EFFECT OF FINE AGGREGATE ANGULARITY ON RUTTING RESISTANCE OF ASPHALT CONCRETE AC10

IZZUL BIN RAMLI

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil-Transportation and Highway)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JANUARY 2013

Specially dedicated to my beloved parents, Hj Ramli Ismail & Hjh Nor Azian Ahmad and my family members, Izzat & Suliza

Thanks for your prays and supports....

ACKNOWLEDGEMENT

In the Name of Allah, the Most Gracious Most Merciful. First, I am grateful to Allah for giving me strength to complete my Master's dissertation.

I want to give my sincere appreciation to my supervisor and co-supervisor, Dr Haryati Yaacob and Dr Norhidayah Abdul Hassan for their guidance and help. For all technicians in Highway and Transportation laboratory (FKA, UTM), thanks a lot for their assistance and cooperation.

Also, I would like to thank all my family members for their support and encouragement. My sincere appreciation also extends to all my colleagues especially Mr Azman, Mr Zul Hanif, Mr Zaini, Mr Daud who have provided assistance at various occasions and others which I have an endless name list to write it here. May ALLAH rewards all of them for their kindness.

Finally, I hope that my findings will contribute to the knowledge in this field.

ABSTRACT

Fine Aggregate Angularity (FAA) has been identified as one of the important aggregate properties contributing to the stability of Hot Mix Asphalt (HMA)and its resistance against permanent deformation such as rutting. The performance of dense graded asphalt mixture is significantly influenced by the shape, angularity and surface texture of fine aggregates. This study determines the FAAfor different types of aggregates namely granite and natural sand andevaluates the rutting resistance of AC 10 mixture added with the aforementioned aggregates. Besides the FAA test, other tests that were carried out include Marshall test and wheel tracking test for measuring the rutting resistance. Marshall Procedures were undertaken to obtain the stiffness, stability, density, flow, VTM and VFB. It was found that Marshall properties for mixture added with crushed aggregate are higher than mixture with natural sand in terms of Stability, Stiffness, and Flow. The result shows that mixture with crushed granite has higher percentage of FAA (46%)compared to the one with natural sand (37%). From wheel tracking test, it was observed that the rut depth for specimen with crushed granite is higher compared to specimen with natural sand. Therefore it can be concluded that fine aggregates with more angular shape, increase the rutting resistance.

ABSTRAK

Kesegian Agregat Halus (FAA) dikenal pasti sebagai salah satu daripada sifat penting agregat yang menyumbang kepada kestabilan Asfalt Campuran Panas (HMA) Ia juga memberi kekuatan rintangan terhadap kerosakan ubah bentuk kekal jalan seperti aluran. Prestasi campuran asfalt bergred tumpat ketara dipengaruhi oleh tekstur bentuk, kesegian dan permukaan agregat halus. Objektif kajian ini adalah untuk menentukan nilai FAA bagi jenis agregat yang berbeza iaitu granit yang hancur dan pasir semulajadi, dan penilaian terhadap rintangan aluran campuran AC 10 dengan agregat yang dinyatakan. Selain ujian FAA, ujian lain juga dijalankan termasuklah ujian Marshall dan ujian roda pengesanan untuk mengukur rintangan aluran. Prosedur Marshall telah dijalankan untuk mendapatkan kekukuhan, kestabilan, ketumpatan, aliran, VTM dan VFB. Ujian mendapati ciri-ciri Marshall bagi agregat hancur adalah lebih tinggi daripada pasir semulajadi dari segi Kestabilan, Kekukuhan, dan Aliran Ia juga menunjukkan bahawa granit terhancur mempunyai peratusan FAA yang lebih tinggi (46%) berbanding dengan pasir semulajadi (37%). Daripada ujian pengesanan roda, diperhatikan bahawa kedalaman aluran untuk spesimen yang mempunyai granit hancuradalah lebih rendah berbanding spesimen dengan pasir semulajadi. Oleh itu kesimpulan dapat dibuat bahawa agregat yang mempunyai nilai FAA lebih tinggi boleh meningkat rintangan kepada aluran.

CONTENTS

CHAPTER

TITLE

PAGE

TITLE	i
DECLARATION	ii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
CONTENT	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF ABREVIATIONS	xiv
LIST OF APPENDICES	XV

I INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	1
1.3	Background Study	2
1.4	Aims and Objectives	3
1.5	Scope of Study	3

LITERATURE REVIEW

II

2.1	Introduction	4
2.2	Asphalt Mixture Components	5
2.3	Dense Graded Mixes	6
2.4	Aggregates in Asphalt Mixture	8
2.5	Fine Aggregate Angularity	
	2.5.1 Effect of Fine Aggregate Properties	
	on Asphalt Mixture Performance	10
	2.5.2 Effect of Fine Aggregate Angularity	
	on Void in Mix Asphalt	12
2.6	Aggregate Influence on Rutting Resistance	12
2.7	Conclusion	17

III RESEARCH METHODOLOGY

3.1	Introduction	18
3.2	Research Framework	19
3.3	Materials Selection	21
3.4	Material Properties	
	3.4.1 Bitumen Test	21
	3.4.2 Sieve Analysis	22
	3.4.3 Washed Sieved Analysis and	
	Mineral Filler	26
3.5	Determination of Aggregate Specific Gra	vity 27
	3.5.1 Determination of Coarse Aggrega	te
	Specific Gravity	28
	3.5.2 Determination of Fine Aggregate	
	Specific Gravity	29
3.6	Fine Aggregate Angularity	30

	3.6.1	Sample Preparation	31
	3.6.2	Test Procedure	33
3.7	Marsh	all Test	37
	3.7.1	Preparation of Compacted Specimen	38
	3.7.2	Determination of Specific Gravity	
		for compacted Specimen	39
	3.7.3	Stability and Flow Test	39
	3.7.4	Determination of the Optimum	
		Bitumen Content	40
	3.7.5	Theoretical Maximum Density	
		(Loose Mix)	41
3.8	Wheel	Tracking Test	44

IV RESULTS AND DISCUSSIONS

4.1	Introduction	49
4.2	Aggregate Gradation	50
	4.2.1 Washed Sieve Analysis	52
4.3	Specific Gravity Determination	52
	4.3.1 Bitumen	52
	4.3.2 Course Aggregate	53
	4.3.3 Fine Aggregates	53
	4.3.4 Filler	54
4.4	Bitumen Test	54
4.5	Fine Aggregate Angularity	55
4.6	Optimum Bitumen Content Determination	56
	4.6.1 Theoretical Maximum Density	58
4.7	Marshall Properties for Different Fine	
	Aggregates	58
4.8	Wheel Tracking Test	59
4.9	Summary of Findings	61

CONCLUSIONS AND RECOMMENDATIONS

5.1	Introduction	62
5.2	Conclusions	62
5.3	Recommendations	63

REFERENCES

V

LIST OF TABLES

TABLE NO.

TITLE

PAGES

Table 2.1	FAA Criteria	9
Table 2.2	Typical FAA Value	9
Table 2.3	Possible Causes and Treatments for Rutting	14
Table 3.1	Gradation Limit for AC10	24
Table 3.2	Aggregate Gradation Design	25
Table 3.3	Individual Size of the Retained Material	32
Table 3.4	Specification for AC10 as Recommended	
	by JKR/SPJ/rev2008	37
Table 3.5	Numbers of Samples Tested for Different	
	Mixture Types	40
Table 3.6	Minimum Sample Size Required for	
	Maximum Theoretical Specific Gravity	42
Table 4.1	Aggregates Specification for AC 10	
	Mixture and Design Mixture	51
Table 4.2	Specific Gravity of Fine Aggregate	53
Table 4.3	Required Specification and Binder	
	Properties Selected	54
Table 4.4	Result of the Aggregate Angularities	
	For each Material	55
Table 4.5	No. of Samples to Determine Optimum	
	Bitumen Content	57
Table 4.6	OBC for each Fine Aggregate	57
Table 4.7	Comparison of Marshall Properties Values	58

LIST OF FIGURES

NO.OF FIGURE

TITLE

PAGES

Figure 2.1	Dense graded Hot Mix Asphalt	6
Figure 2.2	FHWA Standard Specifications for	
	Construction of Roads	7
Figure 3.1	Research Framework	19
Figure 3.2	Flowchart of the Specimen Preparation	20
Figure 3.3	Mechanical Sieve Shaker	23
Figure 3.4	Aggregate Gradation for AC10	25
Figure 3.5	Aggregate Samples for Specimen Preparation	26
Figure 3.6	Sieve Size for Sieving Process	32
Figure 3.7	Samples for FAA Test	33
Figure 3.8	Apparatus for FAA Test	34
Figure 3.9	Pouring Sample into Funnel	34
Figure 3.10	Sample Free Fall into Calibrated Cylinder	35
Figure 3.11	Sample Weighed	36
Figure 3.12	Specimens after Compaction	38
Figure 3.13	Loose Mixture	43
Figure 3.14	Vacuum Vessel for TMD Determination	44
Figure 3.15	Wessex Dry Wheel Tracker	45
Figure 3.16	Compaction process for the slab sample	46
Figure 3.17	Preparation of the Slab Samples	46

Figure 3.18	Slabs for Wheel Tracking Test	47
Figure 3.19	Slab Specimen Placed in the Machine	48
Figure 3.20	Initial Reading Before Conducting the Test	48
Figure 4.1	Aggregate Gradation Envelope	51
Figure 4.2	Graph of Rut Depth Versus the Cycle	60

LIST OF ABREVIATIONS

AASHTO	American Association of State Highway and Transportation
	Officials
AC10	Asphaltic Concrete Wearing With 10 mm Nominal Maximum
	Aggregate Size
ASTM	American Society for Testing and Materials
FAA	Fine Aggregate Angularity
HMA	Hot Mix Asphalt
JKR	Jabatan Kerja Raya
MS	Malaysian Standard
TMD	Theoretical Maximum Density
VMA	Voids in Mineral Aggregate
VTM	Void Ratio in Mix
VFB	Void Filled Bitumen
OBC	Optimum Bitumen Content
g	gram
mm	millimetre
Mpa	Megapascal
Ν	Newton
°C	Degree celcius
%	Percent

LIST OF APPENDICES

APPENDIX NO.

TITLE

PAGES

Appendix A	Specific Gravity and Water Absorption	
	for Coarse Aggregate of AC10	67
Appendix B	Marshall Test Results	68
Appendix C	Theoretical Maximum Density	74
Appendix D	Rutting Test Results	75

CHAPTER 1

INTRODUCTION

1.1 Introduction

The main mechanisms of pavement deterioration are rutting and fatigue cracking. Nowadays, rutting has become a major problem due to traffic growth and higher axle loads projected from heavy vehicles. Rutting in asphalt pavements continues to create problems and reduce pavement performance. One factor that has been identified in determining the rutting susceptibility in asphalt pavement is the fine aggregate angularity (FAA) in the asphalt mix.

1.2 Problem Statement

HMA pavements have experienced premature rutting due to increases in the traffic loading. Truck tire pressure, axle load, and volume of traffic have increased considerably in recent years. Inappropriate selections of aggregate and binder quality and quantity for HMA production, contribute to rutting of asphalt pavements. The use of poorly graded aggregates having smooth, sub-rounded particles and a high

percentage of rounded sand have contributed to the loss of shearing resistance in asphalt mixtures.

In HMA mixtures, aggregate particles usually comprise of 94 to 96 percent by weight of the total mix with approximately 40 percent is fine aggregate (passing 4.75 mm or No. #4 sieve). The quality and quantity of fine aggregates play a very important role in determining the rutting resistance in asphalt mixtures. Their properties that influence the rutting resistance are particle shape or angularity, particle surface texture and particle porosity (Chowdhury, Button, Kohale, & Jahn, 2001).

1.3 Background Study

Fine aggregate can be considered as a primary constituent in asphalt mixtures. Hence, the properties of fine aggregates such as physical, chemical and mechanical properties play a significant role in determining the characteristics of the bituminous mixtures. The physical properties of aggregates are gradation, particle shape, surface texture, durability, cleanliness, toughness, and absorption. These properties primarily control the performance of mixtures.

Recent studies of Strategic Highway Research Program (SHRP) identified Fine Aggregate Angularity as one of the important aggregate properties contributing to the stability and resistance against permanent deformation of asphalt mixture.

1.4 Aims and Objectives

The aim of this study is to investigate the effect of fine aggregate angularity on the rutting resistance. The relative effect of angularity of fine aggregate is determined by using different type of aggregate shape with different sources which represent a wide range of materials used in pavement industry. This variety of aggregates shape will offer a variety of geometric irregularities. The aggregates used in this study are natural sands and crushed granite to make up AC10 for the evaluation.

The objectives of this study are as follows:

- i. To determine the Fine Aggregate Angularity for different types of fine aggregate namely crushed granite and natural river sand.
- To evaluate the rutting resistance of AC10 by using different types of fine aggregate.

1.5 Scope of Study

This study focuses on the rutting problem on asphalt pavement type AC 10 by using different types of Fine Aggregate Angularity .The rutting test was conducted on two different aggregate samples that having different FAA values. The fine aggregate angularity test was done to determine the uncompacted void content of fine aggregate material. The void content gives the information of the effect of fine aggregate on the stability and voids in the mineral aggregate. The results were factors like mineralogical properties of fine aggregate and the crusher type that determining the angularity of fine aggregate. The rutting test also shows that higher FAA values will increase the resistance to rutting problem of asphalt mixture.

REFERENCES

- Butcher, M. (1997). The Effect of Particle Shape on Asphalt Compaction and Mechanical. 10th AAPA International Flexible Pavement Conference Proceedings. Sydney, Australia: Australian Asphalt Pavement Association.
- Button, J. W., Perdomo, D., & Lytton, R. L. (1990). Influence of Aggregate on Rutting in Asphalt Concrete Pavement. Transportation Research Board , 141-152.
- Button, J. W. And D. Perdomo. *Identifying and Correcting Rut-Susceptible Asphalt Mixtures*. Federal Highway Administration, Springfield, Virginia, 1991.
- Lee, C. J., White, T. D., & R.West, T. (1999). *Effect of Fine Aggregate Angularity* on Asphalt. Indiana: Purdue University.
- Topal, A., & Sengoz, B. (2005). Determination of fine aggregate angularity in relation with resistance to rutting of hot-mix asphalt. Construction and Building Materials, 155-163.
- Topal, A., & Sengoz, B. (2008). Evaluation of compacted aggregate resistant test compared with the fine aggregate angularity standards. Construction and Building Materials, 993-998.
- Yasreen, S. G., Madzlan, N. B., & Ibrahim, K. (2011). The Effect of Fine Aggregate Properties on the Fatigue Behavior of the Conventional and Polymer Modified Bituminous Mixtures Using Two Types of Sand as Fine Aggregate. World Academy of Science, Engineering and Technology, 548-553
- Kordi, N. E., Endut, I. R., & Baharom, B. (2010). Types of Damages on Flexible Pavement for Malaysian Federal Road. Proceeding of Malaysian Universities Transportation Research Forum and Conferences 2010, (pp. 421-432). Putrajaya, Kuala Lumpur.

- Chowdhury, A., Button, J., Kohale, V., & Jahn, D. (2001). Evaluation of Superpave Fine Aggregate Angularity Specification. Arlington, VA: Aggregates Foundation for Technology, Research, and Education.
- Anthony D. Stakston, 2003. The Effect of Fine Aggregate Angularity, Asphalt Content And Performance Graded Asphalts On Hot Mix Asphalt Performance. In Transportation Research Record 2003
- Aschenbrener, T. and C. Mackean. *Factors That Affect the Voids In The Mineral Aggregate Of Hot-Mix Asphalt*. In Transportation Research Record 1469.
- Asphalt Institute (1991). Principles of Construction of Hot-Mix Asphalt Pavements.Manual Series No. 22 (MS-22) January 1983. Lexington, USA. Asphalt Institute.
- Crawford, C. Tender Mixes: Probable Causes, Possible Remedies, Quality Improvement Series. National Asphalt Pavement Association, Lanham, Maryland, 1989.
- Dae-Wook Park, ArifChowdhury, and Joe Button. *Effects of Aggregate Gradation* and Angularity On Vma and Rutting Resistance, 2001.
- Foster, C. R. The Effect of Voids In Mineral Aggregate On Pavement Performance. National Asphalt Pavement Association Information Series 96/86, Lanham, Maryland, 1986.
- Roberts, F. L., Kandhal, P. S., Brown, E. R., Dah Yinn Lee, dan Kennedy, T. W., (1996). *Hot Mix Asphalt Materials, Mixture Design, and Construction*. NAPA Research and Education Foundation. London, Maryland.
- Thomas D. White, 2000. Effect of Fine Aggregate Angularity on Asphalt Mixture Performance.
- Yeggoni, M., J. W. Button, And D. G. Zollinger. *Influence of Coarse Aggregate Size, Shape, And Surface Texture On Rutting Of Hot Mix Asphalt Concrete*, 1994.
- A., R. O. (2007). The Effectiveness of Pavement Rehabilitation at Kuala Lumpur Karak Highway, Master thesis. Johor: Universiti Teknologi Malaysia
- American Society for Testing and Materials (2004). ASTM T304: Standard Test Method for Uncompacted Void Content For Fine Aggregate (As Influenced By Particle Shape, Surface Texture, And Grading). Philadelphia, Pennsylvania,1996.

- American Society for Testing and Materials (2004). ASTM C117: Standard Test Method for Materials Finer than 75-µm (No. 200) Sieve in Mineral Aggregates by Washing. Washington.
- American Society for Testing and Materials (2004). ASTM C127: Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. Washington.
- American Society for Testing and Materials (1997). ASTM C128: Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate. Washington.
- American Society for Testing and Materials (1992). ASTM C136: *Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates*. Washington.
- American Society for Testing and Materials (1997). ASTM D5: Standard Test Method for Penetration of Bituminous Materials. Washington.
- American Society for Testing and Materials (1997). ASTM D36: Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). Washington.
- American Society for Testing and Materials (1992). ASTM D1559: Test Method for Resistance of Plastic Flow of Bituminous Mixtures Using Marshall Apparatus. Washington.
- American Society for Testing and Materials (1992). ASTM D2041: Standard Test Method for Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures. Washington.
- JabatanKerja Raya (2008). Standard Specification for Road Work.Kuala Lumpur. JKR/SPJ/rev2008.
- CheRos Ismail danMohdRosliHainin (2008). *Highway Engineering Lecture Notes*. UniversitiTeknologi Malaysia. Not Published.

www.nationallslagassoc.org