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ABSTRACT

As a renewable energy, wind power, most is anticipated to contributed a
significant part of the generation in power systems in the future, but also bring new
problems related to the integration of power quality, consisting mainly of voltage
control and reactive power compensation. Wind power generally dose not contribute
to voltage control in the system. Induction machines are mostly used as generators in
wind power production based. Induction generators used in wind turbines and wind
farms consume a large amount of reactive power. Next, since there is no voltage control
of induction machines installed and draw reactive power from the power system,
these machines are a source of of voltage fluctuations. Therefore, a combination of
wind turbines for power networks, especially the poor distribution network is one
of the major concerns of power system studies. Reactive power compensation and
power quality in the poor distribution networks to connect the wind turbines are a
big task for this thesis.This work was simulated using MATLAB / Simulink for a
weak distribution network and the integration of wind power in the network. Without
reactive power compensation of wind power in the network, the collapse of the system
voltage and under voltage tripping of wind generators occur. For dynamic reactive
power compensation, as STATCOM (Static Synchronous Compensator) and capacitors
are used at the point of interconnection of wind farms and networks, the system absorbs
the generated wind power while maintaining its voltage level. As a result the study
shows that, reactive power compensation by STATCOM and capacitor banks make it
possible the combination of wind farm in a weak distribution network.
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ABSTRAK

Sebagai tenaga boleh diperbaharui yang mungkin, kuasa angin, kebanyakan
dijangka akan menyumbang sebahagian penjanaan yang ketara dalam sistem kuasa
pada masa akan datang, tetapi juga membawa masalah baru yang berkaitan integrasi
berkualiti kuasa, yang terdiri terutamanya daripada pampasan kawalan voltan dan
kuasa reaktif. Kuasa angin amnya tidak menyumbang kepada kawalan voltan dalam
sistem. Mesin induksi kebanyakannya digunakan sebagai penjana dalam angin
pengeluaran penjana kuasa based. Mesin induks yang digunakan dalam turbin angin
dan ladang angin memakan sejumlah besar kuasa reaktif. Seterusnya, oleh kerana
tidak ada kawalan voltan mesin induksi yang dipasang dan mengambil kuasa reaktif
daripada sistem kuasa, mesin ini adalah sumber turun naik voltan. Oleh itu, gabungan
turbin angin bagi rangkaian kuasa, terutamanya rangkaian agihan lemah merupskan
salah satu daripada kebimbangan utama kajian sistem kuasa. Pampasan kuasa reaktif
dan kualiti kuasa di rangkaian agihon lemah untuk menyambung turbin angin adalah
satu tugas yang besar untuk thesis. Masalah ini dikaji dengan membuat simulasi
menggunakan MATLAB / Simulink bagi rangkaian agihan yang lemah dan integrasi
kuasa angin dalam rangkaian. Tanpa pampasan kuasa reaktif kuasa angin dalam
rangkaian, kejatuhan voltan sistem dan di bawah voltan penyandungan penjana angin
berlaku. Bagi pampasan kuasa reaktif yang dinamik, sebagai STATCOM (pemampas
Synchronous Statik) dan kapasitor digunakan pada titik sambungtara ladang angin dan
rangkaian, sistem menyerap kuasa angin yang dihasilkan pada masa yang sama akan
mengekalkan tahap voltan. Hasilnya kajian menunjukkan bahawa, pampasan kuasa
reaktif oleh STATCOM dan bank kapasitor membuat ia memungkinkan gabungan
ladang angin dalam rangkaian pengedaran yang lemah diadakan.
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CHAPTER 1

INTRODUCTION

1.1 Background

Nowadays, the quality of the electricity supply has become more important
than in the past. Over the recent years wind power generation is increasing around the
world. Furthermore, wind power energy production is growing continuously because
of the economical production and environmental impact as illustrated in Figure 1.1.
That has posed a challenging to the power distribution networks and their effects are
likely to be more widespread [1].

Figure 1.1: World total installed capacity [MW] against year

One of the problems with the connecting wind power turbine to distribution
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network is the huge reactive power consumed by generators. The Wind power turbines
are seen as a consumer of reactive power because of the induction generator is used in
wind power generation which cause power quality and voltage problems. Typically
wind turbines may cause undesirable voltage on the distribution system due to of
the varying nature of wind resources. When the wind speeds reach their maximum
the induction machines will also reach the maximum value VAr consumption which
causes the voltage to reach undesirable level. The main wind farm conversion system
is built from wind turbines, squirrel cage induction generator, gearbox, transformer
and reactive source which is a capacitor bank as illustrated in Figure 1.2. [2].

Figure 1.2: Schematic Diagram of Wind Turbine

On the other hand wind turbine components consist of blades, controller,
gearbox, generator, nacelles, rotor and tower which is defined in Table 1.1. and
illustrated in Figure 1.3 [3].

In addition the conventional squirrel cage induction generator draws reactive
power which is undesirable behaviour for power system especially in the case of weak
distribution system and large turbine. These types of generator causes slow down the
voltage restoration after a voltage collapse which causes the rotor speed and voltage
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Figure 1.3: Schematic Diagram of Wind Turbine

Table 1.1: Wind Turbine components

Blades Wind turbines usually have three blades. The blades are between 30-50
meters.

Controller The controller is placed in the base of the wind turbines and in the nacelles.

Gearbox Gearbox increases the rotational speed of the shaft. Some turbines do not
have a gearbox and so they have direct drive generators.

Generators Wind turbines typically use a single AC generator (induction) that converts
the mechanical energy into electrical energy.

Nacelles The main components such as the controller, gearbox, generator and shaft are
called nacelles houses.

Rotor The rotor involves both blades and the hub.

Tower Usually build from tubular steel tower reaching light of 60-80 meters.
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unstable. The reactive power will be consumed by the generator when the voltage
restores. The generator continues to accelerate and absorb even big amount of reactive
power when the voltage dose not return quickly. This eventually leads to increase in
rotor speed and voltage instability. In order to overcome these types of instabilities,
shunt capacitor is installed at the generator terminal to compensate its reactive power
consumption [4].

In order to control the inherent voltage and stability resulting from the
installation of wind turbines, the use of dynamic hybrid reactive power compensation
(DHRPC) is necessary.There are two methods to minimize voltage problems caused by
wind turbines connected to the grid, which are the internal and external solutions. The
internal solution is by using devices placed inside the wind turbines to minimize the
voltage problems. The external solution involves the use of devices outside the wind
turbines to minimize the voltage problems [2].

A dynamic hybrid reactive power compensation (DHRPC) is used to minimize
voltage problems as external solution.

On the other hand compensation of wind turbines can be classified into two
types of events, steady state and transient. Voltage quality which involves voltage
fluctuation, flicker and harmonic problems is the important thing to be considered from
the first type. Voltage stability is the second type of event to be considered [2].

The devices are typically used to provide this compensation is shunt capacitors
and FACTS devices.

1.2 Electric Power Systems

Electricity demand is the fastest growing energy demand worldwide. The
rise in electricity use is related to the development of countries and surely it can be
predicted to continue as the faster demand keeps increasing. Electric power system
development worldwide is the world base on centralized generation stations. In these
stations the voltage is stepped up to various levels (HV, EHV and UHV) to be then
transmitted by the transmission system. The voltage after is then steeped down
to be distributed by the radial distribution system to the load. Recently a number
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of influencing features combined to increase the interest in the use of small scale
generation. The structure of electric power system is illustrated in Figure 1.4 [5, 6].

Figure 1.4: The Structure of Electric Power System

1.3 Traditional Concepts of Clectrical Power System

The large power plants producing electrical energy usually are located close
to the primary energy sources and remote from the consumer canter. The distribution
system which delivers electricity to the consumers are designed to operate radially .On
the other hand before the power reaches the final user, it undergoes three stages as
illustrated in Figure 1.5 [7].
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Figure 1.5: Traditional Conception of the Electrical Power System

1.4 New Concept of Electrical Power System

Nowadays, environmental issues, new energy policies, developed technology
and the expansion of the electrical markets and the huge investment cost are
encouraging innovations in the electricity generation sector. New technologies allow
smaller sized plants (renewable sources) to generate the electricity via centralized
generation or via renewable energy resources, especially wind power. In this concept
the electricity will be produced closer to the consumer as illustrated in Figure 1.6 [7].

1.5 Distribution Network

Transmission and Distribution network system is used to transport energy from
the distribution side to consumer side with less losses and minimum power quality
problems as much as can. Normal configuration of the distribution system is in radial
model. The radial distribution system is the opposite of a networked system and does
not provide for other sources of power. The system is designed for power to flow in
one-direction only as illustrated in Figure 1.7 [8, 9].

1.6 Power Quality Issues of Wind Farms

Network power quality is affected substantially from injection grid connected
wind turbine. Some wind turbines cause system voltage dips. The startup of individual
turbines is typically the problem. Some turbines are able to measure wind velocity and
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Figure 1.6: New Conception of the Electrical Power System

Figure 1.7: Radial Distribution System
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do not start generating until the wind reaches a certain speed and a certain duration.
By identifying the appropriate condition for the start up the wind turbines can draw
huge reactive current which is similar to the starting current of induction machine. The
starting current can be 2-3 times the rating of the machine and takes 10 second. The
significant voltage dip on the system can be caused by this sudden current. In this
case the interconnection requirements are applied by utilities that places limits on the
depth, duration and frequency of voltage allowed at the point of common coupling. If
the voltage dips may be caused by wind turbines are in excess of the interconnection
requirements the utility will decide that the wind turbine be de-energized until the
problem is solved [10].

1.7 Reactive Power

Reactive power is defined as the non working power caused by the magnetizing
current, required to run & maintain the magnetism in the devices. Reactive power
required by inductive loads (induction generators and motors) increases the amount of
apparent power in the distribution system[11]. The increase in reactive and apparent
power causes the decreasing of power factor.

1.8 Reactive Power (VAr) Compensation

VAr compensation is defined as the management of reactive power to develop
the AC power system performance. The VAr compensation concept is to embrace
a wide and diverse field of both system and customer problems, especially related
to power quality issues, since most of power quality problems can be solved with
an appropriate control of reactive power. In general, the problem of reactive power
compensation is observed from two aspects: voltage support and load compensation.
In general, voltage support is required to decrease voltage fluctuation at a given
terminal of a transmission line. In load compensation the objectives are to raise
the value of the system power factor, to balance the real power absorbed from
the AC supply, compensate voltage regulation and to eliminate current harmonic
components created by bulky and fluctuating nonlinear industrial loads. Therefore VAr
compensation devices are used depending on the particular requirements of a specific
application in power system as illustrated in Figure 1.8 [11, 12].
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Figure 1.8: Reactive compensation with Wind Turbine

1.9 Problem Statement

Wind turbines consist of conventional squirrel cage induction generator which
always consumes reactive power (VAr) that is undesirable for weak system especially
in the case of large turbines. In general, this type of generator causes slow down
the voltage restoration after a voltage collapse and this can cause the voltage and rotor
speed instability. When the voltage restores, the generator will consume reactive power
which causes blocking the voltage restoration. When the voltage does not go back
quickly enough to the nominal value, the generator continues to consume also a big
amount of reactive power. This process causes voltage and rotor speed instability if the
wind turbines are connected to a weak system.

1.10 Objectives

The objectives are:

(1) To analyze the impact of Dynamic Hybrid Reactive Power Compensation
(DHRPC) in a radial distribution system with wind farms within three different
wind speed (low, medium and high).

(2) To study the characteristics of radial distribution system with wind turbines
before and after introducing DHRPC
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(3) To evaluate the effect of the compensation in power quality issues.

1.11 Scope

The general scope is to determine and analyze the impact of Dynamic
Hybrid Reactive Power Compensation (DHRPC) in radial distribution system with
Wind farms. The hybrid is considered as Shunt Capacitor and Static Synchronous
Compensator (STATCOM).The network is represented in appendix A.

1.12 Thesis Outline

This thesis consists of 5 chapter. Chapter 2 presents an overview and revision of
the previous work of integration between network system and wind farms. In addition
it involves and shows the explanation of FACTS device types, wind turbine generators
and power quality impact. Chapter 3 describes and shows the methodology deployed
in this study used. The research method includes using an analytical approach to
study and simulate three phase radial distribution system from MATLAB/SIMULINK
simulation software is explained in this chapter.Chapter 4 , involves an analysis and
a discussion of results which obtained from the simulation model of three-phase
system using the Simpowersystem blackest software in MATLAB/Simulink.Chapter
5 , Conclusion of this research and future work were discussed based on the results.
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