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ABSTRACT 

 

 

 

 

Composite floor systems are being increasingly used in building and 

footbridge constructions, as they are economical and easy to construct. These 

composite floor systems use high strength material to achieve longer spans and are 

thus slender. As a result, they are vulnerable to vibration induced under service 

loads. Resonance of such structure is one of the most critical problems which 

without considering dynamic aspects in design, may lead to unsafe and discomfort 

circumstances for the users. The purpose of this study is to provide an appropriate 

analysis methodology through finite element analysis to assess the dynamic 

responses of composite slab and corresponding human comfort problems. A linear 

elastic finite element analysis through consideration of walking load model (applied 

in mid-span) with respect to application of different percentages of ply orientation 

and stacking sequences of FRP laminate in slab is conducted. Variation in material 

properties for each case and damping ratio is established separately to capture the 

maximum responses in terms of deflection and accelerations. The dynamic 

responses of deflection and accelerations are compared with the serviceability 

deflection limits and human comfort levels (of acceleration) to assess these floor 

types.  

 

 

 

 

 

 



   vi 
 

 

 

 

ABSTRAK 
 

 

 

 

Sistem lantai komposit semakin banyak digunakan di dalam pembinaan 

bangunan dan jambatan kerana ianya lebih berekonomi dan mudah dibina. Sistem 

lantai komposit ini menggunakan bahan berkuat tinggi untuk mencapai rentang yang 

lebih panjang dan langsing. Oleh sebab itu, ia terdedah kepada getaran di bawah 

beban khidmat. Resonansi di dalam struktur adalah salah satu masalah yang paling 

kritikal di mana jika aspek dinamik tidak diambil kira di dalam reka bentuk, ianya 

boleh membawa kepada keadaan yang tidak selamat dan tidak selesa kepada 

pengguna. Tujuan kajian ini adalah untuk menyediakan kaedah yang sesuai dalam 

menilai respon dinamik papak kompsit dan juga masalah keselesaan manusia 

melalui analisis unsur terhingga. Analisis unsur terhingga berciri linear elastik 

dijalankan melalui model beban berjalan (diletak di tengah rentang) dengan 

menggunakan peratusan orientasi lapis dan urutan susunan lamina FRP di dalam 

papak yang berbeza. Perubahan pada sifat-sifat bahan bagi setiap kes dan nisbah 

redaman dibuat secara berasingan bagi mendapat respon pesongan dan pecutan yang 

maksimum. Tindak balas dinamik tersebut dibandingkan dengan had pesongan 

kebolehkhidmatan dan juga tahap keselesaan manusia (pecutan) bagi menilai jenis-

jenis lantai.  

 



vii 
 

 

 

 

TABLE OF CONTENTS 

 

 

 

 

CHAPTER                TITLE          PAGE 

 

 

ABSTRACT (English)  v 

ABSTRACK (Behasa Melayu) vi 

TABLE OF CONTENTS vii 

LIST OF FIGURES xi 

LIST OF TABLES xiii 

LIST OF SYMBOLS xiv 

 

 

1  “INTRODUCTION”       1 

 

 

1.1. Background of the study      1 

1.2. Statement of problem       4 

1.3. Objectives        5 

1.4. Scope of the study       5 

1.5. Significance of the study      7 

 

 

2  “LITERATURE REVIEW”      9 

 

 

2.1. Introduction                                    9 

2.2. Vibration        10 



viii 
 

2.2.1. Vibration                                    10 

2.2.2. Amplitude          11 

2.2.3. Period        11 

2.2.4. Cycle                                                                 12 

2.2.5.  Natural frequency                                                      12 

2.2.6.   Damping      12 

2.2.7. Critical damping     13 

2.2.8. Resonance       13 

2.2.9. Dynamic loads     14 

2.2.10. Mode shape      15 

2.3. Human induced dynamic loads    16 

2.4. Walking load        21 

2.4.1. Load model       21 

2.4.2. Frequency and velocity of people walking  23 

2.5. Vibrations due to human activities     24 

2.6. Acceptance criteria for human comfort     26 

2.7. FRP background             29 

2.8. Fiber reinforced polymer composites in engineering  31 

2.9. Laminate code       33 

2.10. Damping ratio of FRP laminate    35 

  

3  “METHODOLOGY”       38 

 

3.1. Introduction        38 

3.2. Modeling of dynamic load by people walking   38  

3.2.1. Load model (LM)        39 

  3.3.    Structural model      40 

  3.4.    Computational analysis and finite element method  42

  3.5.    Dynamical analysis      45

  3.6.  FRP laminate       46 

                                   3.6.1    Assumptions for FRP laminate   49 

                                    3.6.2.   FRP material properties    49                                                                                                                                

3.7. Determination of damping      54 

       



ix 
 

3.8.Human perceptibility         55

       

4 “ANALYSIS, FINDINGS AND DISCUSSION”  58 

 

 

4.1. Introduction       58 

4.2. Dynamic amplification factor (DAF    58 

4.3. First strategy: Study of the dynamic responses of FRP  59 

4.3.1. FRP laminate-natural frequency     59 

4.3.2. FRP laminate- peak acceleration  68 

4.3.3. FRP laminate-displacements       77 

4.4. Second strategy: comprehensive study through the     

percentage of angels and influence of stacking sequence   84 

4.4.1. Importance of stacking sequence in peak  

acceleration     84 

4.4.1.1. Influence of zero layer in combination                  

                         with 45 and 90 degrees layers  86 

4.4.1.2. Combination of 45 and 90 degree               

              Layers without zero degree layer  86        

4.4.1.3. Summary of influence of different               

              angels on peak acceleration  86            

4.4.2. Influence of stacking sequence on total 

displacements     89 

4.4.2.1. Influence of zero layer in combination         

              with 45
 
and 90 degrees layers   90 

4.4.2.2. Combination of 45 and 90 degree                 

              layers in lack of zero degree layer  91                

4.4.2.3. Summary of influence of different angles    

             on total displacemen   91 

4.4.3. Influence of stacking sequence on natural               

             frequency       94 

4.4.3.1.  Influence of zero degree layer   

in combination with 45
 
and 90 degrees layers 95  

4.4.3.2. Combination of 45 and 90 degree layers     

         in lack of zero degree layer  96                      

 



x 
 

4.4.3.3.  Summary of influence of stacking sequence   

               on natural frequency   96 

4.4.4. Describing significant results referring to               

Combined effect of peak accelerations,  

total displacement and natural frequency  98          

     

     

5  “CONCLUSIONS AND SUGGESTIONS”             101 

 

 

5.1. Concluding remarks                  101 

 

 

REFRENCES                     103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

 

 

 

LIST OF FIGURES 

 

 

 

 

FIGURE NO.    TITLE         PAGE 

1.1 “After Hyatt Regency Hotel walkway collapse in Kansas city”  2 

2.1                      “Definition of Amplitude and Period”  11 

2.2 “Effect of modal viscous damping on response”  13 

2.3 “Actual and approximate heel drop function”  14 

2.4 “Types of dynamic loads”  15 

2.5 “Typical beam and floor system mode shape”  16 

2.6 “Load model”  22 

2.7 “Dynamic load function for one person walking at 2.0 Hz”   24 

2.8 “Human comfort recommended peak acceleration for vibrations          

                                due to human activities” 27 

2.9 “Composite pedestrian bridge in Lleida,Spain ”  31 

2.10 “Eye catcher building, Basel, Switzerland”  31 

2.11 “FRP laminate floor” 33 

2.12 “Laminate code” 34 

2.13 “Stacking sequence of laminate” 34 

3.1 “Dynamic load function for one person walking at 1.85 Hz“  40 

3.2 “Structural system layout ”  41 

3.3 “composite floor cross section” 41  

3.4 “Mode 1, Mode 2, Mode 3, Mode 4” 44 

3.5 “FRP laminate composed of four layers”  46 

3.6 “FRP laminate”  46 

3.7 “Recommended peak accelerations for human comfort due to              

                               Human activities (AISC1997)”  56 

4.1                          Dynamic amplification factor 59 

4.2 “Natural frequency of first 4 modes”  66 



xii 
 

4.3 “Recommended Peak Accelerations for Human Comfort due               

                                to Human Activities (AISC, 1997)” 76 

4.4 “Peak accelerations based on percentages of different angels 88 

4.5 “Total displacements based on percentages of angels  93 

4.6 “Natural frequency based on percentages of angels”  97 

4.7 “Combination of  45 and 90 degree layers” 98 

4.8 “Combination of 45,90 and zero degree layers” 99 

4.9 “Combination of 45 and zero degree layers” 99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 
 

 

 

 

LIST OF TABLES 

 

 

 

 

TABLE NO. TITLE   PAGE 

2.1                       “Minimum required natural frequency”    19 

2.2                        “Forcing frequencies (fs) and dynamic coefficients (αi)”  22 

2.3                        “Common forcing frequencies and dynamic coefficients                       28 

2.4                        “Macro micromechanical approach” 36 

2.5                        “Interphase damping/damping and damage  36 

3.1                        “Forcing frequencies (fs) and dynamic coefficients (αi)” 39 

3.2 “Geometrical characteristics of the beams and columns steel section”  42 

3.3 “Verification results according to literature”  45 

3.4                      “Different configurations of FRP laminate”                                           47 

3.5 “Properties of typical unidirectional and fabric composite                      

                               materials (three dimensional)”  49 

4.1  “Natural frequencies of FRP composite floor”  60 

4.2                       “Peak acceleration in composite floor.”  69 

4.3 “Maximum displacements at mid span”                                        77 

4.4 “Peak accelerations”                                                                      84 

4.5 “Total displacements”  89 

4.6 “Natural frequency”  94 

4.7 “Acceptable FRP laminate composite for slab.”                                     100 

  

 

 

 

 

 

 

 



xiv 
 

 

 

 

 

LIST OF SYMBOLS 

 

 

 

 

T  - Period 

f  - Frequency 

G  - Static weight 

Tp  - Contact ratio 

αi     - i 
th

 harmonic forcing 

rn     - Dynamic load factor 

ϕn    - Phase lag 

DAF    - Dynamic Amplification Factor 

n  - n 
th

 harmonic of jumping load 

u    - Displacement 

 ̇  - Velocity 

 ̈  - Acceleration 

ω    - Circular natural frequency 

φ    - Mode shape 

ς  - Damping ratio 

Ec    - Modulus of elasticity of concrete 

Es  - Modulus of elasticity of steel 

L  - Length of floor 

B    - Width of floor 

 

 



 

 

 

 

CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1. Background of the Study 

 

 

Today’s structures are built to cater to the expectations of the community 

aesthetically. They are pleasing and use high strength materials as well as new 

construction technology. These structures are thus slender which unfortunately 

exhibit vibration problems under various service loads, causing discomfort to the 

occupants and raising questions on their use for the intended propose. At times, these 

vibrations have also been the cause of structural failure. One such case of structural 

failure that caused many lives was the collapse of Hyatt Regency Hotel Walkway in 

Kansas City, US, which happened during a weekend "tea dance" in 1981 as shown in 

Figure 1-1 (McGrath And Foote,1981). 
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In the absence of appropriate theories and necessary information at that time, 

no one really understood the cause of this devastation. Some argued that the 

walkway buckled from the "harmonic" vibrations set up by people swaying or 

dancing, resulting in wavelike motion that caused it to collapse, while others argued 

that the walkways were overwhelmed by the weight of the large numbers of people 

unable to hold them (McGrath and Foote, 1981). Either way, the dynamic effect of 

crowd of people performing the dance-type activity, or exerting similar loads from 

other human activities has played a significant role to cause this devastation. Such 

dynamic events not only cause loads much greater that the static loads to which the 

structure could have been designed, but also excite modes of vibration due to higher 

harmonics of the forcing frequencies, ultimately forcing them to collapse.  

Similar concerns in vibration hazards have been also reported in human 

assembly structures such as stadiums, grandstands and auditoriums [2, 3]. Some 

examples are the Cardiff Millennium Stadium [4], Liverpool’s Anfield Stadium and 

Old Trafford Stadium [5]. The structures mentioned above are all slender with 

natural frequencies that fall within the frequency of the human-induced loads, which 

consequently produced vibrations. As a result, they caused human discomfort, crowd 

panic or in the extreme case, the collapse of the structures [6]. 

 

Steel-deck composite floor structures are another example of slender 

structures used in multi-story buildings and have been known to experience vibration 

problems under human activity. There are a number of different configurations of 
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these floor slabs, but they are all slender as they use high strength materials to 

achieve longer spans and hence reduce sections. They are being used in high-rise 

buildings especially in Australia, as they are economical and easy to construct. These 

composite floor slabs are normally designed using static methods which will not 

reveal the true behavior under human-induced dynamic loads, resulting in the 

vibration problems. 

 

 

 The vibration problem in different types of composite floor system has been 

first identified by Chien and Richie [7]. This later resulted in other researchers to 

investigate the behavior under dynamic loads on floors. Bachmann et al. [8], Allen 

and Murray [9], Williams and Waldron [10] presented experimental investigations 

and da Silva et al. [11], Hicks [12] and Ebrahimpour et al. [13] used finite element 

method of analysis to contribute research information under various human-induced 

loads on composite floor systems. The current methods of designing composite 

floors against vibration are based on this information and are found in the Steel 

Design Guide series11 [14] and design guides on the vibration of floors [15]. 

 

 

During the last decades, the new promising material has slowly entered the 

civil engineering market. In this case, arguably the most advances popular material 

which will be considered in this study, refers to a matrix which is reinforced with 

fibers, Fiber Reinforced Polymer (FRP). 

 

 

Due to the high strength to low weight ratio, resistance in fatigue and low 

damping factor, composite  materials  have a wide range of applications in car, 

aerospace and aviation industry, where it has been in use for many years. In 

composites, the fiber reinforcement carry load in pre-designed directions and the 

polymer matrix acts as a medium to transfer stresses between adjoining fibers 

through adhesion and also provides protection for the material. However, the lack of 

design codes and guidelines for FRP bridge decks is the reason that FRP decks have 

not been applied widely. 
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By considering all, a proper evaluation of the floor based on its dynamic 

response is needed. With this in mind, a comprehensive research project was 

undertaken to study the different lay-up and orientations of laminate (FRP) 

composite floor using dynamic computer modeling. This research information is 

used to evaluate the response of composite floor under walking load and to assess 

human comfort and hence the suitability of the FRP floors. 

 

 

 

 

1.2.Statement of Problem 

 

 

Modern construction techniques make use of lightweight, high-strength 

materials to create flexible, long-span floors. These floors sometimes result in 

annoying levels of vibration under ordinary loading situations. Due to these types of 

loading the structure may not experience the ultimate loading but causes discomfort 

for occupants, particularly whom are in non-vibrated adjacent panels. On the other 

hand, in the design procedure, almost all engineers ignore these criteria and they just 

check serviceability for deflection of the floor and it can give rise to discomfort 

feeling for occupants resulting in complains. So far, many studies have been done 

about the long span floor susceptibility against vibration due to human induced load. 

But we still observe the lack of information about the effectiveness criteria of 

material and type of loading and location of impact loading and properties of 

composite material in the structure. 

 

 

In the case of composite floors, the most controversial problem seems to be 

the dynamic response of the structure against loading, which is induced by human 

motion. Vibration caused by dynamic loading leads to different responses in terms of 

dynamic amplification factor (DAF), acceleration and displacement, depending on 

the stiffness and mass matrices of the material. In the design of the structure of the 

floor, the dynamic effect of loading has been considered as a coefficient of static 

loads, the problems of excessive acceleration and displacement are common, which 
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lead to discomfort and unsafe conditions for the people walking on it. As an 

engineer, we must be aware of possible problems and find the proper method to 

overcome these drawbacks. Thus far, the effects of contact ratio, period of loading, 

human body, and damping ratio have been provided. In some details such as the 

effect of stacking sequence of laminate in response of the structure, we can observe 

the lack of information. 

 

 

 

 

1.3.Objectives of the study 

 

 

The specific objectives of this study are as follows: 

1.3.1. To provide finite element methodology for modeling the dynamic responses 

of laminated composite floor with loads induced by human walking  

1.3.2. Comprehensive study on the effect of percentage of ply orientation and 

stacking sequence on the structural dynamic behaviors. 

 

 

 

 

1.4. Scope of the Study 

 

 

The aim of this project is to generate the fundamental research knowledge on 

the vibration characteristics of stacking sequence of laminate composite floor 

structures subjected to human-induced loads in order to evaluate their compliance 

against the serviceability and comfort requirements in the current design standards.  

In this study, a simply supported deck system (7x9m) is considered and the steady-

state dynamical response analysis is performed. Individual human weight is to be 

considered 700 N and the damping ratio of the structure is considered 3% for 

concrete-steel deck and varies between 0.166 - 2.2% for different lay-ups of fibers in 
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FRP laminate. In addition, beams are considered as 3 dimensional, in which the 

flexural and torsion effects are considered. Also, full interaction between steel and 

concrete slab is assumed for the composite system. Linear analysis in elastic region 

will be performed and AISC Design Guide 11 is the basic code to be used which 

specifies the limits for floor vibration due to human activities. The finite element 

software SAP2000 will be used as the tool to perform all numerical evaluations. The 

model provides the natural frequency of the floor as well as the dynamic response of 

the floor to a given load. Data from these models are compared to current design 

standards recommended by the American Institute of Steel Construction Design 

Guide 11 Floor Vibrations Due to Human Activity. All procedure of analysis is 

performed under linear elasticity region. 

 

In case of FRP components, the following assumptions are considered: 

a) All components are completely bonded together; 

b) Each deck component has orthotropic material properties that will be modeled as 

flaw-free and uniform orthotropic continuum.  

c) The behavior of deck component as well as the deck system is linear elastic, no 

creep and no time-dependent evaluation will be modeled;  

d) The material is carbon fiber/ epoxy with 0.63 fiber volume fraction. 

 

Material properties: 

 

Steel: 300 MPa yield stress, E=2.05x10
5
 MPa 

Concrete: 25 MPa compression strength, E=2.4x10
4
 MPa 

                                  

Laminate is made up four lamina or ply stacked together at various orientations, in 

wiling 0; ±45; and 90. 
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This study investigates one panel as a sample by altering the material 

properties and damping ratio from concrete-steel deck to FRP laminate and considers 

only as walking human induced loading. The load parameters will be frequency and 

location of the activity. 

 

 

 

 

1.5.Significant of study 

 

 

 Human-induced dynamic loads originate from various human actions. A 

number of serviceability problems were reported due to properties of today’s 

structures, which have longer spans, are lighter and have a reduced damping. Bridge 

type structures are the most vulnerable to human induced-dynamic loads, which 

caused them to vibrate. The vibrations were reported after construction, while 

servicing. To avoid such problems, it is desirable that a proper understanding of this 

behavior is considered in the design. 
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