EFFECT OF TRANSVERSE RUMBLE STRIPS ON TRAFFIC FLOW FUNDAMENTAL DIAGRAM

ALI TORKZADEH

A project report submitted in partial fulfillment of the requirments for the award of the degree of Master of Engineering (Civil – Transportation and Highway)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > January 2013

To my beloved mother and father and my wife

ACKNOWLEDGMENT

First and foremost I offer my sincerest gratitude to my supervisor, *Assoc. Prof. Dr. Johnnie Ben-Edigbe*, who has supported me throughout my Master Project with his patience and knowledge whilst allowing me the room to work in my own way.

I wish to express my warm and sincere thanks to *Assoc. Prof. Dr. Ishtiaque Ahmed* for his valuable advice and friendly help.

A Special thanks to my friends *Mehrdad* and *Nima* for guiding me throughout all my master project and also *Lee* for data collection.

Very special acknowledge to my wife *Mina* without her support, I would never have succeeded. Although she often had to endure my absence with seldom complained.

Finally, the most special thanks goes to my parents for supporting me throughout all my studies, without whom I would never have been able to achieve so much. I cordially thanks to my brother and sister, *Ammar* and *Jeiran*, for their supports and encouragements.

ABSTRACT

The purpose of this research project is to determine the effect of Transverse Rumble Strips (TRS) on the traffic flow fundamental diagram. To achieve this goal, firstly segment KM14.3-14.6, Northbound PLUS Expressway E2, which connect Johor Bahru to Kuala Lumpur had been chosen as a study area, because in this place TRS was deployed on pavement. To find traffic flow fundamental diagrams before and at TRS required data which were traffic volume, speed and density had been collected before TRS with SSD distance to avoid from the effect of TRS on traffic flow characteristics and at TRS. Required data before TRS were collected by ATC method (pneumatic tubes) and data on TRS had been collected by video camera. After installing ATC, data collected for two weeks and peak period was determined. Heaviest traffic was on Friday and Saturday during 2:00pm to 5:00pm for this reason at Friday 31 August 2012 and Saturday 1 September 2012 during 3:00pm to 4:00pm required data had been collected by a video camera on TRS. In the last step fundamental diagram for both cases before and at TRS were founded and compared with each other. This study shows that TRS in speed-density and speed-flow diagrams reduces free flow speed between 4 to 5 km/hr which is significant. But about jam density and maximum flow there was not any accurate result achieved in flow-dansity and other diagrams.

ABSTRAK

Tujuan projek penyelidikan ini adalah untuk menentukan kesan Transverse Rumble Strips (TRS) pada gambarajah asas aliran trafik. Untuk mencapai matlamat ini, pertamanya segmen KM14.3 14,6, Arah Utara PLUS Expressway E2, yang menghubungkan Johor Bahru ke Kuala Lumpur telah dipilih sebagai kawasan kajian, kerana di tempat ini TRS telah dikerahkan di kaki lima. Untuk mencari gambar rajah aliran trafik ada mahupun tiada TRS data yang diperlukan adalah jumlah trafik, kelajuan dan ketumpatan telah dikumpulkan sebelum TRS dengan jarak SSD untuk mengelakkan dari kesan TRS pada ciri-ciri aliran trafik dan di TRS. Data yang diperlukan sebelum TRS telah dikumpul oleh kaedah ATC (tiub pneumatik) dan data pada TRS telah dikumpul oleh kamera video. Selepas memasang ATC, data yang dikumpul selama dua minggu dan tempoh puncak telah ditentukan. Trafik paling sesak adalah pada hari Jumaat dan Sabtu sepanjang pm 2:00 petang hingga 5:00 petang atas sebab ini pada Jumaat, 31 Ogos 2012 dan Sabtu 1 September 2012 pada 3:00 petang hingga 4:00 petang data yang diperlukan telah dikumpul oleh kamera video pada TRS. Dalam langkah terakhir gambarajah asas bagi kedua-dua kes sebelum dan pada TRS telah diasaskan dan dibandingkan antara satu sama lain.Kajian ini menunjukkan bahawa TRS dalam kelajuan kepadatan dan gambar rajah aliran kelajuan mengurangkan kelajuan aliran bebas antara 4 hingga 5 km / jam yang significanet. Tetapi tentang kepadatan jem dan aliran maksimum tidak ada apaapa keputusan yang tepat yang dicapai dalam aliran dansity dan rajah lain.

TABLE OF CONTENTS

CHAPTE	R TITLE	PAGE
	DECLARATION	п
	DEDICATION	III
	ACKNOWLEDGMENTS	IV
	ABSTRACT	V
	ABSTRAK	VI
	TABLE OF CONTENTS	VII
	LIST OF TABLES	XI
	LIST OF FIGURES	XII
	LIST OF SYMBOLS	XIV
1	INTRODUCTION	1
	1.1. BACKGROUND OF THE STUDY	1
	1.2. PROBLEM STATEMENT	2
	1.3. OBJECTIVES OF THE STUDY	3
	1.4. SIGNIFICANCE OF THE STUDY	3
	1.5. SCOPE OF THE STUDY	4
2	LITRATURE REVIEW	6
	2.1. INTRODUCTION	6
	2.2. TRAFFIC FLOW CHARACTERISTICS	11
	2.2.1. Traffic Flow	11
	2.2.1.1. Types of Traffic Flow	14
	2.2.1.2. Traffic Flow Parameters	14

VIII

2.2.2. Types of speed	18
2.2.2.1. Spot Speed	19
2.2.2.2. Running Speed	19
2.2.2.3. Journey Speed	20
2.2.2.4. Time Mean Speed and Space Mean Speed	20
2.2.3. Density	21
2.2.4. Speed-Flow-Density Relationship	23
2.2.5. Fundamental Diagram of Flow	24
2.3. TRAFFIC VOLUME COUNTING	30
2.3.1. Manual Count Method	31
2.3.2. Automatic Count Method	32
2.3.2.1. Portable Counters	32
2.3.2.2. Permanent Counters	33
2.3.2.3. Videotape	33
2.3.2.4. Road Tubes	34
2.4. STOPPING SIGHT DISTANCE	36
2.5. REGRESSION	37
METHODOLOGY	39
3.1. INTRODUCTION	39
3.2. REQUIRED DATA	41
3.3. PROJECT INSTRUMENT	41
3.4. PROJECT PROCEDURE	42
3.4.1. Stopping Sight Distance	43
3.4.2. Stationary Survey	44
3.4.2.1. Before TRS	44
3.4.2.2. At TRS	44

	3.4.3. Finding Fundamental Diagrams	46
	3.4.3.1. Flow-Density Diagram	47
	3.4.3.2. Speed-Density Diagram	49
	3.4.3.3. Speed-Flow Diagram	50
4	FINDING AND DISCUSSION	51
	4.1. DESCRIPTION OF DATA	51
	4.2. STOPPING SIGHT DISTANCE	51
	4.3. TRAFFIC PROPORTION	52
	4.3.1. Data Collected by ATC	52
	4.3.2. Data Collected by Video Camera	53
	4.3.3. Terms and Conditions	53
	4.4. TRAFFIC MACROSCOPIC FACTOR	54
	4.4.1. Roadway Characteristics Dispersion Plots	54
	4.5. DATA ANALYSIS	56
	4.5.1. Fundamental Diagrams – Case One - Before TRS	56
	4.5.1.1. Flow-Density Fundamental Diagram Before TRS	
	(Case One)	57
	4.5.1.2. Speed-Density Fundamental Diagram Before TRS	
	(Case One)	59
	4.5.1.3. Speed-Flow Fundamental Diagram Before TRS	
	(Case One)	63
	4.5.2. Fundamental Diagrams – Case One - at TRS	63
	4.5.2.1. Flow-Density Fundamental Diagram at TRS (Case One)	64
	4.5.2.2. Speed-Density Fundamental Diagram at TRS (Case One)	66
	4.5.2.3. Speed-Flow Fundamental Diagram at TRS (Case One)	70

	4.5.3. Summarize of Case One	71
	4.5.3.1 Flow-Density Diagrams (Case one)	71
	4.5.3.2. Speed-Density Diagrams (Case one)	72
	4.5.3.3. Speed-Flow Diagrams (Case one)	73
	4.5.4. Fundamental Diagrams – Case Two –	
	Before TRS	73
	4.5.4.1. Flow-Density Fundamental Diagram	
	Before TRS (Case Two)	74
	4.5.4.2. Speed-Density Fundamental Diagram	
	Before TRS (Case two)	76
	4.5.4.3. Speed-Flow Fundamental Diagram	
	Before TRS (Case Two)	80
	4.5.5. Fundamental Diagrams – Case Two - at TRS	80
	4.5.5.1. Flow-Density Fundamental Diagram at TRS (Case Two)	81
	4.5.5.2. Speed-Density Fundamental Diagram at TRS (Case Two)	83
	4.5.5.3. Speed-Flow Fundamental Diagram at TRS (CaseTwo)	87
	4.5.6. Summarize of Case Two	88
	4.5.6.1 Flow-Density Diagrams (Case Two)	88
	4.5.6.2. Speed-Density Diagrams (Case Two)	89
	4.5.6.3. Speed-Flow Diagrams (Case Two)	89
5	CONCLUSION AND RECOMMENDATION	91
	5.1. CONCLUSION	91
	5.2. RECOMMENDATION	92

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Conversion Factors to PCU	17
2.2	ARX Classification Scheme	18
3.1	Passenger Car Unit (JKR)	45
4.1	Vehicle Classification (ATC)	52
4.2	Vehicle Classification (video Camera)	53
4.3	Flow, Speed and Density Before TRS (Case One)	57
4.4	Summary Output and Parameter of Flow-Density Regression	
	for Case One Before TRS	60
4.5	Flow, Speed and Density at TRS (Case One)	64
4.6	Summary Output and Parameter of Flow-Density Regression	
	for Case One Before TRS	67
4.7	Flow, Speed and Density Before TRS (Case Two)	74
4.8	Summary Output and Parameter of Flow-Density Regression	
	for Case Two Before TRS	77
4.9	Flow, Speed and Density at TRS (Case Two)	81
4.10	Summary Output and Parameter of Flow-Density Regression	
	for Case Two at TRS	84

LIST OF FIGURES

FIGURE N	O. TITLE	PAGE	
1-1	Satellite Map	4	
1-2	Site Map	5	
1-3	Road sketch	5	
2-1	Raised Rumble Strips	7	
2-2	Grooved Cut Rumble Strips	7	
2-3	Centerline Rumble Strips (CRSs)	8	
2-4	Edge line Rumble Strips (ERSs)	8	
2-5	Laneline rumble strips (LRSs)	9	
2-6	Transverse Rumble Strips (TRSs)	9	
2-7	Fundamental Diagrams	13	
2.8	Speed-Density Diagram	25	
2.9	Flow- Density Diagram	27	
2.10	Speed-Flow Diagram	28	
2.11	Road Tube	34	
3.1	Typical Site Lyout	40	
3.2	Some of Project Instruments	41	
3.3	Procedure Flowchart	42	
3.4	ATR Tubes	44	
3.5	Finding Passing Time by Adobe Premiere Software	46	
3.6	Flow- Density Diagram	48	
3.7	Speed-Density Diagram	49	
3.8	Speed-Flow Diagram	50	

Speed vs. Density Before TRS

4.1

4.2	Flow vs. Density Before TRS	55
4.3	Speed vs. Flow Before TRS	55
4.4	Flow-Density Diagram Before TRS (Case One)	58
4.5	Flow-Density Diagram Before TRS (Case One): Intersect= 0	59
4.6	Speed-Density Diagram for Case One- Before TRS	62
4.7	Speed- Flow Fundamental Diagram- Case One – Before TRS	63
4.8	Flow-Density Diagram at TRS (Case One)	65
4.9	Flow-Density Diagram at TRS (Case One): Intersect= 0	66
4.10	Speed-Density Diagram for Case One- at TRS	69
4.11	Speed- Flow Fundamental Diagram- Case One – at TRS	70
4.12	Flow-density Fundamental Diagram - Case One	71
4.13	Speed-Density Fundamental Diagrams - Case One	72
4.14	Speed- Flow Fundamental Diagrams - Case One	73
4.15	Flow-Density Diagram Before TRS (Case Two)	75
4.16	Flow-Density Diagram Before TRS (Case Two): Intersect= 0	76
4.17	Speed-Density Diagram for Case Two- Before TRS	79
4.18	Speed- Flow Fundamental Diagram- Case Two – Before TRS	80
4.19	Flow-Density Diagram at TRS (Case Two)	82
4.20	Flow-Density Diagram at TRS (Case Two): Intersect= 0	83
4.21	Speed-Density Diagram for Case Two- at TRS	85
4.22	Speed- Flow Fundamental Diagram- Case Two – at TRS	87
4.23	Flow-Density Fundamental Diagrams - Case Two	88

Speed- Density Fundamental Diagrams - Case Two

Speed- Flow Fundamental Diagrams - Case Two

4.24

4.25

89

LIST OF SYMBOLS

AADT	Annual Average Daily Traffic
ADT	Average Daily Traffic
ATC	Automatic Traffic Count
ATR	Automatic Traffic Recorder
В	Bus
coeff	Coefficient
dı	Total Reaction Distance
d2	Breaking Distance
df	Degree of freedom
f	Coefficient of Longitudinal Friction
FFS	Free Flow Speed
g	Gradient
h	Headway
hr	Hour
JKR	Jabatan Kerja Raya
k	Density
K _{cr}	Critical Density (pcu/km)
kj	Jam Density
km	Kilometer
ko	Optimum Density
1	Distance
L	Loory
М	Motorcycle
PC	Passenger Car
PCE	Passenger Car Equivalent
PCU	Passenger Car Unit

q	Flow, Volume
q_c	Maximum Flow
q _{max}	Maximum Flow
q_s	Subordinated Flow
Se	Standard error values for the coefficient
SSD	Stopping Sight Distance
SSerror	Sum of Squared Error
SSreg	Regression sum of square
SS _{total}	Total Sum of Squares
t	Time, reaction time
u	Speed
Uf	Free Flow Speed
us	Subordinated Speed
uo	Optimum Speed
V	Van
veh	Vehicle

CHAPTER 1

INTRODUCTION

1.1. BACKGROUND OF THE STUDY

Previous studies show that TRS have a small effect on a vehicle's speed. The range of speed reduction varied from 1.6 km/h to 12.9 km/h. According to most previous study reduction in vehicle speed was statistically significant. However, it is not clear if such speed reduction impacts are practically meaningful (Kermit and Hein, 1962; Owens, 1967; Harwood, 1993; Carlson and Miles, 2003; Thompson et al., 2005).

Relatively few studies have evaluated the effectiveness of TRS in reducing crashes. Also the results of previous study are not fully compatible. The result shows that using TRS reduced crashes by 14–100% (Harwood, 1993). Traffic control devices that applied to the pavement usually provide important information for drivers and road users. With developing traffic control devices, various pavement marking materials and devices have been developed; these devices normally increase driver awareness and as a result safety on the road.

Rumble strips are raised or grooved marking or devices, that when the tires of vehicles passing from them, they produce vibration and audible noise for drivers. Rumble strips usually are used in different situation and location through the roadway, to announcing drivers to various changes in the environment of the roadway ahead. Common categories of rumble strips are Centerline rumble strips (CRSs), Edge line rumble strips (ERSs) or shoulder rumble strips (SRSs), Laneline rumble strips (LRSs) and Transverse rumble strips (TRSs) (Melisa, 2005).

1.2. PROBLEM STATEMENT

Accident can occur by vehicles leaving the travel lane and then hitting roadside objects or overturned. Speed is a very significant element in single vehicle accidents; greater speed has more potential to the fatal accident. Transverse rumble strips are not traffic calming devices and should not be used as a traffic calming device. Speed control measures such as speed bumps and speed humps should be used for traffic calming (Liu, 2011).

How rumble strips decrease number of accidents. Do they caution drivers by increasing their awareness? Or force drivers to reduce their speed when they approach to that particular area, such as a crosswalk, a school zone, a curve or an intersection (Cheng, 1994). TRS individually should not have an effect either on speed or flow of vehicle on the road section. In this study, purpose is to determine the effect of transverse rumble strips on traffic flow fundamental diagrams.

1.3. OBJECTIVES OF THE STUDY

The objectives are:

• To determine the volume, density and speed of vehicles on road section before TRS.

- To determine the volume, density and speed of vehicles on TRS.
- To determine the maximum traffic flow, jam density and free flow speed in both situations.

• To compare traffic flow fundamental diagrams and identify the effect of TRS on traffic flow fundamental diagram.

1.4. SIGNIFICANCE OF THE STUDY

TRS shall not be used as a traffic calming measure. The long-term success of TRS as a traffic control enhancement lies in their very select and limited application. Transverse rumble strips should not be used as the standard treatment for alerting motorists to conditions ahead. Overuse of TRS will degrade their impact on road users thereby reducing their effectiveness as a safety tool. In addition, many factors except than speed limit may also affect the effectiveness of transverse rumble strips in engineering applications. One of the major factors is the design of transverse rumble strips, which includes the location, size and the number of transverse rumble strips deployed. These issues have not been considered in this study. Also installation of new transverse rumble strips is out of the scope of this study.

1.5. SCOPE OF THE STUDY

The current study determines the effect of transverse rumble strips on traffic flow fundamental diagram in segment KM14.3-14.6, Northbound PLUS Expressway E2, which connected Johor Bahru to Kuala Lumpur. In this study by collecting needed data which were the volume, average speed, and density on this particular expressway, traffic flow fundamental diagrams were found. The first part of data were collected 270 meters before TRS and the second part of data were collected in middle of TRS. Figure 1-1 shows the satellite map of road segment.

Figure 1-1 Satellite Map

There are 33 transverse rumble strips were deployed in this place. The space between each pair of them was around 3.1 meters. The average mean speed of the vehicles was measured between band 15 and 17. Figure 1-2 shows site map.

Figure 1-2 Site Map

Data was collected at two points, the first point was 270 meters before TRS to avoid of the effects of sight distance. The data at this point were collected by ATC which was an automatic traffic counter device. The second point was in middle of TRS, data at this point were collected by video camera. Figure 1-3 shows the location of ATC and video camera on the site.

Figure 1-3 Road sketch

REFERENCES

ADOT Traffic Engineering Policies, Guideline and procedures (2011). Section 400-Pavement Marking..

Arahan Teknik (Jalan) 8/86 (1989). A Guide on Geometric Design of Roads. Jabatan Keraja Raya Malaysia, Chapter 3..

Broucke, M., Varaiya, P. Theory of Traffic Flow In Automated Highway. Pergamon.

Carlson, P.J., Miles, J.D. (2003). Effectiveness of Rumble Strips on Texas Highways: First Year Report. FHWA/TX-05/0-4472-1. Texas.

Cheng, E., Gonzalez, E. and Christensen, M. (1994). Application and Evaluation of Rumble Strips on. Highways.Transportation Engineers 64th Annual Meeting. 16-19 October, Dallas, Texas.

Dowling, R. and Skabardonis, A. (2006). Urban Arterial Speed-Flow Equations For Travel Demand Models.

DTP, Transvers Rumble Strips (2009). Technical Circular T-01/09

Fred L.Hall. Traffic Stream Characteristics. Department of Civil Engineering and Department of Geography, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7.

Harwood, W. (1993). Use of Rumble Strips to Enhance Safety. Synthesis of Highway Practice 191. Transportation Research Board, National Research Council, Washington, D.C, 1-74.

Immers, L. H.and Logghe, S.(2002). Traffic Flow Theory. Course H 111 Verkeerskunde Basis

Kermit, M. and Hein, T. (1962). Effect of Rumble Strips on Traffic Control and driver Behavior. Proceedings. vol. 41, Highway Research Board, National Research Council, pp. 489–495.

Liu, P., Huang, J., Wang, W. and Xu, C. (2011). Effects of Transverse Rumble Strips on Safety of Pedestrian Crosswalks on Rural Low-Volume Roads in China. Transportation Research Board 90th Annual Meeting. 23-27 January, Washington DC, 17.

Melisa D. Finley, P.E., Jeffrey D. Miles, and Paul J. Carlson, Ph.D. (2005). Evaluation of New RRPM and Marking Applications. 0-4728-S. Texas.

Mathew, T. V. and Rao, K. V. (2006). Introduction to Transportation Engineering. Chapter 31. Fundamental Relation OF Traffic Flow.

Owens, R.D. (1967). Effect of Rumble Strips at Rural Stop Locations on Traffic Operation. Highway Research Record 170. Highway Research Board, National Research Council, pp. 35–55.

Thompson, T.D., Burris, M.W. and Carlson, P.J. (2005). Speed Changes due to Transverse Rumble Strips on Approaches to High-speed Stop-controlled Intersections. TRB, Washington, D.C.

Traffic data collection. In Traffic Engineering (p. Chapter 6).

Use of Temporary Transvers Rumble Strips in Work zone (August, 2005). Maryland State Highway Administration Office of Traffic and Safety.