4fork =4, andm = 2 whenk reaches The main objectives of this task is to discover if collab-
19. The selection ofn and k& needs to address the balanceration is exhibited between ions in the simulation results
between a smaller number of colors or a smaller number &§ described previously, there is not well-defined desicnipt
color digits in each group of vectors. The former ensuresemagibout collaboration events, although experiments sugdest
distinguishable colors in visualization, and the alterueas the the existence of collaboration phenomena. We, includirgg th
deductive effort for determine the temporal position ofteaghysicists involved, did not know in what form a collabovati
vector. Figure 3 shows a quaternary color coding scheme farent may display, in what way ions may cooperate with each
ion tracks with 1000 vectors. others or what event may cause ions entering in or disengagin
from collaboration. Therefore we have introduced a vagabl
[1l. COLLABORATIVE ION DYNAMICS 1, representing the probability of collaboration. Given & se

When collaborative events is takes place between iofi§” hypothesized criteria of collaboration, we have :
in the simulation results then the possible method that we _
could used is opacity scheme. But the details of this scheme, V=it twa bt ot @
implementation and result will become the future works @ thwherew; is the weight of criterionr, andwy; +s+...+v,, = 1.
study. Even in this paper we are not focusing on collabagatiin this work, we have considered three such criteria, namely
events but we extended a brief regarding transfer functiah t (1) the ability for two or more ions to maintain similar
could be possible in our application. orientation, (2) the ability for two or more ions to maintain
By combining all the above methods, we provide an e&imilar velocity, and (3) the ability for two or more ions
fective visual representation for visualizing collabaration maintain constant gap between them.



Given two corresponding vector segments,; and vy ;,
belonging to two different ion trajectories, we have:

1 (va;evp; b1
hr=(s 757 3
2\ |va,illvp,il

where D; > 0 is de-highlighting factor. The larger th®,

the events, for example, = 0 can be easily found between
two consecutive color. For more details, local color scaile w
help to determine which corresponding ions in collaboratio
These will give such an idea to our future works to enhance
the capability in helping the scientists to determine thereso
sponding parties involved in collaboration issues.

is, the less probable a vector is considered being involaed i
collaboration. Withy, v, ; andwv,; are considered to be in
collaboration, if they follow a similar direction.

Once we have computed € [0,1], we can highlight or

IV. CONCLUSION

We have developed an effective visual representation,twhic

dehighlight the corresponding vector segments. Two differ have combined from several schemes including streamlines
methods of highlighting the probability of collaborationea for orientation, color scale for time series events and ipac
shown in Figure 5. We chosen a small Samp|e because its@eme for collaborative events. Again, all these scheraes c
easy for clarification purpose. In (a)’ we app|y an Opacity @e beneficial also in another field of StUdy like bIOphySIGS, b
tube around the glyphs with a high value, which in effect ological, bioinformatics or any collaboration events esaiy
defines the opacity of the tube. In (b), we use the value t¥time-varying events. In the future works, we plan to exten

¢ to modify an opacity of the corresponding tube and vectde works in conveying temporal information in a high degree
segment . When, if there is a high probability of collabonatio Of certainty before we go further on visualizing collaborat

the tube and vector glyphs are fully opaque and if there is€yents in ion dynamics.

low probability, they are almost totally transparent. Teeand
method seems to convey information with more certainty to

human observer. 1]
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\ U

s % o k ;

\"’ i . Cseee AT 8
e - o "
/o

Fod

¥
4 [l

(b) direction, method 2
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Fig. 5. The possible collaboration between Na #211 and N& #d@en
was computed with); (only #106 is shown)

[11]
In Figure 5, (a) and (b) show the probability computefi2]
using vy, between each of the ion trajectories Na #106 with
Na #211. From this visual examples, the scientists would be
able to trigger the collaborative events effectively. With [13]
highlighting and de-highlighting based op, it would be
difficult to observer this phenomena directly. [14]
By combining some above-mentioned methods together,
we provide an effective visual representation for visuatiz [15]
spatio-temporal collaboration. With the help of globalarol
scale, the scientists can determine the global time frame of
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